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18 kDa mitochondrial translocator protein 

(TSPO)

In previous studies we found that the 18 kDa mitochondrial 
TSPO may be at least partly involved in regulation of 
gene expression of non-coding RNAs (ncRNAs) (1,2). 
Importantly, modulation of gene expression is not a 
secondary effect of TSPO activation, but one of its primary 

functions (3). TSPO is a receptor molecule able to regulate 
various cellular and organismal functions, in order to 
maintain health and counteract diseases (4-7). These 
are functions that can be considered part of the overall 
homeostatic function of TSPO (4,8). Homeostasis, in 
this context, stands for any biological system’s activities to 
maintain a dynamic equilibrium for health and survival (9).

A previous common name for TSPO was peripheral 
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benzodiazepine receptor (PBR), based on its capability 
to bind benzodiazepines in peripheral tissues  (10). 
Classical TSPO ligands are the benzodiazepine Ro5-4864 
(4’-chlorodiazepam) and the isoquinoline carboxamide 
derivative PK 11195 (11). The primary intracellular location 
of TSPO typically is the outer mitochondrial membrane 
(12,13). Numerous reports have demonstrated that TSPO 
serves various essential functions, including modulation of 
cell growth and proliferation, ATP production, regulation 
of the mitochondrial membrane potential (ΔΨm), heme 
synthesis, mitochondrial cholesterol import associated with 
steroid synthesis, adaptation to oxidative stress, generation 
of reactive oxygen species (ROS), modulation of gene 
expression, and initiation of programmed cell death. The 
regulatory role of the TSPO in programmed cell death 
as initiated by ΔΨm collapse is thought to present one 
mechanism whereby TSPO is involved in cancer and 
neurodegeneration (14). On occasion, apart from the 
mitochondria, TSPO can also be found in association 
with other cell organelles such as the cell nucleus and 
even the outer cell membrane (4,15,16). The association 
of the TSPO with the mitochondria-to-cell nucleus 
signaling pathway is thought to take part in regulation of 
cell nuclear gene expression (1-3). TSPO knockdown with 
siRNA as well as application of TSPO ligands indicated 
that TSPO is important for regulation of gene expression  
(1-3). In addition, pathway analysis suggested that this gene 
expression regulation serves various functions including 
programmed cell death, inflammation, immune response, 
cell migration, adhesion, cell differentiation, neurite 
outgrowth, proliferation, tumorigenesis, cell cycle, etc. (3). 
It can be suggested that modulation of cell nuclear gene 
expression and regulation of initiation of the mitochondrial 
apoptosis cascade can be considered main functions of 
TSPO and its ligands (3,17). This information gave 
further insights how TSPO could perform its homeostatic 
functions. In this context, TSPO upregulation has been 
connected to several diseases, including cancer, neuronal 
damage, neurodegeneration, and inflammation (16,18,19). 
Moreover, TSPO ligands can serve to counteract such 
diseases (7,20). 

Generation of transgenic mice with TSPO knockout 
also suggested homeostatic functions of TSPO (21). For 
example, two distinct types of TSPO knockout mice to 
induce gonadal and steroidogenic cell-specific TSPO 
deletion indicated a role for TSPO in cellular cholesterol 
and lipid homeostasis (22). TSPO expression also appears 
to be essential for healthy adipocyte functions. In particular, 

activation of TSPO in adipocytes improves regulation of 
glucose homeostasis (23). While discussed for mammals, 
the role of TSPO in homeostasis is well recognized in 
prokaryotes. In this context it should be noted that TSPO 
is a protein whose typical trans-membrane helix structure 
as well as functions have been remarkable preserved 
along the evolutionary record from Archaea and Bacteria 
to Eukaryotes (24,25). Studies on prokaryotes suggest 
that TSPO might be involved in iron homeostasis, 
synthesis of steroids that regulate membrane fluidity 
due to its localization, as well as to drive responses to  
stressors (26). Interestingly, a direct role of TSPO in 
expression of ncRNAs has been suggested (1,2) (Figure 1). 
In particular, TSPO appeared to be involved in modulation 
of nuclear gene expression including small nucleolar (sno) 
RNAs. Of the 610 genes affected by 24 hours of the TSPO 
classical ligand PK 11195 exposure, 6 were for small 
nucleolar RNAs. Of the 359 genes affected by 48 hours of 
PK 11195 exposure, 12 were for small nucleolar RNAs. Of 
the 1,249 genes affected by stable TSPO knockdown 65 
were for small nucleolar RNAs (1,2).

ncRNAs

ncRNAs are more and more considered as participants 
in maintaining homeostasis of the host (27,28). While 
ncRNAs are not translated to proteins, they can modulate 
protein synthesis in the cell via various post transcriptional 
modulations, for example, translational repression. The 
number of ncRNAs within the human genome is known to be 
higher than RNA coding for proteins. Important functional 
ncRNAs include: small RNA such as microRNA (miRNA), 
transfer RNA (tRNA), ribosomal RNA (rRNA), short 
interfering RNA (siRNA), PIWI-interacting RNA (piRNA), 
small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), 
extracellular RNA (exRNA), small Cajal body-specific RNA 
(scaRNA), and long ncRNA (lncRNA). Functions of all of 
these ncRNAs are summarized briefly below.

miRNAs, which are the most examined members of 
this family of snRNAs, are small non coding molecules 
synthesized from the double stranded region of hairpin 
RNA (29). They are associated with regulation of gene 
expression via mRNAs translation interference by activating 
the RNA induced silencing complex (RISC) (30). It has 
been proven that changes in the level of expression of 
different types of miRNAs influence the expression of 
genes responsible for a number of disorders and diseases, 
including cancer, non-alcoholic fatty liver disease (NAFLD), 
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Small nucleolar RNA gene expression changes in U11MG glioblastoma cells

After 24 hours of PK 11195 
exposure

After 48 hours of PK 
11195 exposure

After TSPO knockdown
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Summary: 
Of the 610 genes affected by 24 hours of PK 11195 exposure 6 were for small nucleolar RNAs (2)
Of the 359 genes affected by 48 hours of PK 11195 exposure 12 were for small nucleolar RNAs (2)
Of the 1,249 genes affected by stable TSPO knockdown 65 were for small nucleolar RNAs (1)

Figure 1 Gene expression of snoRNA changed by TSPO ligand PK 11195 and TSPO knockdown.

cardiovascular disease, etc. (31-33).
As TSPO, specific miRNAs appear to play important 

roles in neurodegenerative diseases and brain injury. 
Microarray analyses have demonstrated that during 
mammalian brain development the expression levels of 
many miRNAs are dynamically controlled, suggesting a 
role in regulating brain structure and function (34). These 
same miRNAs can be differentially expressed in the brains 
of people suffering from CNS-related disorders. For 
example, various studies have shown significantly increases 
of miR-9 and miR-128, and a decrease of miR-107 in brains 
of Alzheimer Disease (AD) patients (35,36). In another 
study it was found that 15 miRNAs were dysregulated 
in sporadic AD, in particular increases of miR-197 and  
miR-511; and decreases of: miR-7i, miR-9, miR-15a, 
miR-19b, miR-22, miR-26b, miR-29b-1, miR-93, miR-
101, miR-106b, miR-181c, miR-210, and miR-363 were 
found (37). Furthermore, already early in the pathogenesis 
of AD, miRNA levels can be altered, suggesting that 
miRNAs take part in the development of the disease (38). 
Regarding Huntington Disease (HD), miRNAs were 
found to be differentially expressed in post-mortem HD 
brains, for example decreases of miR-9 mir-29a, mir-124a,  

mir-132, and mir-135b expression (39-41). Previous studies 
have shown that regulation of several miRNAs, including  
miR-9, miR-29a, and miR132/212, may be directly 
controlled through proximal binding sites for the REST 
protein (RE1-silencing transcription factor), potentially 
presenting a factor for aberrant transcriptional and post-
transcriptional control in HD patients (39-42). Regarding 
Parkinson Disease (PD), from a panel of 224 miRNAs 
precursors from samples of midbrain, cerebellum, and 
cerebral cortex samples of PD patients and normal controls, 
8 appeared to be enriched in midbrain relative to cerebral 
cortex or cerebellum, as determined with rtPCR (42). 
Expression of one of these eight precursor miRNAs, 
miR-133b was specifically deficient in the context of PD 
patient samples (42). Numerous studies have shown that 
brain injury affects expression of coding and ncRNAs, 
for example, the chronic condition of traumatic brain 
injury (TBI) can be accompanied by changes in gene 
expression of over 7,000 genes (involved in metabolism, 
receptor-mediated cell signaling, neuronal plasticity, 
immune cell recruitment, immune cell infiltration, and 
neurodegenerative disease) in the areas of secondary brain 
injury surrounding the primary injury (43). It can be 



Non-coding RNA Investigation, 2017Page 4 of 10

© Non-coding RNA Investigation. All rights reserved. Non-coding RNA Investig 2017;1:25ncri.amegroups.com

suggested that miRNAs can be used as biomarkers for these 
various conditions and diseases.

Regarding the well-known tRNAs and rRNAs, apart 
from their canonical translational functions, tRNAs can 
also regulate gene expression (44). Furthermore, amino-
acylated tRNAs have been implicated as substrates for 
non-ribosomal peptide bond formation, post-translational 
protein labeling, modification of phospholipids in the cell 
membrane, and antibiotic biosynthesis. tRNA fragments 
(tRFs) have been recognized to play regulatory roles in 
translation and gene expression (45,46). Thus far, rRNA is 
only known as the RNA component of the ribosome (47).

siRNAs are small duplexes that consist of 19–23 paired 
nucleotides synthesized from double stranded DNA 
precursors (48,49). These molecules provide similar 
interference mechanism for silencing a specific gene via 
RISC as miRNAs. It is reported that siRNAs silencing 
effect is accomplished via the cooperation with members 
of the conserved Argonaute (AGO) protein family which 
enable targeting of complementary RNAs for degradation, 
translational repression, and transcriptional sequencing 
(50,51). siRNAs may be used for gene therapy (52).

Compared to miRNAs and siRNAs, piRNAs are 
somewhat longer molecules consisting of 24–31 nucleotides. 
They are derived from single stranded precursors (53). The 
function of piRNAs is enabled via cooperation with specific 
proteins known as PIWI, for example as expressed in 
gonads that produce RISCs with a number of RNAs (54). It 
has been shown that this interaction between PIWI proteins 
and piRNAs plays a key role in silencing transposable 
elements (TEs), whose mobility otherwise threatens 
genome integrity (55). 

snRNAs are present in the nucleoplasm and the nucleolus 
of eukaryote cells. Research by Will and Luhrmann (56) 
has indicated that snRNAs are involved in the process 
of splicing of mRNA as elements of the spliceosome 
making them key players in removing introns and mRNA 
maturation (56). 

As mentioned, we have found in two separate studies that 
apart from protein coding genes, expression of numerous 
genes for snoRNAs are affected by TSPO knockdown, and 
also by the TSPO ligand PK 11195 (1,2). These snoRNA 
distilled from more than thousand genes affected by TSPO 
and its ligands are compiled in Figure 1.

snoRNAs derive their name from their location 
in the nucleolus. snoRNAs primarily guide chemical 
modifications of other RNAs, mainly ribosomal RNAs, 
transfer RNAs and small nuclear RNAs (57,58). These 

post-transcriptional modifications are important for 
the production of efficient and accurate ribosomes (59). 
However, snoRNAs can also participate in modifications 
of snRNAs that mediate mRNA splicing (60). Similar 
to the splicing snRNAs, snoRNAs are complexed with 
specific proteins and exist as discrete ribonucleoprotein 
particles (snoRNPs) (61,62). ScaRNAs are snoRNAs that 
are localized in Cajal Bodies (CB) which guide the 2-O 
methylation and pseudouridylation of several snRNAs 
(63,64). ScaRNAs level of expression is crucial for regular 
mRNA splicing. Furthermore, snoRNA transcripts serve as 
the precursors of miRNA-like small RNAs and as regulators 
of alternative splicing (65,66). 

In vitro studies showed that snoRNAs can act either as 
oncogenes or as tumor suppressors (67). Apart from cancer, 
snoRNAs may also play a role in neurodegeneration. For 
example, Snord 3A, a molecular marker and modulator 
of prion disease progression, was found to be elevated 
several times in Creutzfeldt Jacobson Disease patients as 
well as in animal models for the disease (68). Interestingly, 
SNORDA3 was also found to be affected by TSPO 
knockdown (Figure 1). 

Thus, snoRNAs can participate at several stages of 
protein formation, including: (I) folding of pre-rRNA 
as RNA chaperones; (II) protein folding; (III) formation 
of rRNP substrates; (IV) RNA processing and base 
modification reactions; (V) assembly of ribosomal subunits; 
and (VI) export of assembled subunits. Hence it can be 
considered that optimal expression of these molecules is 
directly responsible for regular protein synthesis. 

In addition to the aforementioned small ncRNAs which 
are highly abundant molecules, long non coding (lnc)RNA 
are somewhat larger, having more than 200 nucleotides 
(69,70). lncRNAs act as blockers of transcriptional and 
splicing factors, and as modifiers of chromatin protein, 
thereby regulating the processes of transcription and 
splicing. It is reported that some antisense lncRNAs can 
also participate in mRNA stabilization by preventing 
miRNA binding which makes them potential regulators of 
their functions as gene silencers (71). In addition, it is also 
suggested that some lncRNAs regulate Dicer endonuclease 
activity therefore interfering with siRNA expression (72). 
Furthermore, lncRNAs have a number of important roles in 
several biological processes such as, translation, apoptosis, 
pluripotency of stem cells, etc. (73-76). Studies have also 
reported the significance of the lncRNA MALAT 1 (full 
name: ‘metastasis associated lung adenocarcinoma transcript 
1’) in reducing inflammation in endothelial cells in diabetic 

https://en.wikipedia.org/wiki/Ribosomal_RNA
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rats (77). Moreover, MALAT 1 silencing also contributed 
in reducing glucose induced upregulation of inflammatory 
cytokines such as IL 6 and TNFα (78).

With studies on ncRNA such as discussed above it is 
becoming well understood that ncRNAs can dramatically 
affect the execution of myriad cellular programs (79). 
This study also states that ncRNAs present a complexity 
as diverse as mRNAs, including a diverse and interrelated 
range of regulatory and functional roles in transcriptional, 
post-transcriptional, epigenetic, and nuclear processes. This 
adds to the cell type-, developmental stage-, and stimulus-
specific profiles of protein-coding mRNA expression, post-
transcriptional modifications, localization, and translation. 
Thus, it can be safely concluded that ncRNAs present 
an intricate frame work that can well serve to maintain 
homeostasis of biological organisms.

ncRNA, TSPO, and homeostasis 

Biological systems are characterized by active maintenance 
of their homeostasis under broad ranges of environmental 
and physiological conditions (9). At molecular biological 
levels, this includes responses to insulting conditions such 
as injuries, pathogenic infections, and diseases (80-82). 
Such responses involve coordinated modulation of gene 
expression programs (83). In this context of homeostasis, 
long and short ncRNAs regulate development and cell 
physiology; and are also involved in several human 
diseases, such as cancer, neurodegenerative disorders; and 
in a variety of stress responses, including host pathogen  
interactions (9). Here we want to pay a bit more attention 
to potential commonalities between TSPO and ncRNA in 
regulating homeostatic functions. 

Various miRNAs play important roles in regulating stress 
by optimizing the levels of key proteins involved in stress 
response (84). Several miRNAs, for example miR-9, miR-
146, and miR-155 present increased expression in acute 
stress, acting via negative feedback to alleviate inflammatory 
reactions (85). Other studies have shown miR-21 to be 
overexpressed in glioblastoma tumors, described as anti-
apoptotic factor predicted to down regulate genes associated 
with advanced apoptosis (86). In the section of miRNAs it 
was discussed that miRNAs are participants in mechanisms 
related to brain injury and brain disease.

The use of aberrant miRNAs offers opportunities to 
screen, diagnose, and predict patients’ outcome with high 
accuracy by simple blood testing for different types of 
cancer (87). In this context, miRNAs have been linked to 

the regulation of differentiation, proliferation, apoptosis, 
and exocytosis. These are functions that are also known to 
be under the control of TSPO, as discussed at the beginning 
of this review. 

Here we want to pay attention to some more functions 
that imply regulation of homeostasis by TSPO as well 
as miRNAs. Since TSPO is abundantly expressed in 
various metabolically active tissues, interest has been 
directed toward its regulatory role in several important 
metabolic disorders. Because one of its endogenous ligands 
is cholesterol, TSPO expression was measured in high  
fat/high cholesterol fed mice that present an inverse 
correlation between TSPO expression and obesity related 
inflammation (88,89). Similarly, a significant decrease in 
mitochondrial TSPO expression was observed in obese 
individuals (90). In the same study, in vitro incubation of 
trophoblast cells with long chain saturated fatty acids, 
showed inhibited TSPO mRNA expression. Taking this 
into account, special interest has been shown in TSPO’s 
role in atherosclerosis and fatty liver disease introducing it 
as a biomarker for oxidative stress (91). In addition, several 
studies have revealed that TSPO is highly expressed in 
white and brown adipose tissue (WAT and BAT), thus 
implying TSPO’s involvement in adipocytes’ metabolism 
making TSPO an important factor considering regulation of  
obesity (92). lncRNAs involvement in cholesterol and 
triglyceride homeostasis was also shown (93,94). miRNA 
relation to inflammation as a result of obesity was also 
observed. For example, Ortega et al. (95) reported 
significant increases in expression of miR-221, miR-
222, and miR-155 under conditions of obesity and their 
consequent decrease in post weight loss patients (95). Also 
an association between miR-155 and inflammation has been 
made by Karkeni et al. (96) who affirmed up-regulation 
of this miR-155 by TNFα in adipose tissue (96). Jiang  
et al. (97) reported significant increase of miR-378 in mature 
adipocytes as a result of IL-6, TNFα, and leptin treatment 
thus confirming miR-378’s connection to obesity related 
inflammation (97). Further research exploring the outcome 
of therapeutic treatment associated with different miRNA 
profiles could provide valuable data to advance drug regime 
selection. 

It has been postulated that TSPO is involved in 
cardiovascular diseases as well as obesity (90,98). Thus, 
we also wanted to follow research regarding the potential 
involvement of miRNAs in cardiovascular diseases. Indeed, 
also lncRNA and miRNA appear to play crucial roles in 
cardiovascular diseases (99,100). In particular, it has been 
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shown that the cardiac apoptosis related lncRNA (CARL) 
interaction with miR-539 prevents myocyte fission and 
apoptosis, thereby obstructing cardiac remodeling otherwise 
typically following myocardial infarction (101). Studies 
have also reported the significance of MALAT 1 expression 
in endothelial cells for their proliferation during a state of 
hypoxia (102). 

Conclusions

Various studies are suggesting that TSPO as well as ncRNAs 
play roles in homeostatic functions. As studies have also 
shown that TSPO and its ligands can regulate expression of 
ncRNAs, it is tempting to suggest that interactions between 
TSPO and ncRNAs may contribute to homeostasis of 
the organism. This implies that such interactions may be 
targeted to treat particular disorders, ranging from cancer, 
cardiovascular disorders, inflammatory disorders, the chronic 
condition of brain injury, and neurodegenerative disease.
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