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Epidermal growth factor receptor (EGFR) is a member 
of the large receptor tyrosine kinase (RTK) family. 
Upon binding to corresponding growth factor ligands, 
EGFR dimerizes, and triggers intrinsic protein tyrosine 
kinase activity that regulates cell growth, proliferation, 
differentiation and survival  (1,2).  EGFR consists 
of an extracellular ligand-binding domain, a single 
transmembrane region and an intracellular tyrosine kinase 
domain (3). Phosphorylated EGFR stimulates many 
downstream signaling pathways by recruitment of effector 
proteins. The three major pathways are (I) Ras/Raf /MAPK 
pathway, (II) PI3K/Akt pathway and (III) JAK/STAT 
pathway, all of which are well known for their roles in the 
regulation of fundamental cellular processes (4). 

While EGFR-mediated signaling is required for normal 
cellular function, the activity of EGFR is frequently 
dysregulated in cancer through various mechanisms, such as 
overexpression, mutation and deletion. For instance, more 
than 50% of the studied cancer types, including bladder, 
ovarian, breast and colorectal cancer, are associated with 
increased expression of EGFR (5); early retrospective 
analyses showed EGFR overexpression in 62% of non-small 
cell lung cancer (NSCLC) cases, which is associated with 
poor prognosis (6). Overexpression of EGFR increases cell 
exposure to the related ligands, such as epidermal growth 
factor (EGF) and transforming growth factor-α (TGF-α), 
and subsequently upregulates cellular activities. Activating 
mutations in the EGFR gene, such as deletions in exon 19 
and mutation L858R in exon 21, can destabilize the auto-

inhibited conformation of EGFR through steric alterations, 
leading to constitutively active signaling cascades even in 
the absence of the ligands (7). Tumors with increased EGFR 
activity can often benefit from treatment with EGFR-
tyrosine kinase inhibitors (TKIs).

Indeed, EGFR-TKIs have been used as a standard 
treatment in the clinic for patients carrying mutant EGFR 
in many types of cancer. The first generation TKIs such as 
gefitinib (8) and erlotinib (9) can bind the kinase domain 
and compete with ATPs, thus inhibiting phosphorylation 
of the kinase domain. However, approximately 50% of 
the patients may develop resistance to the first generation 
TKIs after treatment, due to selection of clones with 
secondary mutation T790M (10). It was proposed that 
the T790M mutation on the kinase domain increases the 
affinity to ATPs, making ATPs one order of magnitude 
more competitive to the reversible TKIs (11). Thus, new 
generations of TKIs have been developed to tackle this type 
of resistance. Nevertheless, the first generation of TKIs still 
plays a major role in treatment of cancer with active EGFR.

Hence, predictive biomarkers such as activating 
mutations, especially in exons 18–21 of EGFR or EGFR 
amplification, are critical to identify patients suitable for 
TKIs, and testing for these mutations and tailoring therapy 
have been accepted as standard clinical practice for various 
types of cancer. However, although there is evidence that 
head and neck squamous-cell carcinoma (HNSCC) can 
be dependent on EGFR signaling, these markers do not 
seem to show any benefit for oral squamous-cell carcinoma 
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(OSCC), a subgroup of HNSCC. However, Tan et al. 
identified two of OSCC patients who showed dramatic 
responses to gefitinib (12). Further characterization revealed 
a synonymous homozygous single-nucleotide variant (or 
single nucleotide polymorphism, SNP) at position 2361 of 
the coding region (rs10251977; 2361G>A) in EGFR exon 
20 (13). In A/A or G/A genotype, the level of a long non-
coding RNA (lncRNA), called EGFR-AS1, is decreased, 
whereas EGFR isoform D/A ratio is increased as compared 
to G/G genotype (Figure 1). A consequence of these 
changes is increased sensitivity to TKIs such as gefitinib.

In this recent paper (13), the authors used primary cell 
culture derived from the patients, and demonstrated that 
the heterozygous SNP (G/A) is more resistant to TKIs than 
the homozygous A/A counterpart, and the homozygous wild 
type (G/G) cells such as NCC-HN1 showed the highest 
resistance among them. Moreover, the cells with G/G 
genotype revealed a higher level of phosphorylated EGFR, 
AKT, ERK and ribosomal protein S6 (S6) than the cells 
with A/A genotype in response to gefitinib and erlotinib, 
respectively, suggesting that SNP G>A may impact the 
TKI response through these pathways. The function 
of this alteration (G>A) was elegantly demonstrated by 
knockin of G/A in the G/G background of NCC-HN1 
cells. For instance, the edited G/AAAV cells were more 
sensitive to gefitinib with a lower level of phosphorylation 

of these target proteins than the G/GAAV cells. Experiments 
with siRNA or LNA antisense oligonucleotides further 
support the role of G/A in response to TKIs in OSCC. 
These results provide evidence that a synonymous SNP is 
functional, and can serve as a driving force for increased 
sensitivity to TKIs and phosphorylation of EGFR, AKT, 
ERK and S6. Of interest, this sensitivity is specific to 
inhibitors targeting the kinase domain such as gefitinib, 
erlotinib, afatinib, dacomitinib, lapatinib, but has not been 
seen with monoclonal antibodies against the extracellular 
domain of EGFR, such as cetuximab, suggesting that a 
unique mechanism is involved. 

Now a question is how a silent (synonymous) SNP that 
does not change amino acid sequence (EGFR-Q787Q) 
would cause a better clinical outcome. Since the alteration 
also involves lncRNA EGFR-AS1, which is transcribed from 
the same region but in an opposite direction (Figure 2A),  
it would not be surprised that this SNP may impact 
expression of EGFR-AS1. Indeed, quantitative RT-PCR 
assays indicated that a lower EGFR-AS1 level is associated 
with this SNP and these cells are more sensitive to TKIs. 
This downregulation of EGFR-AS1 in the A/A genotype 
cells is due to its decreased stability. Moreover, the function 
of EGFR-AS1 regulating TKI resistance was further 
validated by knockdown using small interfering RNA 
(siRNA), sensitizing the previously resistant cell line (G/G) 
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Figure 1 SNP:rs10251977 is associated with clinical outcomes. Patients carrying this SNP (heterozygous G/A or homozygous A/A) revealed 
a lower level of lncRNA EGFR-AS1 and increased ratio of EGFR isoform D/A expression, and are more sensitive to TKIs. SNP, single 
nucleotide polymorphism; lncRNA, long non-coding RNA; EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor.
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to TKIs. 
Mechanistically, the same approaches (knockdown 

of EGFR-AS1 by siRNA or LNA oligo, AAV-mediated 
generation of G/A genotype) revealed the upregulation 
of EGFR isoform D/A ratio. For instance, this ratio was 
particularly higher in the sensitive cell lines (A/A or G/A) 
than in the resistant line (G/G). EGFR isoform D has been 
previously shown to be associated with increased sensitivity 
to TKIs (14) although the underlying mechanism is not 
fully understood. The effect of EGFR isoform D on TKI 
sensitivity was demonstrated by knockdown of isoform D, 
but not isoform A, resulting in gain of resistance to TKI 
in previously sensitive line (A/A). Finally, this correlation 
between this SNP (G/G vs. A/A) and clinical response was 
further confirmed in a cohort of additional 8 patients (6 AAs 
vs. 2 GGs), highlighting the significance of these findings. 

It appears clear that G2361A-mediated increased level of 
EGFR isoform D is responsible for the increased sensitivity 
to TKIs, and EGFR-AS1 may contribute to the formation 
of EGFR isoform D as the authors proposed. The role of 
lncRNAs in gene splicing has been well documented in the 

literature and a well-known example is MALAT1 that can 
interact with splicing factors and influence their distribution 
in nuclear speckle domains, leading to different splicing 
patterns (15). Furthermore, lncRNAs can also regulate gene 
splicing through their encoded short peptides. For example, 
a short peptide derived from lncRNA HOXB-AS3 can 
interact with heterogeneous ribonucleoprotein A1 (hnRNP 
A1) and promote the expression of isoform I of pyruvate 
kinase (PKM1) (16). If EGFR-AS1 is involved in regulation 
of EGFR isoform D, it is likely that EGFR-AS1 serves a 
negative regulator because in the A/A genotype cells, EGFR 
isoform D is increased with a decreased level of EGFR-AS1.

In this regard, we would like to propose an additional 
possibility that A/A genotype may lead to upregulation 
of EGFR isoform D (Figure 2B,C). Although it is well 
known that DNA methylation plays a critical role in gene 
expression, accumulating evidence indicates that RNA can 
also be reversibly methylated. Many studies support the role 
of RNA methylation in the post-transcriptional regulation 
of gene expression. RNA methylation on the A base (m6A) 
is the most abundant posttranscriptional modification of 

Figure 2 A possible mechanism for 2361G>A-mediated increase EGFR D/A. (A) 2361G>A SNP is located at exon 20 of EGRF and exon 2 
of EGFR-AS1 in an opposite orientation; (B) an additional mechanism might exist, i.e., 2361G>A may enhance EGFR mRNA methylation, 
leading to increased level of EGFR isoform D; (C) a methylation consensus sequence (ACU) is generated by 2361G>A. *, in the latest 
version of EGFR sequence (NM_005228.4) it should be G2618>A. EGFR, epidermal growth factor receptor; SNP, single nucleotide 
polymorphism.
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mammalian mRNA. We note that when G/G is changed 
to A/A in this case, GCU becomes ACU (Figure 2C) that 
matches perfectly with the consensus RNA methylation 
sequence (17). Apparently, RNA methylation (m6A) can 
change structure of mRNAs that can lead to different RNA-
protein interactions. For instance, MALAT1 methylation 
can enhance its interaction with splicing factors such as 
heterogeneous nuclear ribonucleoprotein C (hnRNP C). 
Thus, RNA methylation has been shown to efficiently 
interact with the target RNAs, and affect alternative 
splicing and abundance of multiple target mRNAs (18). Of 
course, other possible functions of m6A of EGFR regarding 
rs10251977 cannot be ruled out even if it is indeed proven 
that this SNP enhances EGFR methylation.

In summary, the study by Tan et al. provides an excellent 
example that a synonymous SNP can alter EGFR addiction, 
where lncRNA EGFR-AS1 and EGFR isoform D are 
important players in this pathway. Future work should focus 
on how to incorporate these findings into the biomarker 
discovery pathway and to better understand how SNP, 
lncRNA and EGFR isoforms interact to impact clinical 
outcomes. 
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