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Roquin-1 and Roquin-2 are RNA-binding proteins (RBPs) 
essential for modulating T cell activity. Indeed, Roquin 
dysfunction has been linked to autoimmunity in mice. Essig 
and colleagues (2017) determine their functions in Foxp3+ T 
regulatory cells and uncover novel mechanisms of Roquin-
mediated regulation of its target mRNAs (1).

Roquin-1 and 2 (encoded by Rc3h1  and Rc3h2, 
respectively) are RBPs that redundantly regulate mRNA 
stability and localize to cytoplasmic processing bodies 
(P-bodies) and stress granules (2-4). Rc3h1 was originally 
discovered as a suppressor of autoimmunity through an 
ethylnitrosourea-based forward genetic screen in mice. 
An informative mouse strain called sanroque harbored a 
missense Methionine199 to Arginine mutation (M199R) in 
the Roquin domain of Roquin-1 and resulted in a severe 
lupus-like syndrome (5). Since Roquin-2 was intact in the 
sanroque mouse, this mutation likely functions through an 
autosomal dominant negative mechanism that is not yet 
completely understood. 

Early work demonstrated that Roquins inhibit inducible 
co-stimulatory (Icos) receptor signaling in T cells through 
two independent pathways. First, Roquins directly bind the 
3' untranslated region (UTR) of Icos mRNA and promote its 
decay through the Ccr4-Caf1-Not deadenylation complex 
and the Rck/Edc4/Dcp1a decapping complex (2,3,5-7). 
In addition, Roquins can bind Ago2 and downregulate 
the levels of miR-146a while simultaneously targeting 
Icos mRNA through a target-mediated microRNA decay 
(TMMD) (8). Augmented Icos expression appears sufficient 
to stimulate phosphoinositide 3-kinase (PI3K) signaling, 

phosphatidylinositol 3,4,5-tris-phosphate (PIP3) production 
and Akt-mediated inactivation of Forkhead Box O1 (Foxo1), 
a transcription factor required for T cell suppression, 
by promoting i ts  export  from the nucleus to the  
cytoplasm (9,10). Roquins regulate additional mRNA 
targets including Tnfa in macrophages and Ox40 in T 
cells (2,11) through binding to structured stem loop 
(SL) elements such as the trinucleotide loop-containing 
constitutive decay element (CDE) first described in the 
3'UTR of Tnfa mRNA (11) and the hexanucleotide loop-
containing alternative decay element (ADE) identified from 
a systematic evolution of ligands by exponential enrichment 
(SELEX) screen and shown to be present in the 3'UTR of 
Ox40 mRNA (12). Roquins were also shown to regulate the 
levels of several mRNAs that encode components of the 
NF-κB pathway including A20, NFKBID and NFKBIZ using 
Photoactivatable-Ribonucleoside-Enhanced Crosslinking 
and Immunoprecipitation (PAR-CLIP) (13) in human 
embryonic kidney 293 (HEK293) cells (7).

Roquins contain a really interesting new gene (RING) 
domain followed by a Roquin domain, a C3H1-type zinc 
finger domain and a proline rich domain at the C-terminus. 
The Roquin domain is a winged-helix fold that mediates 
Roquin’s binding to its target mRNAs (14-16) together with 
flanking higher eukaryotes and prokaryotes nucleotide-
binding (HEPN) domains (8). The C-terminus recruits the 
Ccr4-Caf1-Not complex to the mRNA (11). Whether the 
zinc finger domain contributes to Roquin’s RNA binding 
activity is currently unknown. The RING domain is an E3 
ubiquitin ligase that autoubiquitinates Roquins (17). While 
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an in vivo requirement for Roquin-2’s RING domain was 
not immediately apparent, germline deletion of Roquin-1’s  
RING domain resulted in perinatal lethality (18). The 
RING domain was proposed to downregulate 5' adenosine 
monophosphate-activated protein kinase α1 (Ampkα1) levels 
through a protein-protein interaction independently of its 
mRNA binding activity (17) suggesting multiple modes 
of Roquin function. In turn, hypoactive Ampkα1 causes 
increased mTOR signaling and mRNA translation leading 
to enhanced T follicular helper (Tfh) cell differentiation. 
However, in mouse embryonic fibroblasts (MEFs), Essig 
et al. found that the RING domain was not required for 
Roquin-mediated inhibition of protein biosynthesis (1). 
Further work is needed to address this discrepancy. 

Whether Roquins regulate additional cellular pathways 
to mediate their immunosuppressive functions has been 
an outstanding question. In a recent study, Essig et al. (1) 
identify novel targets through which Roquins orchestrate 
T-helper cell differentiation (Figure 1). By employing  
PAR-CLIP (13) in MEFs, the authors discovered two 
additional mRNA targets, itchy E3 ubiquitin protein ligase 

(Itch) and Phosphatase and tensin homolog (Pten). Fortunately, 
these two transcripts happen to be expressed in T cells 
as well, and play prominent regulatory roles in T cells. 
Intriguingly, in the absence of Roquins these two mRNA 
targets display opposing fates. While Roquins impair the 
expression of Icos and Itch, consistent with the idea that 
the Ccr4-Caf1-Not complex is recruited to the mRNAs; 
Roquins appear to promote the levels of Pten mRNA  
(Figure 1). Itch is an E3 ubiquitin ligase that has been shown 
to ubiquitinate and promote the degradation of Foxo1 
by the proteasome (19). By inhibiting Itch expression, 
Roquins mediate their T cell suppressive activity through 
the maintenance of Foxo1 levels (1). However, this is not 
necessarily sufficient as Foxo1 can be inhibited via Akt 
phosphorylation which promotes its nuclear export to the 
cytoplasm.

To circumvent this pathway, Roquins also increased Pten 
mRNA and Pten protein levels modestly. Pten indirectly 
represses Akt activity by dephosphorylating PIP3. As a 
result, Pten indirectly promotes the nuclear localization of 
Foxo1 and its T cell suppressive gene expression program. 

Figure 1 Divergent mechanisms of Roquin action on two target mRNAs to maintain Foxo1 activity. Roquins bind to a CDE-like stem-

loop in 3'UTR of Itch mRNA and inhibit its expression presumably through the Ccr4-Not1-Caf1 complex like previously described targets. 
Decreased expression of the ubiquitin ligase Itch maintains Foxo1 levels by inhibiting its proteasome-mediated degradation. In contrast, 
binding of Roquins to Pten mRNA does not seem to result in mRNA decay. Instead, Essig et al. provide evidence that Roquins compete 

with Ago2-miR-17 complex for binding a CDE-like stem-loop in 3'UTR of Pten mRNA. Thus, the absence of Roquins leads to increased 
Pten expression. Increased Pten hydrolyzes PIP3, the product of PI3K, and inhibits Akt-mediated inactivation of Foxo1. Phosphorylation 
by Akt promotes export of Foxo1 from the nucleus to the cytoplasm. While Foxo1 is a prominent nexus in this figure, it has not been shown 
that deletion of Foxo1 rescues the autoimmunity in sanroque mice. CDE, constitutive decay element; Foxo1, Forkhead Box O1; UTR, 
untranslated region; Pten, phosphatase and tensin homolog; Itch, itchy E3 ubiquitin protein ligase; PIP3, phosphatidylinositol 3,4,5-tris-
phosphate.
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Since the Roquin binding site overlaps the miR-17-5p  
binding site in Pten mRNA 3'UTR (Figure 2), Essig 
and colleagues proposed a novel mechanism of Roquin 
activity by competing with miR-17-5p for binding to Pten 
mRNA. The absence of Roquin expression in T cells 
enhanced the association of Pten mRNA with Ago2 and 
subsequent miRNA-mediated repression (1). It remains to 
be determined whether Roquins regulate additional mRNA 
targets through this novel mechanism. 

In sum, Roquins function as a key regulatory hub of T 
cell activity by orchestrating multiple independent pathways 
that control Foxo1 levels and subcellular localization. 
It will be important to systematically identify Roquin’s 
targets transcriptome-wide and determine the fates of those 
mRNAs. If additional examples are validated, then how 
Roquins mediate opposing effects on their mRNA targets 
will be an interesting question. It seems that Roquins do 
not always recruit the Ccr4-Caf1-Not complex to their 
target mRNAs. It is also plausible that Roquins interact 
with additional cofactors that contribute to determining the 
mRNA target’s fate upon Roquin binding. Indeed, the same 
group has recently reported that Roquin-1 interacts with 
nuclear fragile X mental retardation protein interacting 

protein 2 (Nufip2) which enhances the binding affinity of 
Roquin-1 to the 3'UTR of Icos mRNA (20). An alternative 
possibility might be subtle differences in the stem-loop 
structure. While the ADE and CDE are hexanucleotide 
and trinucleotide loops respectively, the proposed Roquin-
binding Pten loop is heptanucleotide. Furthermore, it 
remains to be identified whether Roquins regulate T cell 
activity via pathways other than PI3K-mTOR signaling. It 
would be worthwhile repeating the PAR-CLIP experiment 
in T cells as it can serve as a powerful approach to explore 
the binding of Roquins to additional mRNA targets that 
encode factors involved in T cell activation.

Given their conservation and ubiquitous expression, 
another outstanding question is whether Roquins regulate 
gene expression programs post-transcriptionally in other 
tissues or cell types. Roquin interacts with the Ccr4-Not  
complex in D. melanogaster, an organism that lacks T  
cells (21). In addition, Roquins are expressed in mouse non-
immune tissues such as the lung and heart (2). Germline 
deletion of Rc3h1 results in curly tails, defects in the caudal 
spinal column, malformed alveoli in the lung, and perinatal 
lethality (≤6 h after birth) (22). This raises the possibility of 
a Roquin function outside the immune system. For instance, 
Roquin upregulation has been recently correlated with poor 
survival in breast cancer patients (23).

Since the Methionine199 residue is conserved in humans, 
the body of work in mice predicts that human patients 
suffering from familial autoimmune disorders may harbor 
Roquin mutations perhaps similar if not identical to the 
sanroque mutation. It is also conceivable that autoimmunity 
could result from CDE-disrupting mutations within 
the 3'UTR of Icos, Itch or other Roquin targets. It is 
worth noting that blockade of Interferon-γ was shown to 
ameliorate the lupus-like disease in sanroque mice and thus 
is a promising therapeutic avenue for future exploration 
(24). Ultimately, a better understanding of the molecular 
mechanisms of Roquin function will allow the field to 
identify additional therapeutic targets to alleviate Roquin-
mediated disorders. The clues learnt from studying Roquin 
supports the general notion that viewing the immune 
system through the lens of RBPs will help shed new light 
on important regulatory circuits (25).

Acknowledgments

We thank Bryan Chim (NIAID) for discussions on PAR-
CLIP data analysis, Ryan Kissinger (NIAID) for graphic 
art in Figure 1, and Saifeng Wang for critically reading this 

A B

Figure 2 Schematic representation of the proposed (A) mouse and 

(B) human Pten 3'UTR Roquin-binding stem loops (SLs). The 
miR-17-5p binding site is shown in blue. The human Pten mRNA 
has a single nucleotide mismatch with the mouse SL sequence, 
shown in red.
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