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In general, microRNAs (miRNAs) control target gene 
expression by inhibiting translation and destroying target 
RNAs (1,2). However, interestingly some endogenous 
coding or noncoding RNAs have a function to sequester 
miRNAs from the real target RNAs by hybridization (called 
sponge function) without degradation and they are also 
known as competing endogenous RNAs (ceRNAs) (3,4). 
On the other hand, although miRNAs are usually stable, 
accumulating evidence suggests that endogenous transcripts 
or sometimes viral transcripts also control miRNAs by 
target RNA-directed miRNA degradation (TDMD) (5-7). 
In this degradation process, the complementarity between 
miRNA and target RNA is very critical (Figure 1) (7). 
miRNAs are quite stable in RNA-induced silencing complex 
(RISC) if the pairing with target RNA is partial (Figure 1A), 
although the extensive pairing with target RNA induces 3’ 
trimming, tailing and degradation of miRNA (Figure 1B). 
Therefore, some potential target RNAs of miRNAs are 
not simply targets of miRNAs but also control miRNA’s 
function and stability. Despite unclear significance in other 
systems and mechanisms of TDMD before, recent reports 
have demonstrated the strong evidence and mechanisms of 
TDMD. 

Ghini et al. reported more detailed mechanisms of 
TDMD of miR-30 family (8). The authors initially classified 
miRNA: target pairs (TargetScan 6.2) into three groups 
(high, mild and low) based on 3’ complementarity. Only 6% 
of pairs are categorized in the high group. Interestingly, in 
the members of miR-30, miR-30b and miR-30c (miR-30b/c)  
have higher 3’ complementarity to target site in Serpine1 

3’UTR but miR-30a/d/e have the lower complementarity 
(Figure 1C,D). miR-30b/c is downregulated very fast in 
the serum depletion and re-fed experiments, indicating 
that miR-30b/c is more sensitive to TDMD than miR-
30a/d/e. miR-30b/c is more efficiently subjected to 3’ end 
trimming and tailing (A, adenylation; or U, uridylation) and 
degradation (Figure 1D). The authors also suggested that 
TDMD is more effective at high ratios (>10) of target RNA 
over miRNA. Because the complementarity to target site in 
Serpine1 3’UTR is critical, the authors created cells with 
deletion of miRNA responsive element (MRE) in Serpine1 
3’UTR [MRE-knockout (KO)] using the technique of 
CRISPR-Cas9 system (Figure 1E). miR-30b/c is more 
stable in MRE-KO cells compared to wild type (WT) cells. 
More interestingly, A-forms (with A tail) of miR-30b/c 
are significantly decreased in MRE-KO cells, suggesting 
that A-forms but not U-form of miR-30b/c are efficiently 
subjected to TDMD. As well as detailed mechanisms of 
TDMD, gene expression was compared between WT and 
MRE-KO cells. Apoptosis and cell cycle-related genes are 
enriched in differentially expressed genes between WT and 
MRE-KO cells and correlated with the cell phenotypes (cell 
death, cell cycle and proliferation). Those results suggest 
that miR-30b/c escaped from TDMD in MRE-KO cells 
target other miR-30 target RNAs (cell death and cycle-
related genes) and affect the cell cycle and death. 

A recent report showed that the 3’UTR of neuronal-
regeneration-related protein (NREP) has near-perfect miR-
29b site and destabilize miR-29b through 3’ trimming in brain 
that affects behavior of mice and Zebra fishes (9). In another 
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report, a long noncoding RNA Cyrano hybridizes and 
triggers miR-7 degradation in the brain to control neuronal 
activity also through a circular RNA (Cdr1) and another 
miRNA miR-671 in the very sophisticated network (10).  
Those recent findings have demonstrated that TDMD 
is involved in brain function and behavior of animals but 
not only in cell death and cell cycle regulation. Therefore, 
depending on the conditions (3’ complementarity and ratio 
of miRNA: target RNA), miRNAs control target RNAs but 
target RNAs can also control miRNA stability (TDMD). 
This bidirectional regulation may be very important for fine 
tuning to balance the gene expression or avoid extremely 

high or low expression. 
For the therapeutics targeting miRNAs, perfect-

matched antisense oligonucleotides (ASOs) have been 
used to destabilize target miRNAs in several cases (11-15) 
although the detailed mechanisms are not very clear. But 
trimming of 3’ end and degradation of miRNAs hybridized 
with perfect-matched ASO (possibly TDMD in RISC) 
may be a mechanism of suppression of miRNA function 
(degradation) although RNase H-dependent degradation of 
target RNAs in RNA/DNA duplexes could also be another 
mechanism (16). Utilizing those natural systems (TDMD 
or RNase H-mediated degradation) may be a wiser way 

Figure 1 TDMD in general models and in miR-30/serpine1 RNA duplex. miRNAs control target gene expression by inhibiting translation 
and target RNA degradation. Endogenous or viral transcripts also control miRNAs by degradation through TDMD. miRNAs are stable in 
RISC if the pairing with target RNA is partial (A) although extensive pairing with target RNA induces 3’ trimming, tailing and degradation 
of miRNA (B). In the members of miR-30, miR-30b/c has higher 3’ complementarity to target site in Serpine1 3’UTR than miR-30a/d/e,  
and miR-30b/c is more sensitive to TDMD than miR-30a/d/e (C,D). miR-30b/c is more efficiently subjected to 3’ end trimming and tailing 
(A, adenylation; or U, uridylation) and degradation (D). miR-30b/c is more stable in MRE-KO cells compared to WT cells (E). A-forms 
(with A tail) of miR-30b/c is significantly decreased in MRE-KO cells, suggesting that A-forms of miR-30b/c may be efficiently subjected 
to TDMD. miR-30b/c escaped from TDMD in MRE-KO cells target other miR-30 target RNAs and affect the cell cycle and death. m7G, 
7-methylguanosine capping at 5’ end of mRNA; poly (A), polyadenylation at 3’ end of mRNA. TDMD, target RNA-directed miRNA 
degradation; RISC, RNA-induced silencing complex. (Figures are representative and not very precise in some details.) 
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to develop ASO therapeutics to treat human diseases in 
the pathogenesis that miRNAs are involved. TDMD may 
provide a new logical design for ASO targeting non-coding 
RNAs including miRNAs in potential therapeutics (17-21). 
Understanding the detailed mechanisms of TDMD would 
provide not only fundamental and basic discoveries but also 
new therapeutics for human diseases. 
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