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Introduction

As an important member of the non-coding RNA family, 
circular RNAs (circRNAs), which were formed by special 
splicing mechanism with closed circular structure, widely 
exist in various cells to regulate gene expression (1). Since 
the first observation of circRNAs in the plant-infected 
viroid by electron microscopy in 1976, circRNAs were once 
considered to be a class of low-abundance RNA molecules 
formed by incorrect splicing of exon transcripts (2).  
In 2012, a great deal of circRNAs was found to exist in 
archaea and their biological functions were confirmed, 
making the research of circRNAs in full swing (3). With 
the widespread application of RNA sequencing (RNA-

seq) technology and the rapid development of biophysical 
techniques, a substantial amount of circRNAs in a variety of 
organisms are exposed to the research field, and it has been 
confirmed that the transcription of many human exons can 
be non-linearly reversed spliced or genetically rearranged 
to form circRNAs, which account for a considerable 
proportion of all spliced transcripts (4,5). Benefit from its 
tissue specificity, disease specificity, time series specificity 
and high stability, circRNAs have obvious advantages as a 
biomarker for clinical diseases, and naturally become a hot 
research molecule in the field of life sciences and medicine. 
In the interest of investigating the potential of circRNAs 
as a biomarker, it is necessary to clarify its production 
mechanism and structural characteristics firstly.
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Research method of circRNAs

The place of circRNAs formation is nucleus, and the 
mature circRNAs are transported to the cytoplasm to 
exert their regulatory effects. Aggregates of exon-linked 
complexes during the process of splicing may participate 
in the regulation of this nuclear mechanism (6,7). The 
identification and quantitative analysis of circRNAs are 
the cornerstone and premise of all researches. Although 
the in-depth studies of circRNAs are still in its infancy, 
there are many relatively mature experimental techniques, 
prediction methods, and circRNAs databases are worthy 
of promotion in the follow-up study. Detection techniques 
for circRNAs expression in common use include: the 
circRNAs chip analysis technology, which can be used 
to analyze differentially expressed circRNAs in tissue 
samples for preliminary screening work; the quantitative 
real-time PCR analysis, which extracts tissue/cell total 
RNA, performs reverse transcription by random primer, 
and designs circRNAs-specific primers to expand and 
quantify the template, this technique is widely used in the 
detection of circRNAs expression; the RNA-fluorescence 
in situ hybridization (RNA-FISH), which is a technique 
that hybridizes a fluorescently labeled specific probe to a 
specific circRNA, by observing the fluorescent signals, it 
can not only determine the expression of circRNAs, but 
even the localization analysis of circRNAs can be achieved 
at the subcellular levels; the northern blot, which is used to 
degrade the majority of the linear RNA in total RNA while 
retain circRNAs by ribonuclease R (RNase R), specific for 
radiolabeled circRNAs after agarose gel electrophoresis 
probe hybridization, quantitative or qualitative analysis 
of specific circRNAs by hybridization of DNA and RNA 
molecules; the biotin-coupled circRNA capture, which also 
detects circRNAs by biotin-labeled probes, is more sensitive 
than northern technology and is more suitable for the 
detection of low-abundance circRNAs; the high-throughput 
sequencing, also known as "the next-generation" sequencing 
technology, can perform a variety of bioinformatics 
analysis work including circRNAs identification, expression 
calculation, annotation analysis, distribution statistics, 
conservative analysis of circRNAs and analysis of interacting 
miRNA, which is useful for deep excavation of circRNAs 
functions and mechanisms (8-13). 

With the rapid development of research techniques 
and experimental methods, the types and quantities of 
circRNAs are presenting an obvious increasing trend. 
The rational organization and utilization of existing 

research results are the driving force for subsequent 
research. As a perfect and complementary research tool for 
circRNAs, the establishment of more and more circRNAs 
databases has greatly facilitated the work of researchers 
and accelerated the deep mining of circRNAs to a certain 
extent. The commonly used circRNAs online databases 
currently include: circBase, which integrates published 
circRNAs data, mainly including circRNAs information 
from these six species: human, mouse, Caenorhabditis 
elegans (C. elegans), drosophila melanogaster, spearfish 
and coelacanth; circRNABase, which builds the networks 
of interactions between miRNAs and circRNAs as well as 
circRNAs and RNA-binding proteins (RBPs); Circ2Traits, 
potentially associated with human disease or traits, is used 
primarily to predict the interaction between miRNAs and 
human protein-coding genes, long non-coding genes, and 
circRNAs; circNet, using RNA-seq sequencing for new 
circRNAs prediction, genome annotation and calculation of 
circRNAs expression; deepBase v2.0, which collects more 
than 150,000 circRNAs genes (human, mouse, fruit fly, 
nematode, etc.), and constructs the most comprehensive 
expression map of circRNAs (14-18). 

Functional mechanisms and properties of 
circRNAs 

CircRNAs are mainly found in the cytoplasm and are also 
identified in different organisms (3). At present, 1,903 
circRNAs have been found in mice, 724 circRNAs have 
been found in nematodes, and 1,950 circRNAs have been 
found in human leukocytes. CircRNAs exist in various 
types of extracellular fluids such as saliva, blood and urine. 
Its expression level is more than 10 times higher than 
that of the corresponding linear mRNAs. Thus, it can be 
seen that circRNAs are widely and abundantly present in 
nature (4,19). Different from the single formation mode 
of other endogenous RNAs, the production mechanisms 
of circRNAs are diverse, among which the two main 
mechanisms are lariat-driven circularization and intron-
pairing-driven circularization (20). The former promotes 
the covalently bonding of exon 3'-end splicing donor and 
the 5'-end splicing acceptor to form a closed-loop structure 
mainly by “missing splicing” and “exon hopping” and then 
excision of the intron. While the latter used the group I 
and group II introns to urge the covalently bonding of 
RNA precursor to form a closed-loop structure and then 
resected intron (8,21,22). Briefly speaking, circRNAs, 
which are widely distributed in eukaryotes, facilitate the 
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formation of circRNAs in the form of reverse head-to-
tail connections in the exon sequence of genes mainly rely 
on a reversed alternative splicing. Because of these special 
formation mechanisms, circRNAs have the following 
properties: (I) the closed loop structure is more stable 
than the linear structure, thus circRNAs are not easily 
degraded by the accounting exonuclease and can be 
stably present in the cytoplasm; (II) highly conserved in 
different species; (III) they may have rapid evolutionary 
changes that can be specifically expressed in different 
tissues and at different developmental stages (4,19,23,24). 
Based on the development of molecular biology methods, 
high-throughput sequencing, bioinformatics and the 
establishment of various circRNAs databases, functions 
of circRNAs have been gradually unearthed. MiRNAs are 
a class of RNAs with a length of about 21nt, which can 
directly bind to mRNA targets through complementary 
base pairing, thereby inhibiting mRNA translation (25,26). 
Evidence has shown that circRNAs can function as miRNAs 
sponges by binding miRNAs to miRNA-target miRNAs 
networks through their own miRNA response element 
(MRE) (27); they have obvious regulatory effects on 
alternative splicing and transcription; they can be combined 
with RBPs or ribonucleoprotein complexes to exert 
biological functions; part of them can have the function of 
protein translation through m6A methylation (23,28-31).  
There are a large number of circRNAs in exosomes, 90% 
of which are composed of exons. They are highly stable 
and are not easily cleaved by exonucleases. Their functions 
are related to miRNAs and are considered to have the 
possibility of new markers for cancer detection. A great 
quantity of circRNAs have been proved to be higher 
and more stable in blood than in tissues, confirming that 
circRNAs in circulating blood can be a potential marker for 
the future disease diagnosis (32). Numerous properties and 
functions endow circRNAs with great potential as disease 
markers, which are being explored and excavated. 

CircRNAs in digestive diseases

CircRNAs and liver disease

As the largest substantial organ and digestive gland in the 
human abdominal cavity, liver is the central station of the 
body's metabolism, which plays an extremely important and 
complex physiological functions. Due to the large volume, 
brittle texture and poor tolerance to hypoxia of the liver, 
various pathogenic factors including biological factors 

such as hepatitis virus, bacteria and parasites, physical and 
chemical factors such as drugs, industrial reagents, ethanol, 
external force factors such as impact, extrusion and genetic 
immune factors directly or indirectly stimulate to induce 
different degrees of damage to liver cells, and eventually 
develop into chronic liver diseases such as liver fibrosis, liver 
cirrhosis and even liver cancer (33,34). Epidemiological 
survey results show that there are about 240 million 
patients with chronic hepatitis B (CHB) and 160 million 
patients with chronic hepatitis C worldwide. About 25% 
of the general population suffer from nonalcoholic fatty 
liver disease, about 4.5% to 9.5% have cirrhosis, and 
about 770,000 people die of cirrhosis every year (35-37). 
Therefore, liver damage is the common pathological basis 
of various liver diseases. The global liver disease has the 
characteristics of high incidence and wide influence, which 
seriously endangers human health and has a restrictive 
effect on social and economic development. Effective 
early prediction and prevention methods have become 
an important issue of common concern to the medical 
community all over the world (38,39). CircRNAs have been 
linked to liver disease. 

CircRNAs and viral hepatitis
Viral hepatitis is a type of high-infectious disease caused by 
a variety of different hepatitis viruses, mainly characterized 
by liver damage, with widespread epidemics and serious 
contagiousness. Up to now, hepatitis viruses that have been 
identified to have a clear pathogenicity including hepatitis 
A virus (HAV), hepatitis B virus (HBV), hepatitis C virus 
(HCV), hepatitis D virus (HDV), and hepatitis E virus 
(HEV), in which HBV and HCV are the most common. 
The infection rate of HBV in China is nearly 60%, there 
are about 125 million people carrying HBV, of which the 
number of HBV patients is as high as 30 million; at the 
same time, the global infection rate of HCV is about 3%, 
with an estimated 170 million virus-infected patients and 
about 4 million new cases each year. Viral hepatitis is the 
chief culprit of many chronic liver diseases. It can develop 
into liver fibrosis and cirrhosis, which is a serious hazard 
to human health. Therefore, it is one of the major public 
health problems in the world (40-44).

In a recent study, a total of 24,708 circRNAs was detected 
in 3 normal human liver tissues and 6 CHB patients’ liver 
tissues. Among them, 22,843 kinds of circRNAs were found 
in normal human liver, and 19,821 kinds of circRNAs 
were found in CHB patients’ liver tissues. Simultaneously, 
compared with normal people, the expression of partial 
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circRNAs in liver tissue of CHB patients was abnormal: 
72 circRNAs expression increased while 95 circRNAs 
expression decreased, among which hsa_circ_0005389, 
hsa_circ_0000038 and hsa_circ_0000650 attracted the 
attention of researchers, and thus established the following 
four possible regulatory pathways: hsa_circ_0000650-miR-
210-5p-HBV, hsa_circ_0005389-miR-4505/miR-6752-5p/
miR-5787-IRF7, hsa_circ_0000650-miR-6873-3p-TGFβ2 
and hsa_circ_0000038-miR-370/miR-939-HBV (45). 
Early diagnosis and treatment of HCV are also the focus 
of viral hepatitis research. HCV is a hepatocyte-specific 
virus, previous studies have shown that this hepatocyte 
characteristic of HCV mainly depends on miR-122 in 
human body. It is well known that HCV benefits from the 
binding sites of two miR-122s present at the 5' end of the 
viral genome, and miR-122 can promote the replication 
together with translation of HCV viral and enhance viral 
activity, therefore, miR-122 has always been one of the main 
targets for the treatment of HCV. With further research, 
artificially designed circRNA sequences containing miR-
122 binding sites were used to synthesize artificial circRNA 
to adsorb miR-122 in hepatitis C cells, thereby blocking the 
translation of HCV proteins and opening the door to the 
connection of circRNAs and disease treatment (46).

CircRNAs and liver fibrosis
Liver fibrosis is a common response of the liver to chronic 
liver injury caused by different etiologies. It is characterized 
by excessive production and deposition of various 
components of the extracellular matrix（ECM）of the liver, 
resulting in imbalance of fibrosis and degradation leading to 
liver fibrosis. Further development will lead to liver lobule 
reconstruction, pseudolobuli and nodules formation, which 
will eventually form cirrhosis. Liver fibrosis is a dynamic 
and reversible process, so early diagnosis and prevention 
are of vital importance (47). Activation and proliferation 
of hepatic stellate cells（HSC）are still considered to 
be the central event in the occurrence and development 
of liver fibrosis. When quiescent HSC are activated, 
they will transform into myofibroblasts, synthesize 
and secrete ECM together with metalloproteinase 
inhibitors, which decreases the activity of proteases such 
as interstitial collagenase, reduced ECM degradation, 
and finally resulted in the deposition of ECM. Therefore, 
degrading fibrosis can be achieved by effectively inhibiting 
HSC activation or promoting its apoptosis (48-52).  
Fourteen circRNAs were detected to have increased 
expression in HSC activation models both  in vivo 

and in vitro, while 55 circRNAs were detected to be 
reduced in expression, among which mmu_circ_33594,  
mmu_circ_35216 and mmu_circ_34116 may be closely 
related to the activation of HSC. Assisted by bioinformatics 
analysis software and literature review, the “mmu_
circ_34116/miR-22-3P/BMP7” signal axis was found 
to be involved in the activation process of HSC, and 
mmu_circ_34116 may have a protective effect on HSC  
activation (53). As a major complication of the radiation 
therapy for hepatocellular carcinoma (HCC), radiation-
induced liver fibrosis (RILF) imposes a heavy burden 
on the treatment and prognosis. Irradiation can induce 
an abnormal increase of transforming growth factor β 
(TGF-β) and stimulate the transition of HSC from resting 
state to activated state. The abnormal expressions of 
circRNAs in HSC after irradiation were suspected to be 
closely related to hepatocyte transcription, proliferation 
and cycle progression. The hsa_circ_0071410/miR-9-5p 
regulatory pathway has also been confirmed to be involved 
in the process of RILF: down-regulated hsa_circ_0071410 
could promote miR-9-5p expression, thereby protecting 
radiation-induced HSC activation (54). Numerous 
circRNAs have abnormal expression and are involved in the 
progression of liver cancer. For example, hsa_circ_0001649, 
hsa_circ_0005986, hsa_circ_0004018, circ-ITCH showed 
low expression in liver cancer, while hsa_circ_0005075, 
hsa_circ_100338, hsa_circ_101368, hsa_circ_000302, hsa_
circ_0015756, hsa_circ_00000791, hsa_circ_103847 were 
highly expressed in liver cancer. They are all entrusted with 
the hope of clearing the mechanism of liver cancer (55-59). 
As the pre-stage and necessary way for the development of 
liver cancer, liver fibrosis may have a certain relationship 
with these circRNAs involved in the regulation of liver 
cancer progression, and need to be further explored. 

CircRNAs and non-alcoholic fatty liver disease 
(NAFLD)
NAFLD is a clinical pathological syndrome unrelated to 
alcohol. The hepatic lobule is the main lesion of NAFLD, 
with hepatic steatosis and fat accumulation as the main 
pathological features. The global incidence of NAFLD 
is increasing year by year. The initial stage of the disease 
has no obvious clinical symptoms in general, however, 
without prevention and treatment, it could progress to 
nonalcoholic steatohepatitis (NASH) with the accumulation 
of liver inflammation and fibrosis, and even causes serious 
liver dysfunction, cirrhosis, HCC and other serious 
consequences, which brings tremendous harm to human 
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being (60). The identification of the pathogenesis of NASH 
and the molecular mechanism from NAFLD to NASH 
are of great significance for the prevention and treatment 
of diseases. Multitudinous miRNAs have been reported 
to be closely related to hepatic steatosis, which can target 
the expression level of lipid metabolism-related genes to 
interfere with the transport, synthesis and oxidation of 
intracellular triglycerides, thereby regulating the degree 
of hepatocyte steatosis. In consideration of circRNAs itself 
carries a large number of miRNA binding sites, it can exert 
a powerful function of adsorbing miRNAs to inhibit the 
function of miRNAs. With the deepening of research on 
circRNAs, the network of circRNAs-miRNAs-NASH is 
enriched. 69 up-regulated and 63 down-regulated circRNAs 
as well as 2,760 up-regulated and 2,465 down-regulated 
mRNAs were identified by chip detection technology in 
the mouse NASH model established on the methionine 
choline deficiency (MCD) diet. Combined with qPCR and 
bioinformatics prediction software, four NASH-related 
circRNA-miRNA-mRNA pathways were constructed: 
circRNA_002581-miR-122-Slcla5, circRNA_002581-
miR-122-Plp2, circRNA_002581-miR-122-Cpebl, and 
circRNA_007585-miR-326-UCP2 (61). The expression 
of circScd1 was significantly decreased in liver tissue of 
NAFLD mice induced by high-fat diet. Overexpression of 
circScd1 could have protective effect on this model while 
inhibition of circScd1 could promote the development 
of fatty liver. The activation of JAK2/STAT5 signaling 
pathway may be closely associated with this regulation (62).  
The  regu l a tory  ne twork  o f  c i r cRNA_0046366/
circRNA_0046367-miR-34a-PPARα in hepatic steatosis 
was also confirmed at the cellular level: the expressions of 
circRNA_0046366 and circRNA_0046367 were significantly 
lower in hepatocellular steatosis, and were negatively 
correlated with triglyceride content and lipid peroxidation 
level. Its mechanism may be related to the competitive 
binding of miR-34a, which in turn relieves the inhibition of 
PPARα expression in hepatocytes (63-65). It is reasonable to 
believe that circRNAs may provide new directions for the 
diagnosis and molecular mechanisms of NASH.

CircRNAs in liver regeneration (LR)
The liver has a strong ability of regeneration and 
recovery that other organs cannot match. Under normal 
circumstances, hepatocytes are mostly in static state and 
rarely divide, when the liver is injured by virus infection and 
trauma or partial hepatectomy, the number of hepatocytes 
is drastically reduced, and various feedback signals stimulate 

hepatocytes in quiescent phase to exert their powerful 
ability of proliferation and self-regulation. The hepatocytes 
of the residual hepatic lobes are transformed from a 
substantially non-growth state to a rapid growth state by 
cell proliferation to compensate for the lost, damaged liver 
tissue and restore the physiological function of the liver. 
Meanwhile, the organism can accurately sense the size 
of the regenerative liver and timely stop LR. This whole 
process is called LR. 

By detecting circRNAs at different time points, a total 
of 2,412 circRNAs were identified, of which 159 circRNAs 
with altered expression corresponded to 116 linear RNA 
genes during rat LR. Go a step further, with the help of 
high-throughput RNA-seq technology, gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis, the potential regulation mechanism of hepatic 
metabolic capacity and hepatocyte proliferation during rat 
LR was initially explored. Key circRNAs in which circ137 
and circ2270 regulate the hepatocyte proliferative capacity 
by targeting the binding of miR-127; circ432, circ2077, 
circ1366 and circ15 participate in liver energy and substance 
metabolism networks by regulating MAPK14, KFN1, 
TNFRSF21 and GOT1, respectively (66). CircRNAs are 
not only confirmed to play important roles in LR but also 
the supplement for the research of LR, which will greatly 
contribute to the further exploration of LR regulation 
mechanisms.

CircRNAs and intestinal diseases

CircRNAs and Crohn’s disease (CD)
CD is a systemic disease characterized by chronic non-
specific intestinal inflammatory lesions. The etiology of 
the disease is not yet clear. It may be related to immune 
dysfunction and may be complicated by perforation, 
intestinal obstruction, hemorrhage, localized peritonitis, 
abscess and tumor lesions. In recent years, the global 
incidence of CD has continued to increase, but so far there 
are still no effective cures. The autophagy-associated protein 
ATG16L1 is closely related to the development of CD and 
belongs to the CD susceptibility gene. Previous studies have 
suggested that under physiological conditions, the increased 
expression of miR-30c, miR-130A, and miR-93 may inhibit 
ATG16L1 expression in intestinal mucosa of CD patients, 
which in turn blocks autophagy-dependent intracellular 
bacterial clearance (67,68). Under pathological conditions, 
miR-106b has a targeted regulatory effect on ALG16L1 in 
CD colon tissue (69). On this basis, a significant decrease 
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in the expression of has_circ_0023397 was detected in 
the colon tissue of CD patients. At the same time, the 
expression of miR-106b was increased while the ATG16L1 
and autophagy related genes LC3 were decreased. The 
bioinformatics analysis prediction software showed that 
there was a targeting regulatory relationship between has_
circ_0023397 and miR-106b. Based on these evidences, it 
can be inferred that hsa_circ_0023397 acts as an adsorption 
sponge of miR-106b, and its decreased expression leads to 
increased expression of miR-106b, thereby interfering with 
autophagy in CD patients, suggesting that hsa_circ_0023397 
may be a potential diagnosis marker for CD (70).

CircRNAs and Hirschsprung disease (HSCR)
HSCR, also known as aganglionosis, is due to a disorder 
of distal motor function that causes stool to stagnate 
in the proximal colon, leading to enlargement of 
the intestine and hypertrophy. HSCR is a common 
developmental malformation, which is accounting for 
the second most common cause of gastrointestinal tract 
anomalies. It is a familiar cause of neonatal digestive tract 
obstruction, often accompanied by intestinal obstruction, 
enterocolitis, intestinal perforation, peritonitis and 
systemic complications. The exploration of its pathogenesis 
will greatly improve the survival rate and quality of 
life of patients. Among the current exploration on the 
pathogenesis of HSCR, miRNAs such as miR-218-1, miR-
206 and miR-192/215 as well as some abnormally expressed 
lncRNAs, may exert an inhibitory role in cell proliferation 
and migration, which is considered to be related to 
the occurrence and development of HSCR (71-74).  
Circ-ZNF609 (has_circ_0000615) is an indispensable 
circRNAs for the development of the central nervous 
system. The expression of circ-ZNF609 in HSCR is 
significantly reduced, and it has been confirmed that circ-
ZNF609 can block the regulation of AKT3 by miR-150-5p, 
thus participating in the regulation of cell proliferation and 
migration (75).

CircRNAs and congenital anorectal malformations 
(ARM)
The incidence of birth defects in China is about 5.6%. 
There are about 900,000 new birth defects every year. ARM 
ranks first in congenital digestive tract malformations. It 
has a wide variety of phenotypes and about half of ARM 
children with urinary, reproductive, cardiovascular, bone 
and other multi-organ diseases, seriously affecting the 
long-term quality of children (76-79). The Wnt signaling 

pathway plays a crucial role in the early development of 
animal embryos, organ formation, tissue regeneration 
and other physiological processes. Wnt1, Wnt3a, Wnt8, 
Wnt5a and pathways occupy a central position in all ARM-
related signaling pathways and networks. The classical 
Wnt/β-catenin signaling pathway exerts an irreplaceable 
role in the normal differentiation of anorectal (80-84). As a 
newcomer in the current disease marker research, circRNAs 
have confirmed the correlation with Wnt signaling pathway 
in osteoblast differentiation and tumor, the relationship 
between circRNAs and ARM is of great research value. 
Accordingly, using the Wnt signaling pathway as a bridge to 
find out the role of circRNAs in the development of ARM, 
and a comprehensive and detailed network framework 
is drawn to provide new ideas for the early diagnosis, 
treatment and genetic mechanism, as well as provide new 
clues for the study of the pathogenesis of other congenital 
gastrointestinal malformation. 

CircRNAs and ischemia reperfusion (IR) injury
IR injury is one of the common tissues and organ damages, 
which plays a vital function in the pathological evolution 
of severe infection, trauma, shock, cardiopulmonary 
dysfunction and other diseases. In recent years, many 
studies have reported that intestinal IR can cause local 
tissue damage in the digestive tract, promote intestinal 
bacteria and toxins to the systemic circulation, trigger 
inflammatory cascade reaction, lead to the release of a large 
number of related mediators and cytokines, and even induce 
fatal complications—multiple organ dysfunction (MOD). 
The pathogenesis and prevention measures of the disease 
have also become the focus of attention (85,86). Ischemic 
postconditioning (iPoC) is an endogenous protective measure 
which can significantly reduce the ischemic intestinal tissue 
from IR injury and is considered as an inhibitor of IR injury. 

A total of 9,821 circRNAs and 12,689 mRNA targets 
were detected by the combination of biochip, real-time 
PCR, bioinformatics analysis and other technologies 
in intestinal tissues initially. It was confirmed that the 
expression levels of circRNA_012412 and circRNA_016863 
were abnormally decreased in intestinal IR, but the 
low expression level was elevated after iPoC treatment. 
Later four circRNA-miRNA-mRNA pathways were 
constructed: circRNA_012412-miR-7649-3p-Sertad1, 
circRNA_012412-miR-3473c-Sertad1, circRNA_012412-
miR-6991-3p-Nudcd1 and circRNA_012412-miR-
6991-3p-Jam2, which may be involved in regulating the 
protective mechanism of iPoC on intestinal IR, enriching 
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the regulatory network of circRNAs with disease (87).

Opportunity and challenge 

Although circRNAs has been studied for more than  
40 years, it has gradually carried out related large-scale 
and in-depth researches in the past decade. Among 
circRNAs, the intron circRNAs does not have the function 
of molecular sponge because its miRNA binding sites 
are relatively dispersed, while usually the exon RNA can 
be used as miRNA molecular sponges (88), The most 
famous ones include CDR1as with more than 70 miR-
7 binding sites and SRY with 16 miR-138 binding sites 
(27,89). The identity of the miRNA sponges confers their 
ability to participate in the regulation of life activities. 
Taking CDR1as as an example, it can negatively regulate 
the activity of miR-7 and resist the degradation of miR-
7. CDR1as is highly co-expressed with its target miR-7 in 
the developing midbrain, loss of miR-7 function causes a 
decrease in the volume of the midbrain and an imbalance 
in the volume of the telencephalon (4,26,90,91). The 
intron circRNAs located in the nucleus can enhance the 
transcription of the parental gene by interacting with pol 
II, thus participating in the regulation of gene expression 
(92,93). The evolutionary conservation, wide distribution, 
tissue specificity and expression stability of circRNAs make 
them have great potential as markers for disease screening 
and treatment, which is extremely significant for the 
research and development of human healthy. CircRNAs are 
inextricably linked to many clinical diseases such as cancer, 
cardiovascular disease, nervous system disease, digestive 
system disease, diabetes and so on (94). The CDR1as/
miR-7 axis is a very important regulatory axis in disease 
research. CDR1as has been proved to be indirectly involved 
in the regulation of liver cancer, atrophic lateral sclerosis, 
diabetes and other diseases through miR-7 (90,95); the 
expression level of hsa_circ_002059 is significantly correlated 
with the tumor stage of gastric cancer, which may be a hopeful 
biomarker for the diagnosis of gastric cancer (96), cANRIL 
affects the risk of atherosclerosis by affecting the inhibitory 
effect of the INK4A/ARF gene by polycomb group (PcG) (97). 

With the rapid development of high-throughput 
sequencing and molecular bioinformatics technology, 
the researches of circRNAs are getting more and more 
intensive, the relationship between more circRNAs and 
disease as well as the potential regulatory networks between 
them are becoming more sophisticated. The databases 
of circRNAs information have also gradually developing 

in quantity and quality, which provides unprecedented 
convenience for the study of circRNAs. The current 
number of studies on circRNAs in digestive diseases is 
on the rise, and it is expected that circRNAs can be used 
to detect diseases. However, circRNAs still have certain 
limitations as disease biomarkers. First of all, some 
abnormally expressed circRNAs in tissues do not have 
the same expression level in peripheral blood. Therefore, 
using these circRNAs as biomarkers may lead to invasive 
detection. On the other hand, the expression level of the 
circRNAs do not necessarily correlate with the severity 
of the disease, so it is impossible to judge the severity of 
disease only based on the expression level of the circRNAs 
temporarily. Although circRNAs are expected to be a 
novel biomarker for diseases, it still needs clinical studies 
for validation. But we have reason to believe that with the 
deep understanding, circRNAs will be better applied to the 
diagnosis and treatment of human diseases in the future.
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