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MicroRNAs (miRNAs) are small nucleotides that can bind 
to messenger RNA (mRNA) preventing its translation. 
Different mRNA targets can have the same miRNA 
binding site leading to a miRNA-mediated cross-talk 
between competitive endogenous RNA (ceRNA) species 
(1-3). Circular RNAs (circRNAs) are yet another example 
of ceRNAs (4), first discovered by electron microscopy in 
an RNA virus in 1976 (5). These are single stranded non-
coding RNAs that have their 3' and 5' ends covalently 
linked due to back-splicing, thus acquiring a circular 
form. Due to their low transcript abundance, circRNAs 
were originally thought to be a byproduct of aberrant 
splicing of mRNA (6). In recent years, however, progress 
in high-throughput technologies and bioinformatics lead 
to the identification of many new circRNAs. Owing to 
their circular structure, circRNAs are very stable and are 
typically expressed in tissue-dependent and developmental-
specific ways (7,8). Most circRNAs originate from coding 
regions of the genome, mainly including exons (9), 
although they could in principle be generated from any 
genome regions. Recent results show that circRNAs can 
act as splicing or transcriptional regulators (10-13) and as 
miRNA sponges (9,14).

The key open issue for the years to come is to elucidate 
the physiological and pathological role of circRNAs in 
the complex network of the cell metabolism. Working 
along this direction, the paper by Sekar et al. describes the 
unique expression of 4,438 circRNAs in human astrocytes 
comparing healthy elderly subjects and Alzheimer’s disease 
(AD) patients (15). In silico analysis of circRNA-miRNA 
networks allows the authors to identify an enrichment in 
the immune response (15). These results are consistent 

with the important role played by astrocytes as immune 
sensors in the brain. Indeed, astrocytes play a pivotal role 
in many critical functions of the central nervous system 
(CSC) such as energy storage, metabolism and homeostasis, 
in addition to the immune system. It would be interesting 
in the near future to compare elderly and young subjects 
to investigate if during aging there are some important 
changes modulated by circRNAs.

Another interesting result of the paper by Sekar et al. 
is related to the impact of circRNAs in tumors. In the 
last year, a large number of papers suggest a possible use 
of circRNAs as biomarkers for aggressive phenotypes 
of tumor cells (16-23). In particular, in glioblastoma 
multiforme (GBM), it has been found that circMMP9 acts 
as an oncogene promoting the proliferation, migration 
and invasion abilities of GBM cells (16). Moreover, the 
same study also shows that this particular circRNA acts 
as a sponge, targeting miR-124 (16). In another recent 
study, the role and underlying regulatory mechanisms of 
circFNDC3B was investigated in bladder cancer (BC) (17). 
In particular, circFNDC3B was shown to act as a miR-
1178-3p sponge to suppress G3BP2, thereby inhibiting the 
downstream SRC/FAK signaling pathway (17). The role 
of circRNAs has also been investigated in hepatocellular 
carcinoma (18) and in breast cancer (19). Recent reviews 
also highlight the important role of circRNAs as biomarkers 
not only of tumors but also of other pathologies (20,21). In 
spite of the increasing evidence supporting an important 
regulatory role of circRNAs in the complex metabolic 
network of the cell, the relevance of these factors are mainly 
related to their stability and abundance. In fact, thanks to 
these characteristics they could be detected in the blood (22) 
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that represents an important and easy way to follow patients 
with diseases.

To achieve the goal of using circRNAs as targets for 
diagnosis or prognosis, a crucial aspect is to construct 
the list of the most important circRNAs playing a critical 
role for specific pathologies and thus to understand their 
role inside the metabolic network of the cells (9). In this 
direction, an interdisciplinary approach combining theory 
and experiments would be necessary to provide a general 
interpretative framework. Our group has recently developed 
a theoretical model for the miRNA-mediated cross-talk 
of circRNAs and mRNAs (23). Thanks to this model, we 
investigated if circRNA and mRNA compete for binding 
the miRNA or there is a co-generation of the circRNA/
mRNA pair which introduces an additional feedback loop 
to the network (23). A comparison between the theory and 
experimental data confirms that the cells can exploit both 
theoretical scenarios (23). Our approach describes a general 
method to study the relevance of circRNAs under different 
conditions (23).

In another recent theoretical study, the authors 
investigated the possible role of circRNAs in relation to 
biological oscillations (24). The latter seems to be crucial 
to the normal function of living organisms regulating a 
wide variety of biological processes. Biological oscillations, 
actually, appear as a collective dynamic behavior of 
an ensemble of interacting components in the cell. In 
eukaryotes, oscillatory processes are due to interactions 
at the protein and RNA levels. Dhawan et al. showed that 
non-coding RNA acts as microRNA (miRNA) sponges 
giving rise to oscillatory behavior (24). They also tested this 
behavior experimentally, demonstrating that the control of 
these non-coding RNA dynamically creates oscillations or 
stability (24).

Taken together all this evidence is starting to clarify 
important functional differences between distinct RNA 
species including circRNA. In the near future, it will 
be important to explore in a deeper way the intricate 
network modulated by circRNAs and the role of circRNAs 
during physiological or pathological conditions such as 
development and phenotypic switching. In this connection, 
recent emerging evidence revealed that circRNAs are 
spatiotemporally regulated and dynamically expressed 
during brain development (25). This could have a relevant 
influence for development and in diseases related to the 
CSC. The latter aspect appears particularly intriguing due 
to the complexity of the brain and the connection with 
the environment and specific diseases, genetic or acquired. 

Related to phenotypic switching processes, the plasticity of 
the cells appears particular relevant during the development 
but also in pathological conditions such as tumors.
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