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Background

ICU wards have significantly grown since it was established 
in the 1960s in the United States and they are now 
routinely provided to the general public worldwide. 
Although ICU are equipped with advanced monitoring 
devices or high ratio of medical resources, the mortality for 
patients in ICU is still high (1). Moreover, decisions in the 
ICU are frequently made in the setting of a high degree 
of uncertainty. In fact, even experienced ICU workers are 
confused in estimating the risk or probability of death for 

patients only by their experiences (2). Therefore, a data-
based prediction tool is highly necessary and considerable 
efforts have been invested into this field. Several severity 
scoring models, now called risk prediction model, which 
can determine illness severity and predict patient mortality 
by integrating a variety of information have been developed. 
Among these scoring models, acute physiology and 
chronic health evaluation (APACHE I–IV) (2-5), simplified 
acute physiology score (SAPS I–III) (6-8), and mortality 
probability models (MPM I–III) (1,9,10) are the most 
popular models. Although each type of model has been 
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updated more than once, the external validation indicates 
that all those existing models are still limited if they are 
applied in the population in which the case-mix is distinct 
from the population where it was originally developed. 

With the development of information technology, the 
use of electronic health records (EHRs) has increased 
dramatically and make large amounts of clinical data kept 
in digitization, which not only facilitate billing and patient 
care but also provides opportunities for research, including 
developing and refining and validating risk prediction 
model (11-13). Over the past 10 years, at least 200 studies 
have been published creating prediction models using 
local EHR data. Overall, it is convincible that the locally 
developed models present more excellent performance 
compared to the standard severity scoring systems even if 
the former have not been widely validated (14). Besides, 
the locally developed models can be updated and improved 
quickly as every patient data collected into EHRs, which 
is superior for APACHE or SAPS with more than 5 years 
update interval. Third, every severity scoring systems has 
fixed variables and coefficients, which may be impractical 
for primary hospitals that are not able to collect so much 
clinical information. However, the locally developed models 
can provide investigators with sufficient freedom and 
flexibility to devise their customized models according their 
available data.

Therefore, this review attempts to introduce the essential 
concepts, procedures and methods for the investigators who 
want to develop an in-hospital mortality prediction model 
based on local EHRs database.

Predictor selection

Predictor (variable) selection is very important in both 
statistical modeling and machine learning modeling. The 
objective of the predictor selection is to find the variables 
which are the most relevant for prediction and removes 
the predictors which are non-informative or redundant 
for prediction. In most cases, the accuracy of the model is 
improved when the selected variables are used. Meanwhile, 
valid predictor selection can save the cost of data  
collection (15). 

In the field of mortality prediction for ICU patients, 
the clinical experience and knowledge in the literature are 
two important foundations for identification of variables 
that might be potential predictors of the outcome. Current 
viewpoints support that physiological variables included in 
severity scoring models are key determinants of mortality 

for ICU patients. In addition, age, comorbidity, admission 
type, patients’ location prior to admission, diagnostic disease 
category, and even treatment factors in ICUs have also been 
demonstrated to be useful in improving model performance 
(4,5). For example, APACHE-IV (5), the newest version of 
APACHE, has included therapy information in its mortality 
prediction equation. Furthermore, some biomarkers (gene 
symbols) were proved to have predictive strength for 
poor outcomes (16,17). Wong et al. used five candidate 
biomarkers variables to derive a decision tree (DT) model 
and found that it reliably estimates the death risk in adults 
with septic shock (18-20). However, most biomarkers 
are not routinely measured in ICU and not covered by 
Medicare.

Ideal risk factors should be clinically relevant and 
mathematically related to the outcome of interest (21). 
After the candidate variables are chosen on the basis of 
clinical experience or widely used scoring models, the 
data-driven screening techniques are also required to filter 
variables. These techniques are generally divided into three 
categories: univariate analysis, multivariate analysis, and 
built-in approach. Univariate analysis is used to determine 
whether or not a plausible relationship exists between the 
predictors and the outcome by evaluating every predictor 
individually. Only predictors with important relationships 
would then be included in a model. Commonly, Pearson’s 
chi-square or Fisher exact test is utilized for categorical 
variables, while t-test or Mann-Whitney U test is adopted 
for continuous variables (22). However, redundant 
(i.e., highly-correlated) predictors may be selected only 
by univariate analysis. Besides， multivariate analysis 
approaches, including forward selection (23), backward 
selection (7), and stepwise regression (24), are also popular 
by investigators. Although no sufficient theory assures that 
backward selection is better than other selection methods, 
it is highly recommended by most statisticians (25-28). 
Lastly, different from the first two analysis methods, built-
in approaches perform variable selection during model 
construction like tree- or rule-based models (18) and the so-
called Lasso model (least absolute shrinkage and selection 
operator) (29-31). Overall, reliable subsets of predictors can 
be ensured by combining clinical experiences and statistical 
techniques.

Modeling methods

In ICUs, mortality prediction rules can be developed on the 
basis of clinical experiences of physicians or using a series of 
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methods, including statistical analysis and machine learning 
techniques (3,32,33). In 1981, the first version of the 
APACHE scoring system was published (2). It was entirely 
based on the subjective evaluations of an expert panel. 
Afterward, statistical analysis, such as logistic regression 
(LR), has been the mainstream modeling method for over 
30 years. However, in the era of big data, machine learning 
techniques are becoming a potential alternative to classical 
statistical techniques (13,25-28,34). In this section, we will 
discuss some detailed issues regarding the adoption of these 
methods for the prediction of mortality in the ICU setting.

LR

LR is the current standard for prognostic modeling 
and is best known by clinicians due to its simplicity and 
ability to make inferential statements about model terms. 
For example, the coefficients can be converted into 
corresponding odds ratios which indicate the strength of 
association between a predictor and an outcome variable. 
However, this method shows obvious shortcomings. First, 
it imposes linear constrains on the relationship between the 
predictor variables and corresponding outcomes. Although 
fractional polynomials (FPs) have been advocated recently 
to model non-linear relationships, it does require the user 
to identify effective representations of the predictor data 
that yield the best performance (35,36). Second, collinearity 
that the predictors are strongly correlated with each other 
hampers reliable estimation of regression coefficients of 
the correlated variables in LR model (37). Third, modeling 
high-level interaction are difficult even unfeasible for LR 
model (38).

The most common severity scoring models in ICU are 
based on LR, but obvious diversities are still observed in 
model derivation. For example, both APACHE (2-5) and 
SAPS (6-8) used an indirect modeling strategy wherein a 

summary score of disease severity is generated first before 
the severity score together with other essential data are 
used to estimate the survival probability. Unlike these 
approaches, all MPM versions (9,10) use LR directly to 
construct models based on available data. In general, the 
indirect LR architecture has the advantage of being less 
covariate and thus may minimize overfitting. Meanwhile, 
the direct LR architecture can extract information 
sufficiently from predictor variables, and thus it can 
potentially produce a better fitting LR model. 

Artificial neural networks (ANNs)

ANNs comprises a large class of models that can identify 
autonomously and model implicit nonlinear relations 
between the outcome and predictor variables (39). In 
principle, ANNs can approximate any continuous functional 
mapping with arbitrary precision if it includes sufficient 
hidden nodes (40). Compared to LR, one notable advantage 
of neural network analysis is that there are few assumptions 
that must be verified before the models can be constructed. 
Besides, ANNs allow the inclusion of a large number of 
variables without the consideration of collinearity. Baxt  
et al. (41) suggested that neural nets are particularly well 
suited to modeling complex clinical scenarios like ICU 
setting. 

The feed-forward multilayer perceptron neural network 
is the most frequently used ANNs for the mortality 
prediction in ICU. This type of ANNs is characterized by 
three features, namely, network architecture, activation 
function, and weight learning algorithm. Figure 1 shows a 
diagram of the model architecture of a typical ANNs, which 
consists of three artificial neuron layers: input, hidden, 
and output layers. The input layer receives the values of 
the predictor variables (e.g., age, heart rate, and body 
temperature), and the output layer provides the predicted 
outcome (death or survival). Each neuron in the hidden and 
output layers takes the sum of values from each input value 
multiplied by the relevant weight. Then, the activation 
function (also known as squashing function) is applied 
to calculate the output result. Notably, although several 
algorithms are available through which all the weights 
in the net can be trained, ANNs have not been studied 
thoroughly in medical research area until the rediscovery of 
the backpropagation (BP) algorithm (42). 

When we modeling mortality using ANNs, some caution 
should be paid. First, the number of nodes and hidden layer 
should be determined. Dybowski et al. (43) configured their 

Figure 1 Structure of a typical three-layer feed forward multilayer 
perceptron ANNs. ANNs, artificial neural networks.
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ANNs model by means of a genetic algorithm that can 
automatically search optimal neural net configuration. They 
found that this algorithm can formulate relatively accurate 
hospital mortality prediction compared with LR model. 
Meanwhile, Kim et al. (13) used the exhaustive prune 
method, which can search the space of all possible models 
to determine the best one. However, most researchers 
“tune” the internal structure of the neural net through the 
trial-and-error method or merely subjective experience  
(32,44-46). Second, the training algorithm that can obtain 
the net weight (parameter) should be identified. The original 
BP algorithm is the most well-known learning algorithm. 
However, it is extremely slow for most applications (47). To 
address this issue, Xia et al. (48) investigated variants of the 
BP algorithm, such as the Bayesian regulation, conjugate 
gradient, and Levenberg-Marquardt BP algorithms. They 
concluded that the Levenberg-Marquardt BP algorithm is 
the best with respect to speed. Silva et al. (24) then proposed 
the use of resilient propagation, which is an enhanced 
version of the BP algorithm to improve training efficiency 
and reduce the computational resources. Third, determining 
an appropriate stopping rule is crucial, because overtraining 
can result in overfitting and poor generalization capabilities, 
while undertraining decrease the accuracy. Thus, a simple 
approach is to stop after a certain iteration time, which is 
normally set using domain knowledge or experience (45). 
Jaimes et al. (49) used a more dynamic technique where an 
error measurement reaches a threshold. However, most 
modelers did not report the criterion of stopping (50,51).

The lack of interpretability at the level of individual 
predictors is one of the most criticized features of  
ANNs (52). But if the model will only be utilized for 
prediction, this limitation may be less important.

DT

DT is a group of tree-based classification methods that have 
been successfully used in several healthcare applications 
(27,53-57). An advantage of a tree is its simple presentation 
of the decision rules which has garnered considerable 
acceptance from professionals in clinical practice (58). 
Another advantage may be that interaction effects are 
naturally incorporated in a tree, while a standard LR model 
usually starts with main effects. If the optimal models 
not only must provide an accurate prediction but also 
improve our understanding for the disease mechanism, DT 
appears to deliver the best trade-off between accuracy and 
interpretability.

Figure 2 presents a basic construct about DT that contains 
nodes and lines. Each tree conjunction is called a node. 
Beginning with the parent node, the tree is divided into a series 
of child nodes. Subsequently, a terminal node is produced at the 
end of each tree branch. Two adjacent nodes are linked by a line 
segment, which indicates the different node values. Although 
the basic tree structure of DT is similar, its partitioning rules 
are different. For example, Salzberg et al. (59) choose C4.5 
algorithm to develop prognostic model (58), which determines 
the best splits of nodes based on entropy-based criterion 
called “information gain ratio”. Wong et al. (18) adopted 
classification and regression trees to predict the 28-day 
mortality. This method applied the so-called Gini index as 
their branching criterion. Although a lot of more complex 
splitting criteria have been developed (60-63) they are 
uncommon in medical studies. The published studies have 
argued that these criteria have slight influence on prediction 
model performance and no single splitting criterion is 
proven to be absolutely better than the another (64). Similar 
to ANNs, DT requires modification to prevent overfitting. 
Trujillano et al. (28) applied an intuitive approach through 
predetermination of the maximum number of terminal 
nodes. Post-pruning is another approach that initially grows 
an overly trained tree, and then removes the branches 
that do not provide valuable information. In general, 
post-pruning is relatively objective compared with other 
approaches (15,64,65). 

Although DT can be converted to a set of rules, this 

Figure 2 Structure of a typical DT. DT, decision tree.



Journal of Emergency and Critical Care Medicine, 2017 Page 5 of 10

© Journal of Emergency and Critical Care Medicine. All rights reserved. J Emerg Crit Care Med 2017;1:18jeccm.amegroups.com

sort of representation is considered as too complicated to 
comprehensible when facing too much predictors (66). 

Support vector machine (SVM)

SVM, which was first developed in the mid-1990s by  
Cortes et al. (67), has undergone evolution and became the 
most flexible and effective data mining tool after Boser (68) 
applied the kernel trick to maximum-margin hyperplanes. 
The SVM often provides better results compared with 
other techniques (69). 

Figure 3 containing an infinite number of classification 
boundaries provides a visual description of SVM. All these 
boundaries perfectly classify the data points but SVM 
can help to find the best one which maximize distance 
between the classification boundaries and the closest point 
by introducing appropriate kernel functions. In SVM 
terminology, the optimal classification boundary is called 
hyperplanes, the closest point is designated as the support 
vector, and the distance between the hyperplane and support 
vectors is termed the margin. and DT. With the goal of 
predicting mortality risk of cardiovascular patients admitted 
in ICUs, Moridani et al. (70) selected radial basis as kernel 
function, and concluded that SVM performs better than 
ANNs. Houthooft et al. (71) used eight types of machine 
learning models to predict patient survival and ICU length 
of stay. Their results suggested that SVM attained the 
best results in terms of patient mortality prediction. Kim  
et al. (13) also did a similar comparison, and obtained similar 
results. Furthermore, Luaces et al. (72) demonstrated 
that SVM exhibits better performance compared with 

APACHE-III when the number of patients for training was 
higher than 500. 

SVM has been extensively applied in genetics , 
proteomics, molecular biology, bioinformatics, and cancer 
research (70,71), but it is rarely used to predict mortality 
in ICU settings compared with LR, ANNs for the reason 
that SVM refer to too much sophisticated mathematical 
knowledge and computer skill and most studies in medicine 
only reported the model performance and omitted the 
details of modeling.

Performance evaluation measures

We briefly consider some of the more commonly used 
performance measures in medicine from the properties of 
discrimination and calibration (73), without intending to be 
comprehensive.

Discrimination evaluate the ability of the model to 
distinguish patients who survived from patients who 
died and can be qualified through several measures, 
such as sensitivity, specificity and area under the receiver 
operator characteristic (ROC) curve (74,75). As the most 
authoritative and comprehensive measure (76), area under 
the ROC curves with 1.0 and 0.5 values indicate perfect 
and random discriminations. this measure was found in the 
majority of literature about mortality prediction, as shown 
in Table 1. 

In addition, the calibration describes the consistency 
between the estimated probabilities of a model and 
the observed probabil i t ies  over the entire range, 
which is extremely useful when the models are applied 
for confounder adjustment in nonrandomized and 
observational research or for case-mix adjustment for 
benchmarking ICU performance (1,80).  Hosmer-
Lemeshow (HL) goodness-of-fit test is the most frequent 
used method to evaluate calibration. HL statistics with a 
small value and corresponding high P value suggests good  
calibration (81). Moreover, Nagelkerke’s R2, Brier’s score, 
and Cox’s calibration regression are also useful measures for 
the evaluation of model performance (82-85).

Validation

A model may perform better on training dataset than 
on another dataset. This situation often occurs in both 
statistical and machine learning models, particularly 
when the training dataset is small (86). Thus, internal 
and external validations are very essential for estimating 

Figure 3 Structure of a typical SVM. SVM, support vector 
machine.
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model performance (87). Internal validation means that 
the model performance is tested using patients who come 
from the same population as that for model derivation. In 
internal validation, randomly splitting the training dataset 
into two mutually exclusive parts is the most popular  
approach (79). However, this approach often leads to 
inaccurate and unstable estimation of model performance. 
Resampling methods, such as cross validation and 
bootstrap, have been claimed to be more steady and reliable  
(25,33,88-90). External validation is executed by using data 
form other institutions (91,92). Either internal or external 
validation is very necessary before the model can be used in 
clinical practice (45,93).

Conclusions

ICUs are data-intensive medical settings which pave the 
way for the development of mortality prediction models. 
Traditional risk prediction models, commonly called 
severity scoring models, have been demonstrated to 
exhibit moderate accuracy with extremely slow updating 
processes. A plausible reason is that these scoring models 
were developed using LR, which is unsuitable for modeling 
complex systems, especially those of critically ill patients 

whose disease progressions are highly complicated. The 
proliferation of detailed electronic medical records and the 
maturation of machine learning techniques have enabled 
the processing of massive volumes of data. Theoretically, 
models based on machine learning techniques seem to be 
more promising in predicting in-hospital mortality of ICU 
patients compared with traditional statistical methods (87). 
Therefore, if accuracy is paramount, then these methods can 
be considered. Moreover, existing modeling methods use 
the worst value of each variable collected on the first ICU 
day to perform model derivation and test while ignoring 
the temporal nature of the predictor sets. Therefore, future 
ICU mortality studies must take into account the dynamic 
characteristics of predictors. Furthermore, combining 
machine learning methods with survival analysis is more 
scientific and rational when deriving mortality prediction 
models for patients in ICUs. In future, this work may 
be extended to develop a risk prediction system that can 
facilitate timely care and intervention.
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Table 1 Area under the ROC curves in many studies

Author Published year Illness scoring models LR ANNs DT SVM Population

Last (77) 2016 – – – 0.772 0.827 M

Houthooft (71) 2015 – – 0.690 – 0.820 M

Wise (78) 2015 0.770 0.850 0.880 – – M

Kim (13) 2011 0.871 – 0.874 0.892 0.876 M

Luaces (72) 2009 0.823 0.820 – – 0.824 M

Trujillano (28) 2009 – – – 0.810 – M

Verplancke (79) 2008 – 0.768 – – 0.808 M

Silva (24) 2006 0.800 0.853 0.871 – – P

Jaimes (49) 2005 – 0.751 0.878 – – M

Nimgaonkar (46) 2004 0.770 – 0.87 – – M

Terrin (45) 2003 – 0.769 0.724 0.667 – M

Clermont (32) 2001 – 0.848 0.857 – – P

Wong (44) 1999 0.830 – 0.84 – – M

Dybowski (43) 1996 – 0.753 0.863 – – P

LR, logistic regression; ANNs, artificial neural networks; DT, decision trees; SVM, support vector machine; M, mixed population; P, purified 
population.
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