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Introduction

Sepsis is a clinical syndrome invoked by infection with a 
profound and potentially detrimental impact on general, 
regional and microvascular hemodynamic, metabolic/
endocrine/immune-inflammatory homeostasis, and cell and 
tissue function. Sepsis is one of the leading causes of death 
in the intensive care unit (ICU) (1). 

Five centuries ago, a renowned Italian philosopher and 
politician defined sepsis as “a condition of hectic fever that in the 
beginning is easy to cure but difficult to detect, but in the course 
of time, not having been detected or treated in the beginning, 
becomes easy to detect but difficult to cure” (2). This early 
definition remains remarkably valid today. In fact, it refers to 

the difficult diagnosis of sepsis which has not been facilitated by 
the proposed definitions in 1992 (poor specificity, no prognostic 
value) (3) or 2003 (excessively expanded and complex) (4). At 
the same time, it points to shock and organ failure as devastating 
consequences of an evolving septic process. 

Recently, an expert task force advocated a new sepsis 
definition (5). Sepsis was emphasized as a life-threatening organ 
dysfunction caused by a dysregulated host response to infection. 
Severity of organ dysfunction can be estimated clinically by 
calculating the Sequential (formerly “Sepsis-related”) Organ 
Failure Assessment (SOFA) score (6). An increase of the 
SOFA score of two points or more indicates significant organ 
dysfunction and an associated higher mortality risk. Also, a 
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simplified quick SOFA (qSOFA) score was proposed to allow 
rapid bedside identification of sepsis outside the ICU (5). 

The basic approach of sepsis can be summarized as timely 
recognition, annihilation of infection including source 
control and early initiation of adequate antimicrobial therapy, 
volume resuscitation, and vasopressor and/or corticosteroid 
treatment in case of shock (7). Beyond this, clinicians face the 
spectre of the multi-organ dysfunction syndrome (MODS). 
MODS is not a single event but a continuum of processes 
characterized by serial and incremental physiologic assaults 
on individual organs. Virtually all organs are involved 
but damage may vary from hardly detectable or mild to 
completely irreversible. MODS is a critical condition with 
high morbidity and mortality and its occurrence substantially 
increases ICU workload and cost (8).

The pathophysiology of sepsis-induced MODS remains 
intriguing and has not been completely elucidated. This review 
aims to concisely line up the different proposed pathways that 
may explain why a normal host response to infection derails 
and culminates into devastating organ dysfunction.

Inflammation and endothelial damage

The host response to infection is driven by a complex pro-
and anti-inflammatory immune reaction. The initial pro-
inflammatory response is prompt and determined by 
interactions between host factors (e.g., age, co-morbidity, 
genetic characteristics…) and the pathogen and between 
pathogen-associated molecular patterns and host cellular 
pattern recognition receptors located at the cell surface (e.g., 
Toll-like or C-type lectin receptor) or in the cytoplasm (e.g., 
retinoic acid inducible gene 1–like or nucleotide-binding 
oligomerization domain-like receptor) (9). Toll-like receptors 
(TLR), for instance, recruit adapter proteins to the cell 
surface. Consequently, cytoplasmic enzymatic processes are 
initiated that activate various transcription factors which, in 
turn, produce and release countless inflammatory cytokines 
and chemokines (10). Exaggerated inflammation induces 
collateral tissue damage and necrotic cell death which, 
in turn, propagates the release of damage-associated 
molecular patterns, aka danger molecules, that perpetuate 
inflammation (11).

Most prominent instigators of the inflammatory cascade 
are endotoxin—the lipopolysaccharide component of the 
cell membrane of Gram-negative bacteria—and comparable 
substances derived from yeasts, viruses, or Gram-positive 
microorganisms (12). Intravenous injection of endotoxin 
in animals and in humans mimics the hemodynamic and 

metabolic derangements of clinical sepsis whilst producing 
an intense inflammatory response (13-15). The latter starts 
with activated monocytes and macrophages which trigger the 
release of various inflammatory cytokines and chemokines into 
the extracellular compartment. Cytokines are low-molecular 
weight and short-lived (glyco)proteins and peptides that act 
in auto- or paracrine fashion on cells to create a plethora of 
biological effects (16). Based on immune-elicited outcome, 
cytokines can be divided in pro- and anti-inflammatory agents. 
Pro-inflammatory cytokines such as tumor necrosis factor 
alpha and interleukin (IL)-1 are powerful and synergistic 
mediators of tissue inflammation, myocardial depression, and 
endothelial injury (17-21). IL-6 is particularly linked with 
bacterial sepsis, strongly mediates fever and (sub)acute immune 
responses, and its plasma concentration is directly associated 
with severity of sepsis and organ dysfunction (16,22).

Corrupted and dissonant endothelial cell function due to 
incessant exposure of the endothelium to harmful external 
and internal inflammatory stimuli is thought to be a strong 
trigger of MODS. Vascular endothelium is omnipresent and 
thus universally affected by systemic inflammation. Virtually 
all endothelial functions, including regulation of vascular tone, 
barrier function, inflammatory potential, and hemostasis are 
involved (23). The luminal surfaces of endothelial cells enter a 
pro-thrombotic state that favours the initiation of disseminated 
intravascular coagulation and the formation of microvascular 
thrombosis. The endothelial cell layer becomes increasingly 
permeable with subsequent fluid extravasation and edema 
formation. Activated endothelial cells start releasing nitric 
oxide which is held responsible for the hypotension of septic 
shock and express surface molecules that attract and adhere 
neutrophils which enhance inflammation (24). Shedding of the 
endothelial glycocalyx exposes hidden adhesion molecules that 
facilitate fixation and ultimately transmigration of leukocytes 
through the endothelial cell layer into the parenchyma. 
Destruction of the glycocalyx enhances capillary leakage and 
accelerates inflammation, platelet aggregation, coagulation, 
and loss of vascular tone (25). The systemic pro-inflammatory 
“burst” is then followed by an equally important anti-
inflammatory response outlined by high levels of the anti-
inflammatory cytokines IL-10 and IL-13 and in part reflected 
by reduced expression of HLA-DR on myeloid cells (26). 
Number and responsiveness of circulating lymphocytes and 
monocytes are reduced which generates an immunosuppressive 
state (27) resulting in ongoing or late infections. Enhanced 
apoptosis of follicular dendritic cells, B- and T-lymphocytes 
and epigenetic regulation of gene expression may be implicated 
(28,29) in this sepsis-associated “immunoparalysis” (30).
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Several cytokine panels have been proposed as biomarkers 
of sepsis-induced MODS. IL-8 and monocyte chemotactic 
protein-1 were found to be associated with the SOFA score at 
sepsis onset. Plasma concentrations of IL-6 and granulocyte-
colony stimulating factor are early predictors of worsening 
MODS (31).

Microcirculatory dysfunction

Anatomically, the microcirculation consists of small resistance 
(arterioles), exchange (capillaries), and capacitance (venules) 
vessels. The microcirculation primarily transports oxygen and 
nutrients to the tissues but also ensures important immunological 
functions and endothelial cell-derived interactions. Capillary 
blood flow throughout the microcirculation depends upon 
arteriolar tone, blood cell rheology, driving pressure, and 
capillary patency. In addition, microcirculatory perfusion is fine-
tuned by regulatory metabolic, myogenic, and neurohumoral 
stimuli. The endothelial cell lining plays herein a central role 
by sensing these stimuli, signalling upstream information on 
downstream flow patterns, and controlling coagulation and 
immune function (23,32,33).

Septic patients can develop MODS in the presence of normal 
systemic hemodynamic and blood oxygenation parameters (34). 
This controversy is linked to a brutal and profound disruption of 
microcirculatory “homeostasis”. A reduction in capillary density 
together with outspoken variations in capillary perfusion, 
ranging from normal or intermittent to almost absent, are 
observed within the same vascular bed (35,36). Perfusion 
heterogeneity results in functional shunting and renders the 
microcirculation hypoxic along with a decrease in oxygen 
extraction capacity (37). Changes are ubiquitous and affect all 
organs. Clinically, this vents out as a global tissue oxygen deficit 
despite (supra)normal systemic oxygen delivery (38). 

Mechanisms that may underlie the microcirculatory 
alterations in septic conditions are failing endothelial 
cell function and cross-talk, inappropriate activation of 
coagulation, rolling and adhesion of leukocytes to the 
endothelial surface, red blood cell deformation, and impaired 
release of nitric oxide (39). Inflammation-related damage to 
the microvascular endothelium turns the latter into a sieve 
through which protein-rich fluid leaks into the surrounding 
tissues (40). Activated endothelial cells liberate procoagulant 
factors which activate the coagulation cascade to form 
microthrombi (23). Additionally, the microcirculation 
becomes progressively clogged by slowly passing rigid red 
blood cells and crammed with deformed activated neutrophils 
(41,42). Smooth muscle cells surrounding the arterioles lose 

tone and become unresponsive to adrenergic stimuli.
All aforementioned alterations of the microvasculature 

occur shortly after injection of endotoxin or live bacteria 
in various animal models of sepsis. Microcirculatory 
perfusion is also significantly altered in human sepsis and 
septic shock (43,44). An association between the severity 
of microcirculatory derangement and the development of 
MODS has repeatedly been demonstrated (45,46).

Impaired mitochondrial function

Mitochondria are specialized cellular organelles that provide 
energy, in the form of adenosine triphosphate (ATP), 
through glycolysis, the tricarboxylic acid cycle, and oxidative 
phosphorylation (47). As such, they play a crucial role in cell 
functioning by supporting cells to respond to (patho)physiological 
stress. Mitochondria also regulate heat production, control 
intracellular calcium fluxes, are involved in apoptosis, and ascertain 
redox housekeeping (48-51). They are main producers of reactive 
oxygen species (ROS) which are required for cell signalling, 
maintenance of vascular tone, and oxygen sensing (52,53). 

Sepsis has a profound impact on mitochondria (54,55). 
Systemic hypotension, myocardial depression and 
microcirculatory dysfunction all lead to impaired perfusion 
and tissue hypoxia, hence compromising oxygen supply at 
the mitochondrial level (56). Critically low oxygen levels 
decrease ATP generation and potentially trigger necrotic cell 
death. Sepsis also creates an “oxidative burst” characterized 
by excessive release of ROS (57). Phagocytic cells use ROS 
to eliminate invasive pathogens. However, ROS may become 
rapidly detrimental by inducing lipid peroxidation and 
degrading proteins. ROS, nitric oxide, and carbon monoxide 
all may directly damage the mitochondrial membrane, 
disrupt key mitochondrial enzyme processes, inhibit 
mitochondrial respiration, and induce apoptosis (58,59). 
Additionally, lower metabolic rates in sepsis have been 
associated with decreased amounts of mitochondrial DNA. 
Hormonal alterations, in particular the “low T3” syndrome, 
may adversely influence mitochondrial function (60).  
Finally, inflammation can downregulate genes transcribing 
mitochondrial proteins.

Mitochondrial dysfunction correlates with sepsis-related 
multi-organ failure but it remains to be unveiled whether 
mitochondria act as victims or amplifiers. Ultrastructural 
and functional mitochondrial injury related to bioenergetic 
decompensation, perpetuating oxidant stress, and a defective 
cell death regulatory function is thought to hamper 
energy production and inefficient oxygen use (61). In the 
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end, cellular respiration falters and cellular metabolism 
considerably slows down. This state of “hibernation”, 
may initially benefit cell survival but may trigger MODS 
in a later phase. Mitochondria in se may also function as a 
source of oxidant stress and alterations in the mitochondrial 
respiratory chain complexes may become the driving 
force behind reduction in regional oxygen utilization (51). 
Whether directly implicated or not, impaired mitochondrial 
function forms the basis of the “cytopathic hypoxia” theory 
as a potential mechanism of sepsis-induced MODS (56). 

Although substantial mitochondrial damage has been 
evidenced in experimental and human sepsis, it could 
not be elucidated whether the mitochondrial changes are 
involved in the development of organ dysfunction or merely 
a consequence of the inflammatory response to infection. 
However, the extent of mitochondrial impairment is found 
to be correlated with mortality and recovery of metabolic 
activity and organ function during resolving sepsis is 
expressed by markers of mitochondrial biogenesis (62,63).

Enhanced apoptosis

Apoptosis, or programmed cell death, is a prominent feature 
of sepsis (64). Although adaptive cell death might be beneficial 
as an attempt to limit tissue necrosis, a too exaggerated cell 
destruction is probably counterproductive. For instance, the 
observed excessive depletion of T and B lymphocytes (65) 
could substantially weaken the host immune defence capacity 
against invading pathogens. During ongoing sepsis, a high 
apoptosis intensity is also observed in intestinal and pulmonary 
epithelial cells. Overexpression of the anti-apoptotic protein 
BcL-2 with subsequent decrease in gut epithelial cell death 
is associated with a significant survival benefit in rodent 
sepsis (66,67). The Fas death receptor is implicated in the 
pathogenesis of sepsis-induced acute lung injury and acute 
respiratory distress syndrome (ARDS) (68). High levels of 
Fas and its ligand are detected in bronchoalveolar fluid of 
ARDS patients and correlate with mortality (69,70). Silencing 
of Fas on lung epithelial cells has been shown to prevent the 
development of lung injury in septic mice (71).

The gut as a “motor” of MODS

The human gut mucosa comprehends a single layer 
of columnar epithelial cells covering a surface area of 
approximately 32 m² (72). Gut epithelial cells undergo 
continuous regeneration from multipotent stem cells. The 
latter express TLR4 which finetunes a delicate balance between 

cell proliferation and apoptosis (73). The gut epithelial 
surface primarily ensures absorption of nutrient components 
but also forms a solid barrier between the intestinal lumen 
and the para-intestinal structures and vasculature (74). The 
intestinal barrier allows paracellular movement of water, 
solutes and immune-modulating substances, while preventing 
migration of too large molecules and microorganisms. 
Trans-barrier transport occurs via apical tight junctions 
and junctional adherent molecules. The gut contains 
an enormous reservoir of bacterial cells, predominantly 
consisting of Bacteroides and Firmicutes species (75) which 
degrade the enteral supply of dietary polysaccharides, lipids, 
and proteins. Among the most important end products of 
fermentation are short-chain fatty acids that are essential 
for maintaining colonic integrity and metabolism (76). 
Eventually, the gut is also involved in host immune defence 
as it is the largest lymphoid organ of the human body (77). 
Critical illness, and sepsis in particular, may considerably 
perturb the complex crosstalk between the intestinal 
epithelium, microbiome, and immune system. Plasma levels 
of intestinal fatty acid-binding protein, a marker of enterocyte 
damage, and citrulline, a marker of functional enterocyte 
mass, are significantly altered in critically ill patients and 
independently associated with shock and 28-day mortality (78).  
Within this context, the gut may turn into “a motor of 
MODS” (79).

Several hypotheses about the role of the gut in sepsis-
induced MODS have been proposed. One infers “bacterial 
translocation” as instigator of MODS. Critical illness in 
general already induces detrimental changes in nature and 
quality of the mucus layer (reduced thickness, diminished 
luminal coverage, and poor adherence) (80,81). Potential 
“disruptors” of mucus protection during sepsis are gut 
hypoperfusion, ischemia-reperfusion reactions, and 
inflammation. Consequently, bacteria may cross a weakened 
intestinal barrier and spread to and beyond the mesenteric 
lymph nodes (MLNs). This “translocation” with concomitant 
liberation of endotoxins is thought to propagate systemic 
inflammation leading to MODS. Bacteria from the normal 
microbiome may also become virulent and invasive in 
reaction to this altered host immune response (82).

Detection of viable bacteria in normally sterile MLNs is 
an indicator of intestinal barrier breakdown and subsequent 
translocation (83). As such, bacterial translocation has 
been recognized in patients undergoing major surgery, in 
severe pancreatitis or cirrhosis, and in organ donors (84,85). 
However, evidence linking bacterial and/or endotoxin 
translocation to MODS in critically ill septic patients is 
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mainly indirect. A prospective study of serial portal blood 
samples in trauma patients found no evidence of portal 
or systemic bacteraemia within the first 5 days post injury 
despite a 30% incidence of MODS (86). 

Another hypothesis suggests a relationship between MODS 
following a critical insult, including sepsis, and the release of 
non-bacterial pro-inflammatory factors from a “stressed” gut. 
Tissue injury occurs when these molecules reach the systemic 
circulation through the mesenteric lymphatic system (87). 
MLNs contain no bacteria and hardly detectable levels of 
endotoxin or cytokines. Instead, abundant protein and lipid 
mediators are present which behave as “danger molecules” and, 
likewise bacteria, stimulate TLR4 (88). In this model, antigen-
presenting cells are activated by non-microbial, host-derived 
products of tissue injury which cause a systemic inflammatory 
response that may evolve to MODS (89). Several observations 
sustain this so-called “gut-lymph hypothesis” (90). Firstly, 
ligation of the major intestinal lymph duct to prohibit spilling 
of gut-derived factors into the systemic circulation can prevent 
the development of MODS (91). Secondly, a “shocked” gut 
releases biologically active factors into the mesenteric lymph 

which activate neutrophils and injure endothelial cells (90). 
Lastly, injection of shocked but not sham-shocked lymph into 
healthy rodents was found to generate a systemic septic state 
and MODS (90). 

In the margin of the two aforementioned hypotheses, it 
is of note that pancreatic digestive enzymes may actively 
mediate epithelial cell disruption (92,93). Under normal 
conditions, these enzymes are sequestered in the intestinal 
lumen. With increasing mucosal permeability, however, they 
may penetrate the intestinal wall and precipitate a process of 
auto digestion that causes further crumbling of gut barrier 
function. Escape of enzymes or breakdown products from 
auto digestion into the circulation may enhance MODS (94).

Conclusions

Despite a steadily growing insight in the mechanisms 
underlying sepsis-induced MODS, it is not known to 
what proportion all proposed pathways interfere in the 
process nor how they interact mutually. Excessive or 
uncontrolled inflammation, either endothelial-bound 

Figure 1 Different mechanisms (and their mutual interactions) involved in the development of MODS. MODS, multi-organ dysfunction 
syndrome; MP, macrophage; PMN, polymorphonuclear leukocyte; TNF, tumour necrosis factor; IL, interleukin; ROS, reactive oxygen 
species. *, pattern-recognition (e.g., Toll-like) receptors recruit adapter proteins to the cell surface which initiate cytoplasmic enzymatic 
processes that activate various transcription factors which, in turn, produce and release inflammatory cytokines and chemokines. 
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or gut-driven, is the predominant trigger. The resulting 
endothelial cell activation and damage is closely related with 
microcirculatory failure. A dysfunctional microcirculation, 
in turn, is held responsible for global tissue hypoxia with 
direct impact on mitochondrial behaviour. Assaulted 
mitochondria generate an excess of ROS which may 
contribute to unwarranted apoptosis. Figure 1 summarizes 
the different mechanisms (and their mutual interactions) 
involved in the development of MODS. Moreover, complex 
interactions have been described between organs involved 
in the process of MODS. For instance, sepsis-related acute 
kidney injury mediates a systemic inflammatory response 
that causes remote damage in heart, lung, brain, spleen, 
liver, and gut (95). Taken together, the pathophysiology of 
sepsis-induced MODS is fascinating and intricate but, at 
the same time, underscores the difficulty to develop a single 
effective therapeutic approach.
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