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Introduction

Cardiovascular (CV) morbidity and mortality is one of the 
major health-care problems. Almost 18 million patients 
die annually related to CV disease (1). Though our ability 
to treat CV diseases has improved significantly over the 
last decades, the prevalence of patients with decreased 
CV reserve is increasing (1). Besides, 313 million patients 
undergo surgery annually all over the world and 4.2 million 
presumably die within 30 days after surgery (2). It has 
been demonstrated previously, that these deaths frequently 
occur in small proportion (circa 10%) of high-risk patients 
(often with CV limitations) (3,4). These patients also 
consume much higher proportion of the global budget 
of perioperative care (5). Costs attributed to social care 
associated with decreased quality of life remain unresolved, 
but are presumably even higher. 

The major driver of unfavorable postoperative outcome 
seems to be the patient’s low functional reserve (6). The 

perioperative goal directed therapy (pGDT) was designed to 
optimize patients’ CV performance and thus lower the risk of 
major complications in the perioperative period. Currently, 
this approach encompasses number of possible targets 
and/or treatment algorithms, which has been associated 
with decreased postoperative complications and improved 
outcome based on several large meta-analyses (7-11).

Historical perspective and physiological 
rationale

In 1988, Shoemaker et al. published seminal paper in 
which they described the concept of oxygen debt and its 
relevance for postsurgical period and development of  
complications (12). According to these data, surgical trauma 
and following period of healing are coupled with increased 
tissue oxygen consumption. This normally leads to increase of 
cardiac output and modulation of systemic vascular resistance 
in order to increase tissue oxygen supply. Patients able to cope 
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with these increased demands usually pass the perioperative 
period without organ failure (13). Median of cardiac index 
(CI) observed by Shoemaker et al. was 4.5 L/min/m2 (coupled 
with oxygen delivery of 600 mL/min/m2 and oxygen 
consumption of 170 mL/min/m2). In next prospective 
interventional study, Shoemaker et al. have demonstrated 
that iatrogenic increase of hemodynamic parameters to 
reach these predefined goals improved postoperative 
outcome in high risk surgical patients (12). In following 
decades, several other studies have evaluated this approach 
in various settings (14-18). Trials aimed on hemodynamic 
optimization of patients in intensive care have systematically 
failed to demonstrate any benefit (16-18). The reason for 
this has been attributed to the fact that dead tissue does 
not need the oxygen (19). The preemptive use in high-risk 
surgical patients seems to be the cornerstone of pGDT. 

To understand the concept of pGDT one has to study 
the tissue perfusion physiology in detail. Because no 
stores of oxygen are available at the cellular level, the 
tissue is supplied on a continuous basis. In order to keep 

the adequate oxygen supply to tissues either its content 
in blood or the blood flow has to be modulated or organ 
demands has to be lowered. However, any change on global 
(macrocirculatory) level does not necessarily translate into 
the local/tissue (microcirculatory) level. 

Blood supply to various organs is autoregulated to keep 
the constant blood flow under wide range of blood pressure, 
but outside these borders the local flow is dependent 
on systemic blood pressure. Hence, severe systemic 
hypotension or global hypoperfusion lead also to tissue 
hypoperfusion. Even more important is the redistribution 
of blood flow to “vital” organs (i.e., heart and brain). To 
maintain flow in vital organs the body decreases flow to 
“less important” tissues in case of severe hypoperfusion—
therefore gastrointestinal tract, kidneys, skin, etc. may suffer 
undetected malperfusion (so called occult hypoperfusion). 
In 2004, Meregalli et al. have demonstrated, that signs of 
occult hypoperfusion (in this case increased serum lactate 
level) in spite of normal macrocirculatory parameters 
(normal blood pressure, etc.) were associated with 
unfavorable postsurgical outcome (20). 

However, not all the determinants of the oxygen delivery 
equation (Figure 1) are clinically equal. If we presume a 
clinical case of a patient after surgical procedure having an 
oxygen delivery index of 450 mL/min/m2, in whom we would 
like to increase it to 600 mL/min/m2 (Figure 2). A change in 
CI of 33% (means absolute increase of 1 L/min/m2) is usually 
affordable without problems. In contrary, the equal increase 
caused by elevation of the hemoglobin concentration 
would be hardly clinically acceptable, because the only way 
to modulate hemoglobin concentration perioperatively 
is coupled with transfusion of allogenic blood. Thus, the 
benefit of hemoglobin increase is largely limited by the risks 
of transfusion related complications. Moreover, according 
to current standards and guidelines the hemoglobin level 
ranging 7.0–1.0 g/L is taken as a sufficient (21). 

Because of normally high oxygen saturation, desired 
increase is not affordable by oxygen therapy. An increase 
in oxygen saturation from 95% to 100% would be a 
mere 5% increase of oxygen delivery without further 
possibility to increase it under normobaric conditions. 
Therefore, modulating CI remains the cornerstone 
of pGDT. As previously stated in the concept of the 
functional hemodynamic monitoring (22), this is possible 
by modulating any of the three parameters affecting stroke 
volume (SV)—preload, contractility or afterload. This 
approach usually works quite well, but still there are some 
limitations. For instance, increasing the preload using 

Figure 1 The oxygen delivery equation with relevant units. CI, 
cardiac index; DO2I, index of oxygen delivery; Hb, hemoglobin 
concentration; PaO2, arterial oxygen tension; SaO2, hemoglobin 
oxygen saturation in arterial blood.

Figure 2 Numerical display of necessary change in individual 
parameters to reach supranormal oxygen delivery. Interpretation in 
the text.
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fluids works only in patients operating on the steep portion 
of Frank-Starling curve, which is the majority of surgical 
patients. Inotropes (dobutamine or dopexamine) do increase 
heart contractility (and/or chronotropy), but for a price of 
increased myocardial oxygen consumption. Finally, afterload 
is usually modulated to reach adequate perfusion pressures, 
but this may be on the price of regional flow redistribution. 
Moreover, improving macrocirculatory variables need 
not directly link to improved microcirculation (so called 
micro-macro incoherence) (23). Disturbances in the 
microcirculation (capillary density, perfusion heterogeneity, 
etc.) may significantly impair the availability of substrates 
at the cellular level. In fully developed shock states (for 
instance in sepsis) this phenomenon may limit tissue 
perfusion and cellular metabolism even under normal 
systemic circulatory conditions. Red cell transfusion may 
impair microcirculation and blood rheology and fluids 
may contribute to edema formation and prolongation of 
diffusion distance. 

Summary of available evidence

Over the last four decades starting with Shoemaker the 
concept of pGDT evolved in terms of monitoring devices 
used, populations studied and treatment goals reached. 
Several meta-analyses on this subject has been published 
over the last 10 years (7-9,11,24). In the two most 
recent ones the authors were able to identify 95 (7) and  
112 (8) randomized controlled studies. Based on the meta-
analysis by Chong et al. (7), the pGDT was associated with 
decreased mortality, morbidity and hospital length of stay 
(see Table 1). A major problem of such meta-analytical work 
is the great heterogeneity among included trials inducing a 
risk of bias. Therefore, authors of the last review (8) decided 

not to perform any kind of meta-analysis. 
However, even these heterogeneous results may allow 

us to draw some conclusions. Based on our long-term 
screening of literature supported by results of multiple 
databases searches [i.e., for the purpose of previous meta-
analysis (9)] our group is aware of 118 pGDT randomized 
prospective studies in human subjects published on this 
topic so far (as for May 2019) (Table 2).

Evolution of monitoring technologies

Naturally, the story began with pulmonary artery 
catheterisation (PAC): altogether 19 randomized controlled 
trials (RCTs) (accounting for 3,706 patients) have been 
published on pGDT driven by PAC so far [the study by 
Yassen in 2012 (132) is currently the last one]. PAC has 
many disadvantages for the pGDT protocols—first, it is 
highly invasive with high risk of complications. Besides, 
the pulmonary artery occlusion pressure (PAOP) is not a 
reliable predictor of fluid responsiveness (140). Contrary, 
PAC has always been recognized as the gold standard of CI 
monitoring. Nevertheless, based on our current knowledge 
the PAC is nowadays replaceable by less invasive devices and 
will have probably only minor impact on the future pGDT. 

Transpulmonary dilution devices (PiCCO, VolumeView, 
LiDCO Plus) replaced the PAC monitoring because of 
their acceptable reliability and much easier applicability in 
many indications (especially for the critically ill). However, 
for the pGDT these devices never played a major role: 
mostly because the need of cannulation of central vein and 
major artery (mostly femoral), time-consuming calibration 
and costs. Only seven studies have been published using 
transpulmonary dilution techniques, and it seems the 
volumetric indices (unique for this kind of monitoring) 

Table 1 Summary of the major positive outcomes of pGDT based on the meta-analysis by Chong et al. (7) and studies listed in Table 2 (mortality 
only)

Parameter Number of studies [subjects] GRADE of evidence Relative effect Number needed to treat

Hospital LOS 62 [8,797] Very low −0.90 (0.48–1.32) days N/A

Wound infection 32 [3,593] Low 0.48 (0.37–0.63) 19

AKI 37 [4,310] Low 0.73 (0.58–0.92) 29

Pneumonia 29 [2,776] Low 0.69 (0.52–0.92) 38

Mortality [Chong et al. (7)] 52 [5,550] Low 0.66 (0.50–0.87) 59

Mortality (Table 2) 94 [12,113] N/A 0.80 (0.71–0.90) 56

pGDT, perioperative goal directed therapy; AKI, acute kidney injury; GRADE, Grades of Recommendation Assessment, Development and 
Evaluation; LOS, length of stay; N/A, not available.
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Table 2 Summary of available randomized controlled trials on the topic of pGDT

Author Year Device Timing
Target 

variable
Type

Total 
number of 
patients

Mortality 
pGDT

Number of 
patients in 
pGDT arm

Mortality 
controls

Number of 
controls

Ackland (25) 2015 LiDCO Post SVmax High risk 187 5.3% 95 5.4% 92

Bahlmann (26) 2019 FloTrac Intra SVmax Thoracic 59 0.0% 30 0.0% 29

Bartha (27) 2013 LiDCO Pre/intra DO2 Orthopaedic 149 4.1% 74 5.3% 75

Bender (28) 1997 PAC Pre/intra/post CI Vascular 104 2.0% 51 1.9% 53

Benes (29) 2010 FloTrac Intra SVV Abdominal 120 1.7% 60 1.7% 60

Benes (30) 2015 CNAP Intra PPV Orthopaedic 80 2.5% 40 0.0% 40

Berlauk (15) 1991 PAC Pre/intra CI Vascular 66 2.2% 45 9.5% 21

Bisgaard (31) 2013 LiDCO Intra/post SVmax Vascular 64 3.1% 32 0.0% 32

Bisgaard (32) 2013 LiDCO Intra/post SVmax Vascular 40 0.0% 20 0.0% 20

Bishop (33) 1995 PAC Pre/intra/post CI Trauma 115 18.0% 50 36.9% 65

Bonazzi (34) 2002 PAC Pre/intra/post CI Vascular 100 0.0% 50 0.0% 50

Boyd (35) 1993 PAC Pre/intra/post DO2 High risk 107 5.7% 53 22.2% 54

Brandstrup (36) 2012 ODM Intra SVV Abdominal 150 1.4% 71 1.3% 79

Broch (37) 2016 Nexfin Intra/post PPV Abdominal 79 N/A 39 N/A 40

Buettner (38) 2008 PiCCO Intra SPV High risk 80 0.0% 40 2.5% 40

Bundgaard (39) 2013 ODM Intra SVmax Abdominal 42 N/A 21 N/A 21

Calvo-Vecino (40) 2018 ODM Intra SVmax Abdominal 420 4.8% 209 4.3% 211

Cecconi (41) 2011 FloTrac Intra SVV Orthopaedic 40 0.0% 20 0.0% 20

Colantonio (42) 2015 FloTrac Intra CI Abdominal 80 0.0% 38 9.5% 42

Conway (43) 2002 ODM Intra FTc Abdominal 57 0.0% 28 3.4% 29

Correa-Gallego (44) 2015 FloTrac Intra SVV Liver 135 0.0% 69 3.0% 66

Demirel (45) 2018 Masimo/PVI Intra PVI Abdominal 60 N/A 30 N/A 30

Donati (46) 2007 CVL Intra/post O2ER Abdominal 135 2.9% 68 3.0% 67

El Sharkawy (47) 2013 ODM Intra/post FTc Liver 59 0.0% 29 0.0% 30

Elgendy (48) 2017 FloTrac Intra/post SVV Abdominal 86 11.6% 43 7.0% 43

Fellahi (49) 2015 ECOM Intra SVV Cardiothoracic 92 2.1% 48 4.5% 44

Figus (50) 2013 ODM Intra SVmax Plastic 104 N/A 51 N/A 53

Fleming (51) 1992 PAC Pre/intra/post CI Trauma 67 24.2% 33 44.1% 34

Forget (52) 2010 Masimo/PVI Intra PVI Abdominal 82 4.9% 41 0.0% 41

Funk (53) 2015 FloTrac Intra SVV Vascular 40 0.0% 20 10.0% 20

Funk (54) 2015 FloTrac Intra/post SVV Plastic 20 N/A 10 N/A 10

Gan (55) 2002 ODM Intra FTc High risk 100 N/A 50 N/A 50

Goepfert (56) 2007 PiCCO Intra/post GEDVI Cardiothoracic 79 0.0% 39 0.0% 40

Goepfert (57) 2013 PiCCO Intra/post SVV Cardiothoracic 100 0.0% 50 0.0% 50

Table 2 (continued)
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Table 2 (continued)

Author Year Device Timing
Target 

variable
Type

Total 
number of 
patients

Mortality 
pGDT

Number of 
patients in 
pGDT arm

Mortality 
controls

Number of 
controls

Gómez-Izquierdo (58) 2017 ODM Intra SVmax Abdominal 108 0.0% 54 0.0% 54

Hand (59) 2016 FloTrac Intra MAP Plastic 94 N/A 47 N/A 47

Harten (60) 2008 LiDCO Intra PPV Abdominal 29 7.1% 14 13.3% 15

Hasanin (61) 2019 Impedance Intra SVV Abdominal 120 N/A 60 N/A 60

Challand (62) 2012 ODM Intra SVV Abdominal 179 5.6% 89 4.4% 90

Chytra (63) 2007 OD Post SVmax Trauma 162 16.3% 80 22.0% 82

Jain (64) 2012 LiDCO Intra SVV Plastic 30 N/A 15 N/A 15

Jammer (65) 2010 CVL Intra ScVO2 Abdominal 241 0.0% 121 0.0% 120

Jhanji (66) 2010 LiDCO Post SVV Abdominal 135 10.0% 90 13.3% 45

Jones (67) 2013 LiDCO Post SVmax Liver 91 2.2% 46 2.2% 45

Joosten (68) 2019 ClearSight Intra Closed-
Loop

Abdominal 39 N/A 20 N/A 19

Kapoor (69) 2008 FloTrac Intra SVV Cardiothoracic 27 0.0% 13 0.0% 14

Kapoor (70) 2016 FloTrac Post CI Cardiothoracic 120 3.3% 60 10.0% 60

Kapoor (71) 2017 FloTrac Intra/post ScVO2 Cardiothoracic 142 9.1% 66 15.8% 76

Kaufmann (72) 2017 ODM Intra SVV Thoracic 96 N/A 48 N/A 48

Kim (73) 2018 FloTrac Intra SVV Plastic 62 0.0% 31 0.0% 31

Kumar (74) 2015 FloTrac Intra CI High risk 40 0.0% 20 0.0% 20

Kumar (75) 2016 FloTrac Intra SVV Abdominal 60 N/A 30 N/A 30

Lai (76) 2015 LiDCO Intra SVV Abdominal 220 2.8% 109 2.7% 111

Lee (77) 2015 NICOM Intra SVmax Cardiothoracic 58 0.0% 29 0.0% 29

Lenkin (78) 2012 PAC/PiCCO Intra PAOP Cardiothoracic 40 0.0% 20 0.0% 20

Li (79) 2017 FloTrac Intra VCCI Not specified 232 N/A 116 N/A 116

Liang (80) 2017 FloTrac Intra SVV Other 60 0.0% 30 0.0% 30

Liu (81) 2018 FloTrac Intra/post CI Other 76 N/A 38 N/A 38

Lobo (82) 2000 PAC Intra/post DO2 High risk 37 15.8% 19 50.0% 18

Lobo (83) 2006 PAC Intra/post DO2 High risk 50 8.0% 25 28.0% 25

Lopes (84) 2007 IBPPlus Intra PPV High risk 33 11.8% 17 31.3% 16

Luo (85) 2017 FloTrac Intra SVV Neuro 145 5.5% 73 12.5% 72

Mayer (86) 2010 FloTrac Intra CI Abdominal 60 6.7% 30 6.7% 30

McKendry (87) 2004 ODM Post SVmax Cardiothoracic 174 4.7% 85 2.2% 89

McKenny (88) 2013 ODM Intra SVmax Abdominal 101 0.0% 51 0.0% 50

Mikor (89) 2015 CeVOX Intra ScVO2 Abdominal 79 2.6% 38 19.5% 41

Moppett (90) 2015 LiDCO Intra SVmax Orthopaedic 114 15.7% 51 23.8% 63

Table 2 (continued)
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Table 2 (continued)

Author Year Device Timing
Target 

variable
Type

Total 
number of 
patients

Mortality 
pGDT

Number of 
patients in 
pGDT arm

Mortality 
controls

Number of 
controls

Mythen (91) 1995 ODM Intra SVmax Cardiothoracic 60 3.3% 30 0.0% 30

Noblett (92) 2006 ODM Intra FTc Abdominal 103 0.0% 52 2.0% 51

Osawa (93) 2016 LiDCO Intra CI Cardiothoracic 126 4.8% 62 9.4% 64

Parke (94) 2015 FloTrac Post SVV Cardiothoracic 144 0.0% 70 1.4% 74

Pavlovic (95) 2016 PiCCO Intra PPV Other 43 25.0% 20 13.0% 23

Pearse (96) 2005 LiDCO Post SVV High risk 122 14.5% 62 11.7% 60

Pearse (97) 2014 LiDCO Intra/post SVmax Abdominal 733 3.3% 368 3.0% 365

Peng (98) 2014 FloTrac Intra SVV Orthopaedic 80 2.5% 40 0.0% 40

Pestaña (99) 2014 NICOM Intra/post CI Abdominal 142 4.2% 72 5.7% 70

Phan (100) 2014 ODM Intra FTc Abdominal 100 0.0% 50 4.0% 50

Picard (101) 2016 ODM Intra FTc Neuro 67 N/A 33 N/A 34

Pillai (102) 2011 ODM Intra SVV Abdominal 66 N/A 32 N/A 34

Pölönen (103) 2000 PAC Post SVO2 Cardiothoracic 393 1.5% 196 3.6% 197

Pösö (104) 2014 TTE/FloTrac Pre/intra SVV Abdominal 46 0.0% 26 0.0% 20

Ramsingh (105) 2013 FloTrac Intra SVV Abdominal 40 0.0% 20 0.0% 20

Reisinger (106) 2017 ODM Intra/post SVmax Abdominal 58 0.0% 27 3.2% 31

Salzwedel (107) 2013 ProAQT Intra PPV Abdominal 160 0.0% 79 0.0% 81

Sandham (108) 2003 PAC Intra DO2 High risk 1,994 16.3% 997 15.5% 997

Senagore (109) 2009 ODM Intra SVV Abdominal 64 2.4% 42 0.0% 22

Sethi (110) 2017 CVL Intra CVP Abdominal 94 4.3% 46 18.8% 48

Shoemaker (12) 1988 PAC Pre/intra/post CI High risk 88 3.6% 28 28.3% 60

Scheeren (111) 2013 FloTrac Intra SVV High risk 52 0.0% 26 7.7% 26

Schmid (112) 2016 PiCCO Intra/post GEDVI Abdominal 180 23.9% 92 18.2% 88

Schultz (113) 1985 PAC Pre/intra/post CI Orthopaedic 70 2.9% 35 28.6% 35

Sinclair (114) 1997 ODM Intra FTc Orthopaedic 40 5.0% 20 10.0% 20

Smetkin (115) 2009 PiCCO Intra ITBVI Cardiothoracic 40 0.0% 20 0.0% 20

Stens (116) 2017 Nexfin Intra PPV Abdominal 175 1.2% 81 1.1% 94

Szakmany (117) 2005 PiCCO Intra ITBVI Abdominal 40 10.0% 20 5.0% 20

Szturz (118) 2019 ODM Intra CI Abdominal 140 1.4% 71 1.4% 69

Thomson (119) 2014 LiDCO Post SVmax Cardiothoracic 264 1.6% 123 1.4% 141

Torregiani (120) 2018 FloTrac Intra SVV Abdominal 147 N/A 71 N/A 76

Ueno (121) 1998 PAC Post CI Liver 34 0.0% 16 11.1% 18

Valentine (122) 1998 PAC Pre/intra/post CI Vascular 120 5.0% 60 1.7% 60

Table 2 (continued)
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Table 2 (continued)

Author Year Device Timing
Target 

variable
Type

Total 
number of 
patients

Mortality 
pGDT

Number of 
patients in 
pGDT arm

Mortality 
controls

Number of 
controls

Van der Linden (123) 2010 FloTrac Intra CI Vascular 37 15.0% 20 0.0% 17

Velmahos (124) 2000 Bioimpedance Pre/intra/post SBP Trauma 75 15.0% 40 11.4% 35

Venn (125) 2002 ODM Intra FTc Orthopaedic 59 10.0% 30 6.9% 29

Wakeling (126) 2005 ODM Intra SVV Abdominal 128 0.0% 64 1.6% 64

Wenkui (127) 2010 Laboratory Post Lactate Abdominal 214 0.9% 109 3.8% 105

Wilson (128) 1999 PAC Pre/intra/post PAOP High risk 138 3.3% 92 17.4% 46

Wu (129) 2017 FloTrac Intra SVV Neuro 63 N/A 33 N/A 30

Xiao (130) 2015 LiDCO Intra SVmax Other 98 N/A 49 N/A 49

Xu (131) 2017 FloTrac Intra SVV Thoracic 168 N/A 84 N/A 84

Yassen (132) 2012 PAC Post SVmax Liver 53 13.9% 36 17.6% 17

Yin (133) 2018 NICOM Intra SVV Abdominal 45 N/A 22 N/A 23

Yu (134) 2015 Masimo/PVI Intra PVI Abdominal 30 N/A 15 N/A 15

Zakhaleva (135) 2013 ODM Intra FTc Abdominal 72 0.0% 32 0.0% 40

Zeng 2014 FloTrac Intra SVV Abdominal Retracted article

Zhang (136) 2013 FloTrac Intra SVV Cardiothoracic 60 N/A 30 N/A 30

Zhang (137) 2012 Datex Intra PPV Abdominal 60 0.0% 40 0.0% 20

Zheng (138) 2013 FloTrac Intra CI Abdominal 60 0.0% 30 0.0% 30

Ziegler (139) 1997 PAC Pre PAOP Vascular 72 9.4% 32 5.0% 40

Total – – – – – 14,009 4.6% 7,027 7.5% 6,982

pGDT, perioperative goal directed therapy; PAC, pulmonary artery catheterisation; ODM, oesophageal Doppler monitoring; PVI, Pleth Variability 
Index; CVL, central venous line; OD, oesophageal Doppler; NICOM, noninvasive cardiac output monitoring; TTE, transthoracic echocardiogram; 
SVV, stroke volume variation; PPV, pulse pressure variation; SVmax, maximal stroke volume; DO2, oxygen delivery; CI, cardiac index; SPV, systolic 
pressure variation; PVI, Pleth Variability Index; O2ER, oxygen extraction ratio; GEDVI, global end-diastolic volume index; MAP, mean arterial 
pressure; ScVO2, central venous oxygen saturation; SVO2, mixed venous oxygen saturation; ITBVI, intrathoracic blood volume index; SBP, systolic 
blood pressure; PAOP, pulmonary artery occlusion pressure; N/A, not available.

bring no more additional value. 
Oesophageal Doppler technology (OED) is probably 

the second most important pGDT monitoring device. 
It was the first that replace the PAC in many countries, 
and the pGDT is virtually associated with OED. The 
National Institute for Health and Care Excellence (NICE) 
guidelines (141) has implemented OED monitoring 
into the national-wide healthcare program. Up to day,  
25 studies have been published using the OED technology, 
in which 2,709 patients were included. Its use is less invasive 
and has minimum contraindications, though sometimes it 
could be difficult to obtain the good acoustic window and 
performance of the device may be disturbed by the ongoing 

surgery. The CI/SV measurement is relatively accurate (142) 
and offers specific parameters of fluid response [corrected 
flow time (FTc)] and contractility (mean acceleration or 
peak velocity). Hence, the OED enables parallel assessment 
of individual heart performance determinants—as 
demonstrated by Szturz recently (118).

Devices based on pulse wave analysis (PWA) represent 
the largest and most frequently used group. They have been 
used in 51 RCTs so far and they are base for several ongoing 
multicentric RCTs (143,144) (plus the @OPTIMISE2trial). 
The simplicity to use (virtually “plug-and-play”) make 
them ideal for pGDT in intermediate to high-risk surgical 
patients. Most of uncalibrated PWA technologies have 
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been repeatedly questioned in terms of the reliability 
(accuracy and precision); but it seems the tracking ability 
is good enough to enable pGDT (145,146). Besides, the 
use of PWA is mostly coupled with the use of dynamic 
variations of pulse pressure or SV as markers of preload 
responsiveness. 

Non-invasive devices are currently the most controversial 
group of  monitors.  First ,  the group is  extremely 
heterogeneous and the devices are based on different 
principles (volume clamp method of blood pressure curve 
reconstruction, thoracic bioimpedance or bioreactance, 
Fick principle and multiple others). This complete non-
invasiveness virtually enables widespread use, even for 
patients in low-to-intermediate risk, because they are not 
associated with any potential harm. However, accuracy and 
precision of these devices has been repeatedly questioned 
(146,147), even though the population tested is not 
entirely matching the target population [mostly high-risk 
or intensive care patients—for further reading see (148)]. 
Among screened studies 13 RCTs used some sort of non-
invasive technology (10 out of them has been published 
during or after 2015). In four RCTs the non-invasive blood 
pressure analysis with following non-calibrated cardiac 
output calculation has been used (hence are more an 
extension of PWA devices). In three other studies, Massimo 
rainbow pulse oximeter and its Pleth Variability Index (PVI) 
parameter has been used hence only fluid based pGDT 
was affordable. Finally, bioimpedance or bioreactance 
technology has been used in six another RCTs.

Treatment goals and means 

Cardiac output/index is historically the most important and 
reasonable treatment target of pGDT protocols. Coupled 
with hemoglobin concentration it creates the physiological 
rationale for improving the peripheral tissue oxygen supply. 
However, the actual value of CI target significantly varies 
among studies. The original work of Shoemaker and 
colleagues (12) aimed for “supranormal” CI of 4.5 L/min/m2 

—goal not easily to reach in high-risk patients without 
using inotropic support. In later RCTs only normal values 
(i.e., around 3.0 L/min/m2) were used as target and most 
recently concept of “avoid-the-low CI” was used (i.e., above 
2.0 or 2.5 L/min/m2). Patients in the intermediate-risk 
group usually need only preload optimization to reach these 
conservative targets. Therefore, further inotropic support is 
necessary only in minority of patients and should be limited 
for high-risk patients or those with unexpectedly low 

cardiac performance. Individualization of the target CI base 
on preoperative echocardiography or by other non-invasive 
measurements may be and interesting option for the future.

SV/SV index as a treatment target is mostly used to 
improve the heart preload. The NICE/National Health 
Service (NHS) guidelines-based protocol (149) recommend 
a stepwise SV maximization process: a step/volume challenge 
of 200–250 mL is given with reassessment. At least 10% 
increase in SV after volume challenge is taken as a positive 
response that prompts a repetition of volume challenge. 
The goal is to reach a state of fluid unresponsiveness by 
sequential volume loading steps. If any decrease in SV 
larger than 10% occurs later on, a volume challenge should 
be repeated to keep maximal SV conditions. Interestingly, 
the other factors affecting the SV (contractility or afterload 
changes) are frequently neglected. In addition, in patients 
with good CV reserve, the maximization of SV seems not 
to be associated with improved outcomes (62). It seems that 
reaching fluid unresponsiveness by SV maximization may 
lead to unnecessarily high amount of intravenous fluids 
administration with all its negative consequences (especially 
considering the vasodilatory effect of anesthetics). 

Variation of SV, pulse pressure or plethysmography-
variability index create together one large group of so-called 
“dynamic preload parameters”—parameter yet unbeaten 
in terms of predictive potential for testing preload reserve 
under generally known and acceptable conditions (i.e., 
absence of spontaneous breathing, tidal volume of more 
than 8 mL/kg of ideal body weight, absence of arrhythmias, 
etc.) (150-152). Fluid optimization guided by these 
parameters has been associated with improved outcomes 
based on meta-analysis of 14 studies (9). Naturally, these 
parameters may be used for optimizing the fluid load only, 
thus they have to be coupled with parameters assessing 
oxygen delivery adequacy and afterload.

Among Doppler-based parameters,  the FTc has 
gained most attention as a parameter for guiding preload 
optimization. Other parameters (SV, CI and/or peak velocity) 
are usually used for complex assessment of hemodynamic 
status and further optimization. Low specificity of FTc and its 
dependence on afterload and some demographic parameters 
(i.e., age, sex) are drawbacks of this approach. Contrary, peak 
velocity is currently the most appropriate parameter to assess 
the contractile function. In a recent RCT by Szturz such 
complex approach with the use of FTc to asses fluid needs, 
peak velocity to modulate contractility by dobutamine and 
blood pressure product (systemic resistance) to use vasoactive 
medication has been associated with improved outcomes in 
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abdominal surgery (118).
Blood pressure is often overlooked target of the pGDT 

protocols. Adequate perfusion of vital organs is maintained 
by body regulatory mechanism throughout large scale of 
perfusion pressures via its natural autoregulatory mechanisms. 
However, these mechanisms may put the peripheral tissues 
(including gastrointestinal tract or muscles) perfusion in 
danger. Maintaining adequate cardiac output is the first 
step of pGDT, but may endanger local flow through some 
organs when not coupled with adequate perfusion pressure. 
Currently number of large-scale retrospective studies 
exist to support that even short periods of hypotension are 
associated with postoperative complications (153-156). 
In one prospective RCT maintaining adequate perfusion 
pressure was associated with improved outcomes in patients 
with arterial hypertension (157). However, based on data by 
Saugel et al. (158), defining the adequate individual perfusion 
pressures is not that straightforward, because widely used 
pre-anesthesia values are far from being accurate surrogate. 

Limitations and adoption roadblock

Even though pGDT is currently based on number of 
positive RCTs and is proposed by several national (or 
multinational) guidelines, its adoption into real praxis 
is still challenging (159,160). Recent surveys among 
anesthesiologists from diverse countries indicates that 
“pressure monitoring only” is still the prevailing praxis 
(160-162). Following reasons are major limits in adoption 
of pGDT: 

(I)	 Lack of high-level evidence—though we do 
possess a number of individual RCTs proving a 
beneficial effect, their heterogeneity precludes to 
draw any hard conclusions. Besides, the studies 
demonstrating more benefit are those smaller, with 
high risk of bias; while large, multi-centric studies 
often do not prove this (97,99,108). 

(II)	 Lack of clear-cut approach—the heterogeneity of 
approaches, devices and treatment targets precludes 
giving a clear-cut recommendation in whom, using 
what device, which variable and which target value 
should be used (163).  

(III)	 Uncertain cost-benefit—most of monitoring 
technologies used for pGDT are associated with 
non-deniable economic burden, the use of pGDT 
further increases the demands on treating staff 
leading to increased economic (and personal) costs. 
Contrary, the benefit of pGDT is postponed and 

observed in a large-scale view only (available to 
hospital administrators). Several studies tried to 
overcome this by putting the results of different 
RCTs into economical context (164,165), but on 
individual basis the economic restrains still exists.

Future perspectives

Based on the current evidence pGDT seems to be a 
rational concept of perioperative care for intermediate-
to-high-risk surgical patients. Further development 
is necessary to overcome most of the uncertainties 
and roadblocks. Currently three multicentric studies 
are ongoing [GAS-ART (143), iPEGASUS (144) and 
OPTIMISE II], which may put some more light on the 
effectivity of pGDT approach in the context of current 
perioperative care. However, several concerns could be 
raised regarding protocols of these trials. A pragmatic fixed 
dose of inotrope used in OPTIMISE II, SV maximization 
in GAS-ART (143) do repeat previous attempts but 
on larger scale. A true individualization should reflect 
patient’s long-term normal values and reserves, but such 
protocol has not been tested yet.

Another factor may further help us to design rational 
individualized pGDT trials in the future. First, the 
development of non-invasive monitoring tools may enable 
us to assess the individual target values much more easily. A 
cumbersome ambulatory oscillometric cuff blood pressure 
measurement would be replaceable by some of novel 
technologies for monitoring not only blood pressure but 
blood flow as well. Hemodynamic profile of individual 
patient obtained in preoperative period may set the base for 
perioperative hemodynamic targets. Second improvement, 
which is on the way, are novel, more specific parameters 
for individual determinants of cardiac function. Parameters 
as dynamic elastance, change in arterial pressure in time 
during upstroke and other parameters may further improve 
our understanding of the underlying pathology. Finally, 
the introduction of artificial intelligence and automated 
closed-loop systems may further help the implementation 
of pGDT. Recently marketed algorithm seems to be 
able accurately predict development of spontaneous 
hypotension in following 5–10 minutes (166,167). This 
enables the treating team either to get ready or to pre-react, 
hypothetically enabling to decrease hypotensive periods. 
Other much simpler algorithms were tested to enable 
closed-loop systems for decision support for individualized 
pGDT (68,168).
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Putting these entire improvements together one may 
propose the further design of pGDT approach: 

(I)	 Based on large scale studies individual patients or 
small adequately defined populations may be picked 
out to have profit out of pGDT intervention. A 
stepwise approach defined by patient risks, surgical 
intervention and other variables is advisable. 

(II)	 Preoperative noninvasive testing of the individual 
CV (and other) system capacity may help to set the 
proper individual target values. Active approach 
may be set up for the high-risk patients.

(III)	 Based on our better understanding of CV system 
artificial intelligence may be incorporated in 
decision making process helping the treating 
physician to pick up the treatment of choice by 
and making further decision more precise and 
individualized.

Conclusions

pGDT is one of the possibilities to improve postoperative 
outcome of intermediate-to-high risk surgical patients. 
Based on current evidence it seems to be associated 
with decreased postoperative length of stay, number of 
complications and possibly even mortality (in the high-risk 
population). However, the current evidence is extremely 
heterogeneous because of large time-span between 
individual RCTs, monitoring technologies and treatment 
targets used. 
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