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Abstract
Aim: To investigate the effects of orexin A on release of  histamine, norepinephrine,
and serotonin in the frontal cortex of mice.  Methods: Samples for measuring
histamine, norepinephrine, and serotonin contents were collected by in vivo
microdialysis of the frontal cortex of anesthetized mice.  The histamine,
noradrenaline, and serotonin content in dialysates were measured by HPLC
techniques.  Results: Intracrebroventricular injection of orexin A at doses of 12.5,
50, and 200 pmol per mouse promoted histamine release from the frontal cortex in
a dose-dependent manner.  At the highest dose given, 200 pmol, orexin A signifi-
cantly induced  histamine release, with the maximal magnitude being 230% over
the mean basal release.  The enhanced histamine release was sustained for 140
min, and then gradually returned to the basal level.  However, no change in nore-
pinephrine or serotonin release was observed under application of the same dose
of orexin A.  Conclusion: These results suggest that the arousal effect of orexin A
is mainly mediated by histamine, not by norepinephrine or serotonin.
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Introduction
       The neuropeptides orexin A and B (also called hypocretins
1 and 2) have recently been isolated from rat hypothalamic
extracts, and have been reported to be involved in sleep-
wake regulation[1–3].  Intracerebroventricular (icv) applica-
tion of orexin A strongly enhances arousal in rats and mice[4–6].
Furthermore, c-fos expression in orexin neurons and prepro-
orexin mRNA levels show a diurnal variation, with the stron-
gest expression being observed during waking[7,8].  Mice lack-
ing either the orexin gene (preproorexin knock-out mice) or
orexin neurons (orexin/ataxin-3 transgenic mice) have phe-
notypes remarkably similar to the human sleep disorder nar-
colepsy[9–11], a disabling neurological disorder characterized
by symptoms including excessive daytime sleepiness, sleep
attacks, sleep fragmentation, cataplexy, and sleep-onset peri-
ods of rapid eye movement[12].  Lesions of the lateral hypo-
thalamus by orexin-2-saporin produce narcoleptic-like sleep
behavior in rats[13].  Consistent with these findings, recent
reports suggest that human narcolepsy is accompanied by a

loss of orexin neuropeptide production and specific destruc-
tion of orexin neurons[14–17].  These results suggest that the
orexinergic system is involved in sleep-wake regulation and
mainly contributes to arousal.
      Orexin neurons are located specifically in the lateral hy-
pothalamic area and project to almost all parts of the brain
except the cerebellum[2,10,18].  Particularly dense projections
of these neurons are observed in monoaminergic nuclei, such
as the noradrenergic locus ceruleus (LC), serotonergic raphe
nuclei (DRN), and histaminergic tuberomammillary nucleus
(TMN).  These monoaminergic nuclei expressing orexin re-
ceptors (OX1R and/or OX2R)[19] play important roles in the
promotion of wakefulness.  Electro-physiological studies
have revealed that orexins had mainly excitatory effects on
all monoaminergic neurons in vitro[20–24], suggesting that
the arousal effect of orexins is mediated by these monoamin-
ergic systems.  However, which type(s) of these monoamin-
ergic systems is involved in orexin-induced arousal remains
to be elucidated.
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In the present study, we investigated the effects of orexin
A on the release of the monoaminergic neurotransmitters
histamine, norepinephrine (NE), and serotonin (5-HT) in the
frontal cortex (FrCx) of mice by using in vivo microdialysis to
further clarify the mechanism underlying the arousal effects
of orexin A.

Materials and methods
Animals  Male C57BL/6 mice (Shizuoka Laboratory Ani-

mal Center, Shizuoka, Japan) weighing 24–28 g (11–13 weeks
old) were housed at a constant temperature (24±0.5 ºC) and
relative humidity (60%±2%),  an automatically controlled
12:12 h light/dark cycle (light on at 8 AM), and  ad libitum
access to food and water.  All animal experiments used in
this study were approved by the Animal Care Committee of
Osaka Bioscience Institute.

Microdialysis procedure  The microdialysis was per-
formed as previously described[5].  As shown in Figure 1,
under urethane anesthesia (1.8 g/kg, ip), a micro-dialysis
probe (CUP7, membrane length of 2-mm; Carnegie Medicin,
Stockholm, Sweden) was inserted in the FrCx of mice at a
position 1.8 mm anterior and 0.8 mm lateral to the bregma and
2.3 mm depth from the dura.  One stainless steel cannula
(outer diameter, 0.2 mm) was stereotaxically placed at the site
of 2.0 mm lateral to the bregma and inserted to a depth of
2.2 mm from the surface of the cortex at an angle of 25° from
the midsagittal plane according to the atlas of Franklin and
Paxinos[25].  The microdialysis probe was perfused with
Ringer’s solution (NaCl 147 mmol/L, KCl 4.0 mmol/L , and
CaCl2 2.3 mmol/L; pH 7.3) at a flow rate of 2 µL/min to stabi-

lize the release of histamine, NE, and 5-HT.  Two hours after
insertion of the microdialysis probe, dialysates were con-
tinuously collected from the FrCx at 20-min interval (40 µL
each) for 1 h as the basal value before the orexin A injection,
and until 4 h after administration of the peptide.

Determination of histamine, NE, and 5-HT levels by
HPLC  The histamine levels in the dialysates were measured
by using a fluorometric HPLC system[26], and NE and 5-HT
levels were determined by using HPLC with electrochemical
detection[27].  Since the absolute basal release of histamine,
NE, and 5-HT varied between subjects, the mean of the first
3 fractions before administration of orexin A was defined as
the mean basal release, and subsequent fractions were ex-
pressed as a percentage of the mean basal release.

Drugs  Orexin A (Peptide Institute, Osaka, Japan) was
diluted in saline to the concentrations needed and was in-
jected into the lateral ventricle of mice from the cannula at
doses of 200, 50, or 12.5 pmol per mouse in 2 µL of saline at
a speed of 2 µL/min.  Fluoxetine (Sigma-Aldrich, St Louis,
MO, USA), a 5-HT reuptake inhibitor which has been re-
ported to also increase NE release through activation of
postsynaptic 5-HT1A receptors by increased 5-HT[28,29], was
dissolved in saline and injected ip (20 mg/kg).

Statistical analysis Data were expressed as mean±SD.
Differences between groups were analyzed by analysis of
variance (ANOVA) followed by the post-hoc Newman-Keuls
test.  The significant level of difference was set at P<0.05.

Results
Effect of orexin A on histamine release  The mean basal

release of histamine was 0.06±0.01 pmol per 20 min.  Com-
pared with the control, orexin A at doses of 12.5 and 50 pmol
produced a rapid and significant elevation of histamine
release, with the maximal magnitude being 150% and 175%
over the mean basal release, respectively; and these higher
levels  maintained for approximately 1 and 2 h (Figure 2A),
respectively.  At the highest dose (200 pmol) tested, orexin A
markedly promoted histamine release, and the release reached
its maximal level of 230% over the mean basal level.  The
significant increase lasted 140 min.

For comparison of the differences between different dos-
age groups, we calculated the total amount of histamine re-
leased over a 3-h period after the administration of orexin A.
The total amounts of histamine released were 0.55±0.08,
0.74±0.09, and 0.79±0.11 pmol per 3 h in the groups treated
with orexin A at doses of 12.5, 50, and 200 pmol, respectively.
In the latter 2 groups the release was significantly higher
than that of the control (0.43±0.05 pmol per 3 h, P<0.05) (Figure

Figure 1.  Schematic representation of the implantation sites for the
microdialysis probe in the FrCx and the stainless steel cannula in the
lateral ventricle of mice.  Orexin A was infused into the lateral ventricle
through the stainless steel cannula; and dialysate samples for monitoring
histamine, NE, or 5-HT levels were collected from the microdialysis probe.
FrCx, frontal cortex.
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2B).  These results indicated that orexin A induced histamine
release in a dose-dependent manner.

Effects of orexin A on NE and 5-HT release  The mean
basal release of NE and 5-HT was 1.75±0.21 and 16.9±2.33 pg
per 20 min, respectively.  No difference was observed in NE
or 5-HT release between the group treated with orexin A (200
pmol) and the control.  As the positive control, fluoxetine,
significantly elevated the extracellular levels of NE and 5-
HT, with the maximal magnitude being approximately 200%
over the mean basal release at approximately 1.5 h and 1 h
after administration (20 mg/kg, ip), respectively.  Compared
with the control, the increase in NE and 5-HT lasted about
180 and 160 min, respectively (Figure 3).

Discussion
In the present study we found that orexin A activated a

histaminergic system in mice.  An increasing body of evi-
dence indicates the interaction between the orexinergic and
histaminergic systems.  For example, with respect to neuro-

anatomy, orexin cells densely innervate the histaminergic
TMN[18,30], a nucleus enriched in orexin 2 receptors[19].  Most
human narcolepsy is caused by a loss of orexin neurons[16]

and a consequent reduction in orexin levels[15,31].  Gliosis
accompanies this loss of orexin neurons and is most intense
in the posterior hypothalamus where the histaminergic TMN
is located[16,17], suggesting that the orexinergic terminals are
lost in this region and that the consequent loss of orexinergic
innervation of histaminergic cells is an important compo-
nent of the pathology of narcolepsy.  Based on neurochemi-
cal studies, Nishino et al[31] reported that the histamine con-
tent was markedly decreased in the cortex of orexin-2 recep-
tor-mutated narcoleptic Dobermans and that the decrease
was due to a lack of excitatory input of orexin neurons caused
by a loss of function of orexin-2 receptors in histaminergic
TMN cell groups.  Furthermore, Lin et al[32] found that orexin
A and B contents were significantly lower in histamine H1

receptor knockout mice.  These results indicate that there
exist functional connections between histaminergic and
orexinergic systems.

Figure 2.  Effect of orexin A on histamine release in the FrCx of
anesthetized mice.  Time-courses of histamine release (A) and the
total amounts of histamine released over 3 h after the administra-
tion of orexin A (B) in the FrCx are shown.  n=5–6 mice.  Mean±SD.
bP<0.05, cP<0.01 vs the control.

Figure 3.  Effects of orexin A on 5-HT and NE release in the FxCr
of anesthetized mice.  Time-courses of 5-HT and NE release in the
FrCx are shown.  The arrow stands for the time point of administration.
n=5–6 mice.  Mean±SD.  bP<0.05, cP<0.01 vs the control.
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The FrCx is a brain region that has higher EEG frequency
during waking[33], and which receives projections of monoam-
inergic neurons such as the noradrenergic, serotonergic, and
histaminergic neurons that originate from the LC, DRN, and
TMN, respectively.  Microdialysis studies have revealed that
extracellular levels of histamine and 5-HT in the FrCx showed
typical changes across the sleep-wake cycle, with their high-
est levels during the waking period[34–37].  Thus, orexin-acti-
vated release of these neurotransmitters in the FrCx reflects
their contributions to the arousal effect of orexin.  In the
present study, we found that orexin A significantly promoted
histamine release in the FrCx in a dose-dependent manner,
but not release of NE or 5-HT, although orexin A excites
noradrenergic and serotonergic neurons in vitro[20–22].  We
previously reported that a prostaglandin E2 receptor sub-
type EP4 agonist enhanced histaminergic neuron activity with
an increase in histamine release in the FrCx to produce
arousal[38].  Together with our previous observations that
orexin induced wakefulness in wild-type mice but not all in
histamine H1 receptor knockout mice[5], these findings sug-
gest that the arousal effect of orexin is largely mediated by
histaminergic systems and activation of H1 receptors.  In
contrast to the histaminergic activity linked to the mainte-
nance of wakefulness, John et al[39] found that noradrener-
gic and serotonergic neurons were more tightly coupled to
the maintenance of muscle tone during wakefulness and its
loss during rapid eye movement sleep and cataplexy.

Taken these findings together, we conclude that the
arousal effect of orexin A is mainly mediated by the activa-
tion of histaminergic systems.
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