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Abstract
NF-κB is a well-characterized transcription factor with multiple physiological and
pathological functions.  NF-κB plays important roles in the development and
maturation of lymphoids, regulation of immune and inflammatory response, and
cell death and survival.  The influence of NF-κB on cell survival could be protec-
tive or destructive, depending on types, developmental stages of cells, and patho-
logical conditions.  The complexity of NF-κB in cell death and survival derives
from its multiple roles in regulating the expression of a broad array of genes
involved in promoting cell death and survival.  The activation of NF-κB has been
found in many neurological disorders, but its actual roles in pathogenesis are still
being debated.  Many compounds with neuroprotective actions are strongly as-
sociated with the inhibition of NF-κB, leading to speculation that blocking the
pathological activation of NF-κB could offer neuroprotective effects in certain
neurodegenerative conditions.  This paper reviews the recent developments in
understanding the dual roles of NF-κB in cell death and survival and explores its
possible usefulness in treating neurological diseases.  This paper will summarize
the genes regulated by NF-κB that are involved in cell death and survival to
elucidate why NF-κB promotes cell survival in some conditions while facilitating
cell death in other conditions.  This paper will also focus on the effects of various
NF-κB inhibitors on neuroprotection in certain pathological conditions to specu-
late if NF-κB is a potential target for neuroprotective therapy.
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Introduction
NF-κB is ubiquitously expressed in peripheral and brain

cells and regulates the expression of a wide variety of genes
involved in cell survival, growth, stress responses, and im-
mune and inflammatory processes[1–3].  This factor was first
described by Sen and Baltimore in 1986 as a NF, that when
activated by agents, such as bacterial lipopolysaccharide,
bound to a 10 bp sequence in the enhancer region of the
gene encoding the κ light chain (κ) of antibody molecules
in B cells (B)[4].  NF-κB family members have been implicated
in the development of the nervous system and plasticity of
synapses[5–7].  NF-κB is persistently activated in cancer,
chronic inflammation, neurodegenerative diseases, stress,
stroke, trauma, heart disease, and other disease conditions[8,9].

As NF-κB is an important regulator in programmed cell death[10],
it has been speculated that NF-κB may play important roles
in normal brain function and neurodegenerative disorders[11,12].

NF-κB biology
c-Rel/NF-κB family  NF-κB is composed of 5 members of

the c-Rel (Rel) family, including NF-κB1 (p50), NF-κB2 (p52),
RelA (p65), RelB, and Rel.  All the Rel proteins contain a
conserved N-terminal region, called the Rel homology do-
main (RHD).  The N-terminal part of the RHD contains the
DNA-binding domain, whereas the dimerization domain is
located from C-terminal region of the RHD[13].  Close to the
C-terminal end of the RHD lies the nuclear localization signal
(NLS), which is essential for the transport of active NF-κB
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complexes into the nucleus[14].  NF-κB family proteins are
divided into 2 groups based on C-terminal sequences of the
RHD.  The members of group 1 include NF-κB proteins p105
and p100, which are precursors of p50 and p52.  Limited
proteolysis is required to produce p50 and p52.  The second
group (the Rel proteins) mainly includes c-Rel (and its
retroviral homologue v-Rel), RelB, and RelA (p65)[15].  All
vertebrate NF-κB proteins can form homodimers or
heterodimers, except for RelB, which can only form hetero-
dimers.  These homodimers and heterodimers that exhibit
differential binding specificities are p50/RelA, p50/c-Rel, p52/
c-Rel, p65/c-Rel, RelA/RelA, p50/p50, p52/p52, RelB/p50 and
RelB/p52[16].  The term NF-κB commonly refers specifically
to a p50–RelA (p50/p65) heterodimer, which is the major Rel/
NF-κB complex in most cells[14].

NF-κB dimers are sequestered in the cytoplasm by a class
of inhibitor proteins, called IκB.  In mammalian cells, the
major regulatory IκB proteins are IκB-α, IκB-β, IκB-ε, and
Bcl-3.  The most common complex that is activated in mam-
malian cells appears to involve IκB-α, which binds to the
p50/RelA heterodimer.  IκB function as inhibitors through
ankyrin repeats that interact with the RHD in NF-κB to mask
the NLS and inhibit the nuclear translocation of NF-κB.  The
N-termini of these IκB proteins constitute a signal response
domain, which is targeted for phosphorylation and
ubiquitination by a variety of stimuli.  The newly-synthe-
sized IκB-α protein actively shuttles between the nucleus
and the cytoplasm and both inhibit nuclear import and medi-
ate the nuclear export of NF-κB/Rel proteins.  In contrast, the
IκB-β protein can inhibit the nuclear import of NF-κB/Rel
proteins, but does not remove NF-κB/Rel proteins from the
nucleus[17,18].

NF-κB activation pathway Signals that induce NF-κB
activity cause the phosphorylation of IκB thereby activat-
ing the NF-κB complex.  The activated NF-κB complex trans-
locates into the nucleus and binds to DNA at the κB binding
motifs and alters gene expression.  Most signals that lead to
the activation of NF-κB act on a high molecular weight com-
plex containing a serine-specific IκB kinase (IKK).  IKK con-
tains at least 3 distinct subunits: IKK-α, IKK-β, and IKK-γ.
IKK-α and IKK-β are catalytic kinase subunits, while IKK-γ
is a regulator for sensing and integrating upstream activat-
ing signals[18].  There are 2 NF-κB activation pathways: the
classical or canonical pathway and the non-canonical
pathway.  In the canonical pathway, the activation of the
IKK complex leads to the phosphorylation of 2 specific
serines (Ser32 and Ser36) in IκB-α, which targets IκB-α for
ubiquitination and degradation by the 26S proteasome.  In
the non-canonical pathway, the p100–RelB complex is acti-

vated through phosphorylation by an IKK-α homodimer
(lacking IKK-γ) to generate p52–RelB.  In either pathway, the
unmasked NF-κB complex can then enter the nucleus to ac-
tivate target gene expression.  In the classical pathway, one
of the target genes activated by NF-κB can encode IκB-α,
and newly-synthesized IκB-α enters the nucleus recombined
with NF-κB, which can remove NF-κB from DNA, and export
the complex back to the cytoplasm to restore the original
latent state.  Thus, the NF-κB activating pathway is a tran-
sient process, generally lasting from 30 to 60 min in most
cells[20,21].

Dual roles of NF-κB in cell death and survival

NF-κB targets many genes to activate their expression.
These target genes include cytokines/chemokines and their
modulators, immunoreceptors, proteins involved in antigen
presentation, cell adhesion molecules, acute-phase proteins,
early response genes, stress response genes, cell surface
receptors, transcription factors and regulators, regulators of
apoptosis, growth factors, and cell death receptor ligands
and their modulators.  In the central nervous system (CNS),
NF-κB can play an anti-apoptotic or pro-apoptotic role in
cell death[22].  This is not unexpected as NF-κB regulates the
genes involved in neuronal death and survival.

Anti-apoptotic activity of NF-κB  A large number of stud-
ies have demonstrated that NF-κB plays a prosurvival role
in proliferating cells, including tumor cells.  Two actions of
NF-κB make it an important cell survival transcription factor
in these cells: the regulation of the cell cycle and the inhibi-
tion of apoptosis.  The best example for elucidating the
prosurvival action of NF-κB in cells is finding an inhibitory
role of NF-κB in death receptor-induced apoptosis[23].  Bind-
ing to death receptors by TNF-α activates caspase-8 through
TRAF1 and NF-κB through TRAF2.  The activation of
caspase-8 leads to apoptosis.  Blocking NF-κB activation
potentiates TNF-α-induced apoptosis, indicating NF-κB ex-
erts anti-apoptotic action.  It has been found that nerve growth
factor (NGF) promotes neuronal survival through activating
NF-κB[24].  Yu et al[25] reported that mice lacking the p50 sub-
unit of NF-κB exhibited increased damage to hippocampal
pyramidal neurons after the administration of the excitotoxin
kainate.  In immortalized mouse hippocampal cell line HT22
cells, glutamate-induced apoptosis was inhibited by IκB in-
hibitor aspirin, while the NF-κB decoy oligonucleotide po-
tentiated it[26].  The action of NF-κB on neuronal survival is
mediated through the upregulation of several prosurvival
genes.

Superoxide dismutase  Manganese superoxide dis-
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mutase (Mn-SOD) is an important antioxidant enzyme, which
is a potent scavenger of superoxide anion and is likely to
serve important cytoprotective roles against cellular damage.
It has been reported that NF-κB is involved in the expres-
sion of Mn-SOD[27].  The incubation of human endometrial
stromal cells with TNF-α or the phorbol 12-myristate 13-ac-
etate (TPA), a protein kinase C activator, caused marked in-
creases in nuclear NF-κB DNA binding activity and Mn-
SOD mRNA and activity.  These effects of TNF-α and TPA
were completely inhibited by the proteasome inhibitor MG132
and the recombinant peptide capable of blocking NF-κB
nuclear translocation, SN50[28].  Activities of Mn-SOD and
SOD1 increased after spinal cord injury (SCI) and exposure
to neurotoxins[29,30].  The increase in SOD appeared to be
NF-κB-dependent, and overexpression significantly pro-
tected against the deleterious effect of reactive oxygen
species, ceramide, or N-methyl-D-aspartate (NMDA).  Sev-
eral other studies have shown that the overexpression of
copper-Zn SOD or the activation of Mn-SOD is neuropro-
tective against ischemia, excitotoxicity, and Aβ toxicity[31–33].

Bcl-2  Bcl-2 and Bcl-XL are well-defined anti-apoptotic
proteins.  The NF-κB binding site is identified in the pro-
moter of murine Bcl-x[34].  Bui et al[35] found that NGF in-
creased the expression of Bcl-XL, possibly through the acti-
vation of NF-κB.  Some studies indicate that TNF-α has
neuroprotective effects.  TNF-α increases the mRNA and
protein levels of Bcl-2 and Bcl-x[36].  It has also been found
that the exposure of cultured neurons to hypoxia/reoxygena-
tion increases the levels of Bcl-2 and Bcl-X.  The inhibition
of NF-κB activation abolished the hypoxia-induced induc-
tion of Bcl-2 and Bcl-X, indicating that the induction of Bcl-2
and Bcl-X is mediated by NF-κB[37].  NF-κB is also reportedly
involved in the activation of the Bcl-2 family member
A1/Bfl-1[38].

Pro-apoptotic activity of NF-κB  A large number of stu-
dies have found that NF-κB activation participates in neu-
ronal apoptosis.  The mechanism by which NF-κB transloca-
tion induces apoptosis is not completely clear, but it is as-
sumed that this mechanism involves the regulation of 1 or
more genes known to play a pro-apoptotic role in apoptosis.
Among the NF-κB-responsive genes possibly involved in
the control of neuronal cell death, pro-apoptotic genes p53,
c-Myc, cyclin D1, Bcl-Xs, and the Fas ligand and its receptor
are activated by various pathological stimuli.

p53  The p53 protein is a tumor suppressor and plays
important roles in neuronal apoptosis via promoting the ex-
pression of the pro-apoptotic gene Bax and PUMA, but sup-
presses the expression of the cytoprotective gene Bcl-2.  NF-
κB may contribute to neuronal apoptosis through the induc-

tion of p53.  In the study of glutamate receptor-mediated
excitotoxicity, upon stimulation of glutamate receptors, a
quick and robust induction in the levels of p53 mRNA and
protein was observed.  The induction of p53 was blocked by
NF-κB inhibitors[39,40].  Qin et al[40] investigated the role of
NF-κB in apoptosis induced by the NMDA receptor ago-
nists in rat striatal medium spiny neurons.  The administra-
tion of the excitotoxin quinolic acid and NMDA induced
apoptosis in the rat striatum.  The inhibition of NF-κB nuclear
translocation by the SN50, a recombinant cell permeable pep-
tide containing the p50 nuclear localization sequence, re-
duced apoptotic death of striatal neurons and p53 expression.
Uberti et al[41] pretreated the neuronal cultures with aspirin,
which inhibits NF-κB activation, or with a specific p53
antisense oligonucleotide, which inhibits p53 transcription,
resulting in a complete prevention of glutamate-induced p53
induction and apoptosis.  The NF-κB-dependent induction
of p53 was also found in response to DNA damage and oxi-
dative stress.  The induced p53 was apparently involved in
cell death under these conditions as the synthetic p53 in-
hibitor pifithrin-α blocked neuronal apoptosis[42–45].  NF-κB
not only regulates the levels of p53, but also increases the
stability of the DNA binding of p53, providing an additional
mechanism for promoting p53-mediated pro-apoptotic sig-
naling[46].

Cyclin D1 and c-Myc  The cyclins are a family of pro-
teins that are involved in cell cycle progression and
apoptosis.  The best explored link between NF-κB activation
and cell cycle progression involves cyclin D1, a cyclin which
is expressed relatively early in the cell cycle and is crucial to
DNA synthesis[47].  The NF-κB regulation of cyclin D1
occurs at the transcriptional level and is mediated by the
direct binding of NF-κB to multiple sites in the cyclin D1 pro-
moter[48].  NF-κB promotes G1 to S phase transition in mouse
embryonic fibroblasts and in T47D mammary carcinoma
cells[49].  The NF-κB-mediated induction of cyclin D1 was
found in dorsal root ganglion neurons in response to
ceramide-induced apoptosis.  The inhibition of NF-κB
blocked cyclin D1 induction and increased the viability of
neurons[50].  Liang et al[44] reported that overstimulation
NMDA receptors with quinolinic acid induced a NF-κB-de-
pendent elevation in cyclin D1 mRNA and protein levels.
The incorporation of BrdU was observed in some neurons
undergoing apoptosis.  NF-κB binding sites have also been
identified in the c-Myc exon and upstream sites and posi-
tively regulate the expression of c-Myc[51].  In excitotoxic
models, c-Myc was upregulated through NF-κB activation[39,44].
The NF-κB-dependent increase in c-Myc expression was also
observed in 6-hydroxydopamine-induced Parkinson’s dis-
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ease[45,52].
The involvement of cell cycle regulators in neuronal

apoptosis has been shown by many investigators.  The ex-
pression of certain cell cycle regulators, such as cyclin D1,
cyclin G, c-Myc, and cdk4 have been found during neuronal
apoptosis[53–56].  To support the role of cell cycle regulators
in neuronal apoptosis, some studies showed that cdk inhibi-
tors blocked neurotrophic factor withdrawal-induced
apoptosis[57].  Cyclin D1 antisense or cell cycle inhibitors
and cdk inhibitors partially blocked the excitotoxin-induced
apoptosis of striatal neurons[44,58], suggesting cycle regula-
tors play an important role in neuronal apoptosis.

Bcl-Xs and BAX  The bcl-x gene functions to regulate
cell death.  Bcl-x transcripts are alternatively spliced into a
long and short form or the form lacking the transmembrane
domain.  The long form (bcl-xL) represses cell death, while
the short form (bcl-xs) favors apoptosis.  NF-κB binding sites
have been identified in the Bcl-x promoter[59].  The NF-κB-
dependent induction in Bcl-Xs has been reported.  Dixon et
al[60] showed that following ischemia and NF-κB activation,
Bcl-xs messenger RNA levels increase in the CA1 hippocam-
pal region.  In cultured endothelial cells, hypoxia decreased
Bcl-2 mRNA levels, whereas the transfection of the NF-κB
decoy significantly attenuated a decrease in Bcl-2 mRNA,
increased Bcl-2/BAX ratio, and inhibited hypoxia-induced
cell death[61].  The prolonged activation of NMDA receptors
results in NF-κB nuclear translocation, release of LDH, in-
creases in the BAX/Bcl-XL ratio, and DNA fragmentation.
SN50 blocked the NMDA-induced increase in the Bax/Bcl-
XL ratio and cell death[62].  Glutamate also reportedly increased
the expression of BAX, which was inhabitable with BAY 11-
7082, a selective inhibitor of IκB-α phosphorylation[63].  In
cyanide-induced apoptosis, the expression levels of 2 anti-
apoptotic Bcl-2 proteins, Bcl-2 and Bcl-XL, remained un-
changed after cyanide treatment, whereas the mRNA levels
of Bcl-Xs and Bax began to increase within 2 h, and their
protein levels increased 6 h after treatment.  Both NF-κB
SN50 and the NF-κB decoy blocked the upregulation of Bcl-
Xs and BAX[64].  In low potassium-induced apoptosis of
cortical neurons, NF-κB DNA binding increased, and this
was accompanied by an elevation in Bcl-Xs transcription.
The latter was abolished by the inhibition of NF-κB or the
restoration of potassium levels[65].

Nitric oxide  The role of nitric oxide (NO) in apoptosis is
complex, as it may exert proapoptotic or antiapoptotic ef-
fects depending on experimental conditions.  NF-κB plays a
role in regulating the expression of NO synthase (NOS).  Xie
et al[66] defined a NF-κB binding domain in murine inducible
NOS (iNOS).  NF-κB stimulated the expression of iNOS.  The

NF-κB inhibitor pyrrolidine dithiolidin inhibited the activa-
tion of NF-κB and the production of NO in lipopolysaccha-
ride (LPS)-treated macrophages, suggesting that the activa-
tion of NF-κB/Rel is critical in the induction of iNOS by LPS.

NOS has been demonstrated to play a proapoptotic role
in several in vitro and in vivo studies.  The incubation of
human breast cancer cell line MCF-7 cells and differentiated
neuronal PC12 cells with TNF-α increased the expression
and activity of iNOS.  In addition to NOS inhibitors, iNOS
antisense oligonucleotides effectively prevented NO2 gen-
eration and apoptosis, suggesting that the TNF-α-induced
cell death is mediated by iNOS-derived NO[67,68].  Employing
the intrastriatal injection of autologous blood in rats to model
intracerebral hemorrhage, Zhao et al[69] demonstrated a ro-
bust and prolonged NF-κB activation and a robust induc-
tion of iNOS at both the mRNA and protein levels.  In SCI
models, iNOS was also found to be increased[70], and the
drugs inhibiting NOS offered protective effects[71–73].

NF-κB inhibitors and neuroprotective therapy

Many human nervous system diseases have an associa-
tion with NF-κB activation.  These conditions, including
aging[74], headache[75], pain[76], stroke[77], traumatic brain in-
jury[78], SCI[79], Parkinson’s disease[80,81], multiple sclerosis
[82], Alzheimer’s disease[83,84], amyotrophic lateral sclerosis
[85], Huntington’s disease[86], and brain tumors[87–91], have
been associated with the NF-κB pathway.  As NF-κB plays
important roles in regulating cell survival and death in a
broad array of physiological and pathological conditions,
it is an attractive proposal to manipulate NF-κB functions
to obtain its beneficial effects or abolish its harmful actions
when it is required[92].  Multiple signaling events are involved
in NF-κB activation, including the phosphorylation and deg-
radation of IκB, NF-κB nuclear translocation, and DNA
interaction, thus making it a relatively easy target for drug
actions (Figure 1).  There are a large number of com-pounds
have been reported to inhibit NF-κB functions.  These com-
pounds mainly include antioxidants, non-steroidal anti-
inflammatory drugs (NSAID), flavonoids, protease inhibitors.
A few of these compounds have been used in the clinical
setting.

Antioxidants  Oxidative stress is one of the common patho-
genic mechanisms in neurodegenerative disorders.  Thus,
antioxidants are frequently employed in the treatment of sev-
eral neurodegenerative diseases, and are the most valuable
therapeutic strategy for fighting neurodegeneration.
Although it is hard to attribute a single mechanism to any
antioxidants’ neuroprotective effects, the inhibition of
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NF-κB activation is a prominent feature of antioxidants.  The
antioxidants include N-acetyl-L-cysteine (NAC), α-lipoic
acid, glutathione monoester, pyrrolidine dithiocarbamate
(PDTC), tepoxalin, and flavonoids.

Free radicals are important mediators for NF-κB activation.
NAC, a well-characterized antioxidant, is found to exert neuro-
protective effects against free radical-related neuronal in-
jury[93,94].  NAC influences many cellular signaling pathways,
including c-Jun N-terminal kinase, p38 mitogen-activated
protein kinase, and redox-sensitive activating protein-1.  NAC
can also prevent apoptosis and promote cell survival by
activating the extracellular signal-regulated kinase pathway.
NAC directly modifies the activity of several proteins by its
reducing activity[95], and is demonstrated to inhibit the deg-
radation of IκB-α and the activation of NF-κB[96–98].  In ani-
mal models of global ischemia, pretreatment with NAC (300
mg/kg) or another antioxidant PDTC (200 mg/kg) significantly
reduced the infarct volume.  NAC has also been reported to
increase the survival of dopaminergic neurons.  The local or
systemic administration of NAC protected dopamine neurons
against 6-hydroxydopamine-induced oxidative damage[99].

PDTC is an antioxidant that has been studied for many
years.  Using cell cultures, Schreck et al[100] found that
micromolar concentrations of PDTC reversibly suppressed

NF-κB activation.  PDTC specifically prevented the NF-κB-
dependent transactivation of reporter genes under the con-
trol of the HIV-1 long terminal repeat and simian virus 40
enhancer.  In other studies, PDTC inhibited NF-κB activa-
tion while enhancing the binding activity of activator pro-
tein-1[101].  In addition, PDTC can inhibit the NF-κB-medi-
ated production of TNF-α, hypoxia-induced dephosphory-
lation of Akt, and inflammatory responses[102–104].  It has been
shown that treatment with PDTC significantly attenuates
reperfusion-induced lung injury[105], glycerol-induced renal
injury[106], cholestatic liver injury[107], and adriamycin-induced
myocardial apoptosis[108].  Crack et al[109] observed that knock-
out glutathione peroxidase-1 (Gpx1) in mice increased the
ischemia-induced activation of NF-κB.  PDTC was able to
afford partial neuropro-tection in the Gpx1-null mice.  In Wistar
rats, PDTC prevented NF-κB activation in the ischemic brain,
as determined by the reduced DNA binding and nuclear trans-
location of NF-κB in neurons.  PDTC treatment reduced the
infarction volume by 48% when given 6 h after MCAO[110].

Flavonoids are potent antioxidants found in many natu-
ral products.  They are widely used as food supplements
and as anti-inflammation and antitumor drugs.  Recently,
many studies have demonstrated that flavonoids have
neuroprotective effects in animal models[46].  Among them,
Ginkgo biloba has received particular attention.  Chen et
al[111] found that Ginkgo biloba extract significantly reduced
intracellular reactive oxygen species formation and NF-κB
activation induced by TNF-α.  Tea extracts have been previ-
ously reported to possess radical scavenger, iron chelating,
and anti-inflammatory properties in a variety of tissues.  Re-
cent studies found that green tea extracts were capable of
inhibiting NF-κB[112].  Studies demonstrated that green tea
extracts inhibited iron-induced lipid peroxidation, NF-κB
activation, and 6-hydroxydopamine (6-OHDA)-induced neu-
ronal death.  6-OHDA-induced apoptosis of catecholamin-
ergic PC12 cells was inhibited by green tea polyphenols and
their major effective component epigallocatechin-3-gallate
at a concentration of 200 mmol/L[113].  Green tea polyphenols
have been shown to reduce the toxic effects of β-amyloid,
ischemia/reperfusion-induced apoptosis, and the infarct
volume[114,115].  Given by brain penetrating property of
polyphenols, these compounds may be utilized as a class of
drugs for the treatment of neurodegenerative diseases.

IκB phosphorylation and degradation inhibitors  Phos-
phorylation and the subsequent proteasomal degradation
of IκB are key steps for NF-κB activation.  NSAID and
cyclopentone prostaglandins are now found to be IκB
inhibitors.  In 1994, Kopp and Ghosh[116] reported that
sodium salicylate and aspirin inhibited the activation of NF-

Figure 1.  Schematic elustration of NF-κB activation and possible
sites where drugs interfere with the NF-κB signaling pathway. NF-κB
is sequestered in the cytoplasm by IκB family proteins. Upon
stimulation, the IκB is phosphorylated and ubiquinated and subse-
quently degraded by the 26S proteasome. Degradation of IκB releases
NF-κB dimers that translocate into the nucleus, where NF-κB binds
to the consensus DNA sequence and regulates gene expression.     : site
of drug action.
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κB through blocking the degradation of the IκB.  IKK-α and
IKK-β phosphorylate IκB.  Aspirin and sodium salicylate
can inhibit IKK-β activity in vitro and in vivo.  The mecha-
nism by which aspirin and sodium salicylate inhibit NF-κB
is the binding of these agents to IKK-β to reduce ATP bind-
ing[117].  These studies not only further explain the new mecha-
nism of actions, but also suggest new implications of these
drugs.  Grilli et al[118] found that acetylsalicylic acid and its
metabolite sodium salicylate protected neurons against neu-
rotoxicity elicited by the excitatory amino acid glutamate in
rat primary neuronal cultures and hippocampal slices.  This
inhibitory effect may be involved in the inhibition of NF-κB
activation, protein kinase C zeta activity, superoxide anion
generation, and lipid peroxidation[118–120].  Recent studies sug-
gest that aspirin and other NSAID protected cultured mes-
encephalic cells against 6-OHDA, 1-methyl-4 phenylpyri-
dinium, and glutamate-induced toxicity[121,122].  Using NSAID
in Parkinson’s disease (PD) has also been proposed[123].  It
has been found that arthritis patients taking aspirin have a
lower incident and later onset of Alzheimer’s disease (AD).
Emerging evidence shows that aspirin and other NSAID have
multiple influences on the AD pathogenic process, includ-
ing inhibiting the formation of fibrillar Aβ, destabilizing pre-
formed fibrillar β-amyloid (Aβ), and preventing the aggrega-
tion of Aβ and attenuating its toxicity[124–126].  Recent studies
also indicate that acetylsalicylic acid inhibits tau phospho-
rylation[127].  Other potentially interesting anti-inflammatory
drugs have also been reported to exert neuroprotective
effects and inhibit NF-κB, including cannabinoid dexanabinol
and caffeic acid[128–130].

Recent studies have identified that cyclopentenone pros-
taglandins (cPG), including prostaglandin (PG)A1 and PGJ2
are ligands for peroxisome-proliferation activator recep-
tor-γ and inhibitors of NF-κB.  Rossi et al[131] reported that
PGA1 could block NF-κB activation by inhibiting IκB phos-
phorylation.  In a subsequent study, they further identified
that PGA1 could directly inhibit IκB kinase-β[132].  PGA1 also
increases the expression of IκB-α[133].  Similar inhibitory
effects of PGJ2 and PGE1 on NF-κB were observed[134–136].  In
addition, PGJ2 was found to interfere with DNA binding
through covalently modifying the NF-κB p50 subunit[137].
Thus, cPG inhibit NF-κB by interfering in multiple sites in
the NF-κB signaling pathway from IκB synthesis to DNA
binding[138].  Studies have shown that cPG have neuropro-
tective effects under certain pathological con-ditions.  Qin
et al[139] first reported that PGA1 protected striatal neurons
against NMDA receptor agonist quinolinic acid-induced
apoptosis through inhibiting NF-κB activation.  PGA1 also
inhibited the mitochondrial toxin rotenone-induced death of

dopaminergic cell line SH-SY5Y cells[140].  In recent studies,
PGA1 and PGJ2 were reported to reduce ischemic brain dam-
age through inducing heat shock proteins, inhibiting NF-κB
activation, and inflammation[141–143].  These studies revealed
that the administration of PGA1 and PGJ2 2–3 h post-is-
chemia was still effective.  Other studies have also reported
that PGJ2 reduced ischemic myocardial infarction[144].

Other drugs, such as estrogen, curcumin, and quercetin
have been reported to inhibit IκB degradation[145–148].  All
these compounds are reported to have neuroprotective ef-
fects under certain experimental conditions.

NF-κB nuclear translocation and DNA binding inhibi-
tors  NF-κB has to translocate into the nucleus in order to
regulate gene expression.  Drugs acting on NF-κB nuclear
transport and DNA binding have received considerable
attention.  Lin et al[149] synthesized a membrane-permeable
recombinant peptide NF-κB SN50.  This peptide contains a
signal peptide, which confers the cell membrane permeabil-
ity of SN50, and a nuclear localization signal, which com-
petes with NF-κB for nuclear entry.  The peptide inhibits the
nuclear translocation of NF-κB in cultured endothelial and
monocytic cells stimulated with LPS or TNF-α in a concen-
tration-dependent manner.  This peptide has been widely
used for dissecting cellular functions of NF-κB[150,151].  We,
along with others, have successfully used SN50 for inhibit-
ing NF-κB nuclear import in vivo and have found that it is
very effective in blocking NF-κB nuclear entry and NF-κB-
mediated target gene transcription in response to various
stimuli[39,44,45,150,152–156].  An intrastriatal or nigral injection of
SN50 substantially inhibited the nuclear translocation of NF-
κB, inhibiting the expression of NF-κB target genes p53,
c-Myc and cyclin D1, and attenuating excitotoxicity[39, 44,45,153].
One study has successfully blocked cholecystokinin-oc-
tapeptide-induced pancreatitis with an intraperitoneal injec-
tion of SN50[155].  These studies suggest that nuclear import
inhibitors represent an important class of NF-κB inhibitors.

Many studies have focused on NF-κB DNA decoys.  The
NF-κB DNA decoys are double-stranded DNA oligonucle-
otides (ODN) containing the NF-κB-binding motif.  When
delivered to cells, it competes with NF-κB for DNA binding
sites, and thus inhibits NF-κB function.  Some studies have
demonstrated that ODN that are delivered locally or sys-
temically are effective in blocking NF-κB transactivation
activity[157–160].  Some in vivo therapeutic studies with ODN
have generated promising results.  The systemic administra-
tion of ODN suppressed NF-κB activity, and the expression
of cytokines protected liver grafts against ischemia/
reperfusion-induced injury in rats[161].  The animal studies
showed that NF-κB decoys reduced lung vascular perme-
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ability in septic mice, improved lung function[162], and inhib-
ited hepatic metastasis in the mice loaded with murine
reticulosarcoma M5076[163].  The clinical usefulness of ODN
has been tested in 2 patients with percutaneous coronary
intervention.  The initial results showed the suppression of
restenosis with no observed adverse effect[164].  NF-κB
decoys may be a potential therapeutic strategy for certain
types of diseases[165,166].

Drugs that directly inhibit NF-κB DNA binding have been
found, but have not been well characterized.  For example, it
has been reported that the metal-chelating drug aurine tri-
carboxylic acid inhibited NF-κB DNA interaction[167].

Neurological disorders may benefit from NF-
κB inhibitors

Ischemic brain injury The distribution of NF-κB was
investigated immunohistochemically in post-mortem brains
of stroke patients.  An enhanced immunoreactivity of NF-κB
was observed in glial cells of infarcted areas, particularly in
the penumbra or border zone between the ischemic and non-
ischemic areas[168].  In animal studies, early activation of NF-
κB has been found to precede DNA damage after ischemic
attack[169,170].  It was reported that ischemia induced a TNF-
like weak inducer of apoptosis (TWEAK) and its membrane
receptor Fn14.  TWEAK promotes neuronal cell death and
activates NF-κB through the upstream kinase IKK[171].  The
deletion of the neuronal IKK2 subunit or inhibition of IKK
activity reduced the infarct size and neuronal cell loss.  The
role of NF-κB in neuronal death was further suggested, as
several neuroprotective agents, such as antioxidant
LY231617, PDTC, and PGA1, have been shown to inhibit
NF-κB activation, reduce infarct volume, and improve be-
havior deficits[110,173,174].  The contribution of NF-κB activa-
tion to ischemic neuronal damage has also been assessed
with either the expression of mutant IκB-α in neurons and
glial, or NF-κB p50 knockout mice and transgenic mice.  The
results indicated that the neuronal expression of the NF-κB
inhibitor reduced both the infarct size and cell death[174].  Mice
lacking the p50 subunit of NF-κB develop significantly
smaller infarcts after transient focal ischemia[173,175].  These
studies may have established the rationale for use of NF-κB
inhibitors in ischemic brain injury.

PD  Recently, the role of the neuron-glia interaction and
the inflammatory process in PD has been the focus of in-
tense study by the research community.  The increase in NF-
κB has been found in the post-mortem brains of PD patients.
In PD patients, the proportion of nigral dopaminergic neu-
rons with immunoreactive NF-κB and interferon-γ was sig-

nificantly increased in comparison with control patients[81,176].
A possible relationship between the nuclear localization of
NF-κB in the mesencephalic neurons of PD patients and
oxidative stress in such neurons has been shown in vitro
with primary cultures of rat mesencephalon, where the trans-
location of NF-κB is preceded by a transient production of
free radicals during apoptosis induced by the activation of
the sphingomyelin-dependent signaling pathway with C2-
ceramide.  The data suggest that this oxidant-mediated
apoptogenic transduction pathway may play a role in the
mechanism of neuronal death in PD[176].  In animal models of
PD, the inhibition of NF-κB achieves neuroprotection against
the 6-OHDA- and MPTP-induced degeneration of dopamin-
ergic neurons[44,45,112,177], suggesting that NF-κB inhibitors
could be beneficial in PD.

AD The distribution of NF-κB was investigated immuno-
histochemically in the post-mortem cases of AD.  In the AD
cases, increased staining for NF-κB p65 was seen in neurons
and their processes, neurofibrillary tangles, and dystrophic
neurites.  The neuronal staining observed in AD was stron-
gest in the hippocampal formation and entorhinal cortex[178].
Boissière et al[179] studied the cellular distribution of NF-κB
in the nucleus basalis of Meynert of AD and control patients.
The proportion of large cholinergic neurons with elevated
nuclear immunostaining of NF-κB was significantly increased
in AD, suggesting an association between NF-κB functions
and the process of cholinergic degeneration in AD.  In
another report, NF-κB immunoreactivity was found in the
neutrophil of diffuse Aβ deposits.  In addition, NF-κB immu-
noreactivity was found in the nuclei of neurons, but not in
the nuclei of reactive astrocytes, in the vicinity of diffuse
plaques[180].  The discovery of NF-κB activation in AD has
been confirmed by other investigators[181–183].  Since inflam-
mation is a prominent feature in AD, NF-κB may participate
in the inflammatory response.  A more direct connection of
AD pathogenesis and NF-κB was observed as Aβ activates
NF-κB[184–186].  Although an early in vitro study found that
the activation of NF-κB by a low dose of Aβ may have
neuroprotective effects[187], other studies have been observed
that NF-κB inhibitors inhibit the production of Aβ[188].  In rat
primary neurons and human post-mitotic neuronal cells, the
Aβ peptide induced dose-dependent neuronal death, the
nuclear translocation of the p65 and p50 subunits, and an
apoptotic profile of gene expression.  The anti-inflammatory
drug aspirin and the selective IκB kinase 2 inhibitor AS602868
completely inhibited p50/p65 nuclear translocation and neu-
ronal damage[189].  The clinical trials with some NSAID did
not generate encouraging outcomes, as noted by Valerio et
al[190], since not all NSAID can inhibit Aβ production.  Better
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compounds with the ability to reduce Aβ should be selected
in future studies.

Excitotoxicity Excitotoxicity has been implicated in sev-
eral neurodegenerative diseases.  Kaltschmidt et al[191] re-
ported that the ionotropic glutamate receptor agonist kainic
acid (KA) activates NF-κB.  Later studies defined a pro-
apoptotic role of NF-κB activation and nuclear translocation
mediated by AMPA/KA receptors[153,192].  Similarly, the
stimulation of glutamate NMDA receptors robustly activates
NF-κB through the degradation of IκB-α[139,152].  In other
studies, the pharmacological upregulation of NF-κB
increased glutamate-induced excitotoxicity, while the
upregulation of CREB decreased excitotoxicity[193].  Grilli et
al[118] reported a neuroprotective role of aspirin on the
glutamate-induced death of hippocampal neurons, opening
a new avenue for the study of excitotoxicity.  Since then,
several studies have reported that the inhibition of NF-κB
has neuroprotective effects.  In studies conducted by Casper
et al[121], neuroprotection against glutamate-mediated
excitotoxicity was also found with ibuprofen.  The inhibition
of NF-κB with a herbal active component glycyrrhiza acid[193],
free radical scavenger OCT14117[194], and glutamate metabo-
tropic receptor agonists (2S, 1’S,2’S)-(carboxy-cyclopropyl)
glycine and amino-4-phosphonobutyric acid[195] was associ-
ated with a neuroprotective effect.  These results suggest
that NF-κB inhibitors could be suitable drugs for blocking
excitotoxicity.

Summary
The signaling pathway and the role of NF-κB have been

studied for more than 2 decades.  However, we still have
limited knowledge on the role of NF-κB in CNS neurons and
the molecular mechanisms underlying its actions.  Many con-
troversial findings need to be consolidated.  In particular, its
dual roles in neuronal death and survival and underlying
molecular mechanisms need to be carefully evaluated in rela-
tion to human neurological diseases[197–200].  The involve-
ment of NF-κB in human diseases certainly establishes it as
a potential target for therapy.  Many common synthetic (eg
aspirin) and traditional remedies target, at least in part, the
NF-κB signaling.  Our knowledge of the molecular details of
the NF-κB pathway will enable us to develop more specific
NF-κB inhibitors to treat neurological diseases.
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