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Introduction
Amyotrophic lateral sclerosis (ALS) is a progressive fa-

tal neurodegenerative disorder that primarily affects motor
neurons in the cortex, brainstem and spinal cord.  Evidence
suggests that mutations in Cu/Zn superoxide dismutase
(SOD-1), glutamate-mediated excitotoxicity, free radical-
mediated damage, mitochondrial dysfunction and apoptosis
may be involved in the pathogenesis of ALS[1].  However,

the cause of ALS is not completely understood.
Accumulating evidence indicates that inflammatory

processes, especially the activation of microglia, are involved
in the pathogenesis of ALS[2].  Activated microglia are present
before the onset of clinical symptoms and prior to significant
motor neuron loss in transgenic mice with mutations of the
SOD-1gene, an animal model of ALS[3].  Furthermore, some
critical markers of microglia activation have also been found
post-mortem in the cerebral cortex and spinal cord of pa-
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immunosorbent assay, respectively.  The mRNA levels of COX-2, inducible nitric
oxide synthase (iNOS), TNF-α and IL-1β in macrophages were determined by
reverse transcription-polymerase chain reaction after macrophages were stimu-
lated for 6 h and 12 h.  Results: The supernatant of LPS-stimulated mouse mac-
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tients with ALS[4,5].  Inflammatory processes would produce
harmful effects on neuron survival in ALS tissues, include a
prominent upregulation of inducible nitric oxide synthase
(iNOS) activity with the subsequent generation of nitric ox-
ide (NO)[6], the increased generation of reactive oxygen spe-
cies (ROS) and glutamate[7], the enhanced secretions of in-
flammatory cytokines, such as tumor necrosis factor α (TNF-
α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)[8], as well
as the enhanced expression of cyclooxygenase-2 (COX-2) with
the subsequent production of prostaglandin E2 (PGE2)[9].

COX-2 was demonstrated to be crucial for prostaglandin
synthesis in inflammation.  COX-2 expression was shown to
be dramatically increased in the spinal cord of both of ALS
transgenic mice and ALS patients[10,11].  PGE2 levels were
also markedly increased in ALS cases compared to non-ALS
specimens[12].  In addition, a selective COX-2 inhibitor, SC236,
protected  motor neurons in an organotypic cell culture model
of ALS[13].  Furthermore, celecoxib, a highly selective COX-2
inhibitor clinically available for the treatment of rheumatoid
arthritis[14], was proved to prolong survival in a transgenic
mouse model of ALS[15].  These results support a potential
role for COX-2 in the neurodegenerative processes of ALS
and suggest that a selective COX-2 inhibitor may be effec-
tive in the treatment of ALS.  However, research on the
neuroprotective mechanism of COX-2 inhibition on a cellu-
lar level, and drug screens using an injured motor neuronal
model are still lacking.

In order to investigate the possible neuroprotective
mechanism of the COX-2 inhibitor on ALS and to screen
candidate anti-inflammatory drugs for ALS, an injured motor
neuronal model, which simulates in vivo human microglia
activation and the neuronal damage observed during
neurodegenerative disease processes, was developed in the
present study.  Microglia are the resident macrophages of
the central nervous system (CNS) as microglia and
macrophages, both being cells of the monocyte phagocytic
system, have similar biochemical characteristics[16].  In
addition, recent findings suggest that infectious agents may
increase the risk of ALS and infected migratory mononuclear
phagocytes may play an important role in the infection pro-
cess[17].  Therefore mouse peritoneal macrophages as an ac-
cessible source of mononuclear phagocytes and neurotox-
icity were used.  NSC34 cells, a hybrid cell line obtained by
fusion of motor neuron-enriched embryonic mouse spinal
cord cells with mouse neuroblastoma N18TG cells, were used
as the target motor neuronal cells[18].  Lipopolysaccharide
(LPS), a cell wall component of gram-negative bacteria, can
activate macrophages.  Interferon (IFN)-γ is another impor-
tant stimulant which can enhance cytokine production.  A

combination of LPS and IFN-γ was used to activate mono-
cytes[19,20].

In the present study, we further verified the injured mo-
tor neuronal model by evaluating the neuroprotective effect
of celecoxib, which prolongs the survival of ALS transgenic
mice.  In addition, the release of PGE2, NO, ROS, inflamma-
tory cytokines and the expression of relevant inflammatory
genes in macrophages was studied to explore the possible
mechanism of the neuroprotective effect of a COX-2 inhibi-
tor against the toxicity of microglia activation on motor neu-
ron viability.

Materials and methods

Drugs and reagents  Celecoxib was kindly provided by
Dr Yu-she YANG, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, Shanghai, China.  LPS
(Escherichia coli 055:B5) was purchased from Sigma (St
Louis, USA).  IFN-γ was obtained from Clonbiotech
(Shanghai, China).  A radioimmunoassay (RIA) kit for PGE2

was obtained from China PLA General Hospital (Beijing,
China).  Enzyme-linked immunosorbent assay (ELISA) kits
for TNF-α and IL-1β were obtained from BD Biosciences
(San Diego, CA, USA).

Cell culture  Macrophages were obtained from the peri-
toneal exudates of female BALB/c mice (Grade II, Shanghai
Experimental Animal Center, Shanghai, China; Certificate No
003) 4 d after intraperitoneal injection with 0.5 mL 3%
thioglycollate (WAKO, Tokyo, Japan).  The cells were har-
vested using cold peritoneal lavage with phosphate-buff-
ered saline (PBS, pH 7.4) containing 1% fetal calf serum (FCS;
PAA, Pasching, Austria), washed twice with PBS and resus-
pended in Dulbecco’s modified eagle medium (DMEM)-F12
medium (Gibco, NY, USA) supplemented with 5% FCS, 0.1 g/L
streptomycin, and 100 kU/L penicillin.  The cells were seeded
at a density of 1×106 cells/mL at 37 °C in a humidified atmo-
sphere of 5% CO2 and 95% air in an incubator.  After adher-
ing for 2 h, the cells were washed 3 times with warm PBS and
incubated in DMEM-F12 medium supplemented with 5% FCS
for the formal experiments.  The viability of each cell prepara-
tion was more than 95%, as assessed by trypan blue stain-
ing (0.1% solution).

The mouse motor neuronal NSC-34 cell line was a gift
from Dr Jin REN (Shanghai Institute of Materia Medica).
NSC34 cells were maintained at 37 °C and 5% CO2 in DMEM
(Gibco) supplemented with 10% FCS, 0.1 g/L streptomycin
and 100 kU/L penicillin.

Measurement of cell viability  NSC34 cell viability was
measured using the MTT assay as described by Hansen et



954

 Acta Pharmacologica Sinica ISSN 1671-4083Huang Y et al

al[21].  Briefly, MTT (Sigma) was added to cell cultures to
reach a final concentration of 0.2 g/L.  Following a 4-h incu-
bation at 37 °C, the dark crystals formed were collected and
dissolved in 200 µL/well dimethylsulfoxide in 24-well plates.
Subsequently, optical densities were measured at 570 nm by
transferring 100 µL/well to 96-well plates and recording the
values using a plate reader (POLARstar®; BMG, Victoria,
Australia).  The number of viable NSC34 cells was calculated
as a percentage of the value obtained from the control NSC34
cells incubated with media only.

Measurement of nitric oxide  Nitric oxide was determined
by assaying for nitrite using Greiss reagent (1% sulfanila-
mide, 0.1% N-(1-naphthyl) ethylenediamine dihydrochloride
in 5% H3PO4)[22].  Briefly, 100 µL of the supernatant from
each well (24-well plates) was incubated for 5 min with 100 µL
Griess reagent in 96-well plates.  Optical densities of the
samples were then obtained by reading absorbance at 540 nm.

Measurement of reactive oxygen species  The ROS as-
say was modified from the fluorescence assay described by
Gunasekar et al[23].  Briefly, 90 µL of supernatant from each
well (24-well plates) was transferred to 96-well fluorescence
assay plates, incubated to 37 °C, and then added 10 µL Krab’s
Ringer buffer (127 mmol/L NaCl, 5.5 mmol/L KCl, 2 mmol/L
MgSO4, 1 mmol/L CaCl2, 20 mmol/L HEPES, 10 mmol/L
dextrose, pH 7.4) with 50 µmol/L 2’,7’-dichlorofluorescein
diacetate (DCFH-DA; Sigma) and 20 IU/mL horseradish
peroxide(SABC, Shanghai, China).  The fluorescence value
of each well was read at 30 s intervals for 5 min at 485 nm
excitation wavelength and 520 nm emission wavelength.  The
ROS value of each sample was calculated as the slope of its
time-fluorescence value curve.

Measurement of PGE2, TNF-ααααα and IL-1βββββ  The concen-

trations of PGE2, TNF-α and IL-1β were determined by RIA
and ELISA according to the manufacturer’s instructions.

Measurement of mRNA  The mRNA levels of COX-2,
iNOS, TNF-α and IL-1β were detected by real-time quantita-
tive reverse transcription-polymerase chain reaction (RT-PCR)
using β-actin mRNA as an internal control.  Briefly, macroph-
ages from various treatments in 6-well plates were washed
twice with ice-cold PBS.  Total RNA was extracted from the
cells in each well with RNAzol (Dingguo Biotechnology,
Beijing, China) according to the manufacturer’s instructions.
First-strand cDNA synthesis was carried out using 2 µg to-
tal RNA and M-MLV reverse transcriptase (Promega,
Madison, USA).  The reaction mix was incubated at 42 °C for
60 min, and then heated at 70 °C for 10 min.  Each reaction
mixture was diluted 4 times with 0.1% diethyl pyrocarbonate
(DEPC)-treated H2O.  A 2-µL aliquot from each diluted reac-
tion mixture was used for real-time PCR amplification.  The
primer sequences and PCR cycle parameters for β-actin[24],
COX-2[24], iNOS[25], TNF-α[26],and IL-1β[27]

 are listed in Table 1.
Real-time quantitative RT-PCR was carried out as de-

scribed by Livak[28].  Each reaction contained 2 µL of the
cDNA sample with 1 IU Taq DNA polymerase (Dingguo
Biotechnology) and 0.5 µL Sybr Green (OPE, Shanghai,
China) in a total volume of 20 µL in a real-time quantitative
PCR cycler (DNA Engine Opticon® Continuous Fluorescence
Detection System; MJ Research, USA).  The mRNA level
was estimated as a relative value by normalizing with β-actin
mRNA.  Reaction products were also separated on a 1.5%
agarose gel, stained with ethidium bromide, and photo-
graphed to validate the reliability of the objective genes.

Statistical analysis  Data were presented as mean±SD
of the values from 3 independent experiments and the

Table 1.  Primer sequence and polymerase chain reaction (PCR) cycle parameters for β-actin, cyclooxygenase-2 (COX-2), inducible nitric
oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) genes.

             Gene                                         Primer sequence                                                      PCR cycle parameters
                                                                (sense, antisense)

β-Actin 5´-GTGGGCCGCTCTAGGCACCAA-3´, 94 °C 30/45 s, 63 °C 45 s, 72 °C 60/90 s
  (300 bp) 5´-CTCTTTGATGTCACGCACGAT TTC-3´   (35 cycles)
COX-2 5´-TTCAAAAGAAGTGCTGGAAAAGGT-3´, 94 °C 30 s, 63 °C 45 s, 72 °C 60 s
  (300 bp) 5´-GATCATCTCTACCTGAGTGTCTTT-3´   (35 cycles)
iNOS 5´-TTTGGAGCAGAAGTGCAAAGTCTC-3´, 94 °C 45 s, 55 °C 45 s, 72 °C 90 s
  (947 bp) 5´-GATCAGGAGGGATTTCAAAGACCT-3´   (35 cycles)
TNF-α 5´-TCTCATCAGTTCTATGGCCC-3´, 94 °C 45 s, 55 °C 45 s, 72 °C 90 s
  (200 bp) 5´-GGGAGTAGACAAGGTACAAC-3´   (35 cycles)
IL-1β 5´-ATGGCAACTGTTCCTGAACTCAAC-3´, 94 °C 45 s, 60 °C 45 s, 72 °C 90 s
  (563 bp) 5´-CAGGACAGGTATAGATTCTTTCCTTT-3´   (35 cycles)
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Student’s t-test was used for the comparison.  Values of P
<0.05 were considered statistically significant.

Results
Toxicity of LPS+IFN-γγγγγ-stimulated macrophages toward

NSC34 cells and inhibitory effect of celecoxib on cytotoxi-
city  The supernatant of the macrophages stimulated with a
combination of LPS and IFN-γ significantly inhibited the vi-
ability of motor neuron NSC34 cells (Figure 1).  Adding
celecoxib enhanced the survival of these NSC34 cells
(Figure 1).  The neuroprotective effect of celecoxib was due
to an effect on macrophage neurotoxic secretions because
celecoxib showed no neuroprotective effect on NSC34 cells
if it was added to the supernatant of NSC34 cells directly
(data not shown).

Effect of celecoxib on the production of PGE2, NO,
ROS, TNF-ααααα and IL-1βββββ on LPS+IFN-γγγγγ-stimulated
macrophages  To confirm that the production of PGE2, NO,
ROS, TNF-α and IL-1β was increased in LPS+IFN-γ-stimu-
lated macrophages, their concentrations were measured in
the macrophage supernatants.  Compared with resting
macrophages, LPS+IFN-γ-stimulated macrophages signifi-
cantly increased the release of PGE2, NO, ROS, TNF-α, and
IL-1β (Figure 2A–2E).  To determine whether celecoxib regu-
lates PGE2, NO, ROS, TNF-α, and IL-1β release from acti-
vated macrophages, macrophages were preincubated with
celecoxib for 30 min prior to the addition of LPS+ IFN-γ.  Af-
ter the macrophages were stimulated for 12 h or 24 h, the
concentrations of PGE2, NO, ROS, TNF-α, and IL-1β in the
macrphage supernatants were measured.  The increased pro-
ductions of PGE2, NO, TNF-α, and IL-1β were attenuated by
preincubation with celecoxib (Figure 2A–2E).  However, pre-
treatment with celecoxib had no effect on the level of ROS in
macrophage supernatants (Figure 2C).

Effect of celecoxib on mRNA levels of COX-2, iNOS,
TNF-ααααα and IL-1βββββ in LPS+IFN-γγγγγ-stimulated macrophages  
To determine whether LPS stimulation increases the mRNA
levels of  COX-2, iNOS, TNF-α, and IL-1β in macrophages,
the mRNA levels of these genes were determined by real
time RT-PCR.  Stimulated macrophages strongly expressed
mRNA of COX-2, iNOS, TNF-α and IL-1β following treat-
ment with LPS+IFN-γ (Figure 3A–3D), whereas resting mac-
rophages expressed these mRNA very weakly.  Furthermore,

Figure 1.  Inhibitory effect of celecoxib on the cytotoxicity of
lipopolysaccharide (LPS)/interferon (IFN)-γ-stimulated macrophages
toward NSC34 cells (MTT assay). Data (mean±SD) from 3 indepen-
dent experiments (each done in 2 wells, n=6 ) are expressed as a
percentage of each control.  cP<0.01 vs control.   dP<0.05, eP<0.05,
fP<0.01 vs celecoxib 0 µmol/L.

Figure 2.  Effect of celecoxib on the release of prostaglandin E2

(PGE2), nitric oxide (NO), reactive oxygen species (ROS), tumor
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in lipopolysac-
charide (LPS)/interferon (IFN)-γ-stimulated macrophages. Data
(mean±SD) from 3 independent experiments (each done in 2 wells,
n=6) are expressed as a percentage of the values from the 12 h LPS/
IFN-γ treatment. aP>0.05, bP<0.05, cP<0.01 vs control. dP>0.05,
eP<0.05, fP <0.01 vs celecoxib 0 µmol/L.



956

 Acta Pharmacologica Sinica ISSN 1671-4083Huang Y et al

preincubation with celecoxib inhibited the increases of the
mRNA levels of iNOS,  TNF-α and IL-1β, which were in-
duced by LPS+IFN-γ  in macrophages and had no effect on
the mRNA level of COX-2 (Figure 3).

Discussion

In the present study, we demonstrated that the superna-
tant of macrophages stimulated with LPS  0.5 mg/L  plus
IFN-γ 1.5×105 IU/L caused a loss of NSC34 cells following
either a 24-h or 72-h exposure.  In consisten with the previ-
ous results[19,20,29], no neurotoxicity was observed when the
supernatant from unstimulated macrophages was transferred
to NSC34 cells, and LPS (0.0005−5.0 mg/L) increased the
neurotoxity of the supernatant of macrophages on NSC34
cells dose-dependently.  LPS did not show toxic effects on
NSC34 cells when it was added to the supernatant of NSC34
cells directly (data not shown).  These results indicate that
NSC34 cells injured by the supernatant of LPS-stimulated
macrophages can be used to develop an injured motor neu-
ronal model, whose neurotoxicity was due mainly to inflam-
matory secretions of macrophages.  In the present
invastigation, Celecoxib was used to verify the model be-
cause of its beneficial effects on ALS transgenic mice.  It was
shown that celecoxib significantly enhanced the survival of
NSC34 cells .  These results indicate that this model may
have valuable applications for drug screening and further
research the mechanisms involved.  No improvement in
NSC34 cell viability was observed when celecoxib was added

directly to NSC34 cells (data not shown).  This suggests that
the target cells of celecoxib are macrophages rather than
motor neurons and that the action of celecoxib on macroph-
ages is likely a reduction of neurotoxic macrophage
secretions.  Another COX-2 selective inhibitor, NS398, has
been reported to have neuroprotective effects on neuronal-
like SH-SY5Y cells by suppressing the toxic actions of hu-
man monocytic THP-1 cells[20,29].

PGE2 is an important mediator involved in a variety of
inflammatory processes and COX-2 has been shown to be
primarily responsible for the synthesis of PGE2.  COX-2 is
rapidly induced by various proinflammatory agents, includ-
ing LPS, cytokines and mitogens[30].  In the present study,
exposure of LPS to macrophages resulted in an increase in
the level of PGE2 released and an induction of COX-2 expres-
sion at the mRNA level (Figure 3).  Results from previous
studies have also shown that proinflammatory stimuli in-
duce PGE2 release and COX-2 expression[30].  Our results
showed that PGE2 release was inhibited by the addition of
celecoxib in LPS-stimulated macrophages (Figure 2), suggest-
ing that celecoxib exerts neuroprotective effects on motor
neuron NSC34 cells by inhibiting COX-2 activity and the
subsequent production of PGE2 in LPS-stimulated
macrophages.

The expression and activity of iNOS plays a pivotal role
in sustained and elevated NO release[31].  It has previously
been reported that microglial cells are the main source of
LPS-induced iNOS/NO both in neuron-glial culture and in
vivo[32].  In addition, there is “cross-talk” between iNOS/NO

Figure 3.  Effect of celecoxib on the mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis
factor-α (TNF-α) and interleukin-1β (IL-1β) in lipopolysaccharide (LPS)/interferon (IFN)-γ-stimulated macrophages. Data (mean±SD) are
from 3 independent experiments and are expressed as a percentage of the 6 h control.  cP<0.01 vs control . dP>0.05, eP<0.05, fP<0.01vs
celecoxib 0 µmol/L.
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and COX-2/PGE2
[33].  In the present study, we demonstrated

that celecoxib significantly inhibits LPS-stimulated iNOS ex-
pression and NO release in macrophages.  These results
suggest that downregulation of iNOS/NO by celecoxib might
be involved in the neuroprotective effect of celecoxib against
LPS-induced motor neuronal death[32].

Although one previous study found that LPS-induced
ROS was increased in neurons, not microglial cells, in neu-
ron-glial coculture[33], the most abundant source of oxygen
free radicals in the CNS is the respiratory burst system of
activated microglia[2].  A recent study reported that LPS treat-
ment increased intracellular ROS in rat microglia in a dose-
dependent manner and ROS played a regulatory role in the
expression of COX-2 and the subsequent production of PGE2

during the process of microglial activation[34].  On the other
hand, Gunasekar et al  reported that pretreatment with NS398
significantly decreased potassium cyanide (KCN)-induced
ROS generation in cerebellar granule cells.  The results indi-
cated the involvement of COX-2 in KCN-induced oxidant
generation[23], which further suggests a level of “cross-talk”
between ROS and COX-2 in activated microglia.  The present
studies showed that extracellular ROS levels from LPS-stimu-
lated macrophages were upregulated.  However, celecoxib
showed no effect on the extracellular ROS level in our study.
The results suggest that celecoxib exerts its neuroprotective
effect against the toxicity of LPS-stimulated macrophages
probably not by the regulation of extracellular ROS.

TNF-α is a potent proinflammatory cytokine that plays
an important role in immunity and inflammation.  The present
study showed that LPS-stimulation increases TNF-α secre-
tion from macrophages.  A previous study found that LPS-
stimulation increases TNF-α secretion in microgila such as
BV-2 cells[19].  We further demonstrated that celecoxib sig-
nificantly downregulates TNF-α mRNA level and TNF-α se-
cretion induced by LPS in macrophages.  The results sug-
gest that inhibition of TNF-α secretion from the LPS-acti-
vated macrophages probably participates in the neuroprotec-
tive effect of celecoxib on motor neurons.

Interleukin-1β is an important cytokine in the inflamma-
tion process, and microglia are an important source of IL-1 in
the human CNS[35].  The release of IL-1 plays a critical role in
the effect of microglial activation on motor neuron viability
and IL-1 is amongst a wide range of factors that upregulate
the expression of COX-2 and the subsequent production of
proinflammatory cytokines and PGE2

[9].  Previous studies
reported that LPS increases the secretions of IL-1β in mono-
cytic THP-1 cells[35].  In addition, another study indicated
that celecoxib decreases the secretion of IL-1β in rats[36].  The
data from the present study show that celecoxib inhibits the

level of IL-1β, which is increased in LPS-stimulated
macrophages.  Therefore, the inhibitory effect of celecoxib
on the level of IL-1β may be involved in the mechanism of its
neuroprotective effect.

In summary,  an injured motor neuronal model was
established.  The selective COX-2 inhibitor celecoxib showed
beneficial effects against motor neuronal death induced by
inflammatory reaction.  The neuroprotective effect  of
celecoxib might be associated with downregulation of the
levels of PGE2, NO, TNF-α and IL-1β as well as gene expres-
sion of iNOS, TNF-α and IL-1β.  Since PGE2

[12], NO[37–39] and
TNF-α[19,40] have been reported to be upregulated in ALS,
indicating COX-2 inhibitors would be promising candidates
for the treatment of ALS.
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