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Introduction
Cationic antimicrobial peptides play a crucial role in the

host defense against infections[1].   It has been shown that
the antimicrobial activity of human mononuclear leukocytes
originates from natural killer (NK) cells[2], T cells[3] and mono-
cytes[4].  Several antimicrobial peptides or proteins have been
described in NK and T cells.  Granulysin is a recently charac-
terized antimicrobial polypeptide from T and NK cells[5].  The
porcine counterpart of granulysin (NK-lysin) was character-
ized as an antimicrobial and cytotoxic polypeptide expressed

by NK and T cells[6].  The antimicrobial peptides LL-37 and
human neutrophil defensins (HNP1-HNP3) were found in the
supernatant of enriched T and NK cells[7].    We isolated and
characterized an antimicrobial polypeptide from human cir-
culatory mononuclear leukocytes.  Its N-terminal sequence
was identical to high mobility group nucleosomal binding
domain 2 (HMGN2)[8].  HMGN2 was identified as a non-his-
tone chromosomal protein in invertebrates and vertebrates
and may play a role in gene transcription and organogen-
esis[9–12].  However, the biological role of this protein has not
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been fully defined.  In this study, we prepared recombinant
holo-molecule, recombinant or synthetic helical domain, N-
terminal and C-terminal fragments to further determine the
antimicrobial spectrum and functional structure of HMGN2.

Materials and methods

Synthetic peptide  Synthetic N- and C-terminal fragments,
and the α-helical domain of HMGN2, were prepared by
Shanghai Genebase Gen-Tech (Shanghai, China).   Their amino
acid sequences are as follows:

Fragment 1:  MPKRKAEGDA KGDKAKV (position 1-17
of the HMG 2 amino acid sequence)

Fragment 2 :  KDEPQRRSAR LSAKPAPPKP EPKPKKAPAK
K (position 18–48 of the HMGN2 amino acid sequence)

Fragment3:GEKVPKGKKG KADAGKEGNN PAENGDA-
KTD QAQKAEGAGD AK (position 49–90 of the HMGN2
amino acid sequence)

High-performance liquid chromatography (HPLC) and
mass spectroscopy analysis of these peptides revealed a
purity of >95%.  The peptides were dissolved in 10 mmol/L
potassium phosphate buffer (PPB, pH 7.0) to a final concen-
tration of 10 g/L.

Antimicrobial activity assay  Rabbit neutrophil defensin
(NP-1) and HNP1–3 were used as the control antimicrobial
peptides, and were prepared as described elsewhere[13,14].

Evaluation of minimal effective concentration  The mini-
mal effective concentrations (MEC) were tested using a ra-
dial diffusion assay.  Briefly, soy broth (E coli ML-35p,
Pseudomonas aeruginosa ATCC 27853, Staphylococcus
aureus ATCC 25923) or sabouraud dextrose broth (Candida
albicans ATCC 10231) underlay gel mixture containing 1×106

colony-forming units (CFU)/mL of organisms was decanted
into a dish.    Sample wells of 3-mm diameter were punched
and 5 µL of serial dilutions of the peptides (200, 100, 50, 25,
12.5, 6.25, and 3.125 mg/L) were added to the wells.  After 3 h
of incubation, overlay soy broth (for growing E coli ML-35p,
P aeruginosa ATCC 27853, S aureus ATCC 25923) or
sabouraud dextrose broth (for growing C albicans ATCC
10231) gels were poured and incubated continuously at 37 °C
overnight, the resulting clear zones were measured and ex-
pressed in units (1 mm=10 U) after subtracting the well dia-
meter.    A linear regression analysis of peptide concentra-
tion (x-axis) against the zone diameter (y-axis) was carried pit
to determine the x-intercept, whose value represented the MEC.

Evaluation  of  minimal  inhibitory concentration and
minimal bactericidal concentration   The minimal inhibitory
concentration (MIC) and minimal bactericidal concentration

(MBC) of the peptides were examined using bacteria at
1×106 CFU/mL in the soy broth and serial dilutions of the
peptides (500, 250, 200, 150, 100, 50, 25, 12.5, and 6.25 mg/L).
Inhibition of growth was determined by measuring optical
density (OD) at 492 nm on a UV/VIS spectrometer after incu-
bation at 37 °C for 12–16 h.    Antimicrobial activity was ex-
pressed as the MIC, the concentration at which 100% inhibi-
tion of growth was observed, and the MBC, the concentra-
tion at which no CFU were observed after incubation for 12–
16 h on soy broth (for growing E coli ML-35p, P aeruginosa
ATCC 27853, and S aureus ATCC 25923) or sabouraud dex-
trose broth (for growing C albicans ATCC 10231) solid media.

E coli-based production of recombinant human holo-
HMGN2 and its ααααα-helical domain   Total RNA was isolated
with Trizol Reagent (Gibco BRL, Washington, USA) from
the stimulated mononuclear leukocytes.  The full-length
HMGN2 cDNA was amplified by reverse transcription–poly-
merase chain reaction (RT-PCR) and ligated to pMD-18T
vector (TakaRa,Tokyo, Japan) for DNA sequencing.  Gen-
eration of DNA of holo-HMGN2 and the HMGN2 α-helical
domain was carried out by PCR amplification.  Primers con-
taining BamH I and EcoR I restriction sites were designed as
follows: P1 (5'-ACGGATCCCCCAAGAGAAAGGCTG-3') and
P2 (5'-TAGAATTCCTTGGCATCCTCCAGCAC-3') for ampli-
fying holo-HMGN2 cDNA; P3 (5 ' -CAGGATCC
AAGGACGAACCACAG-3') and P4 (5'-GCGAATTC
CTTCTTTGCAGGGGCCT-3') for synthesizing DNA encod-
ing HMGN2 α-helical domain.    BamHI and EcoRI restriction
sites are underlined.  After digestion with BamHI and EcoRI,
the PCR products were inserted into the pGEX-1λT vector
(Amersham Biosciences, Uppsala, Sweden).    DNA sequenc-
ing of the recombinant prokaryotic expression vectors pGEX-
1λT-HMGN2 and pGEX-1λT-HMGN2α was carried out to con-
firm the insert sequences.

The transformed E coli JM109 carrying pGEX-1λT-
HMGN2 and pGEX-1λT-HMGN2α were cultured in Luria-
Bertani (LB) medium for 12 h in the presence of isopropylthio-
β-D-galactoside (IPTG) to induce protein expression.  The
induced cultures were washed with phosphate-buffered sa-
line and cell lysates were obtained by freezing/thawing in
the presence of lysozyme.  After centrifugation (10000 r/min,
4 ºC, 5 min), the fusion proteins were purified from the super-
natants using Bulk Glutathione Sepharose 4B columns
(Amersham Biosciences).    The purified fusion proteins were
cleaved by thrombin digestion.  Holo-HMGN2 and its
α-helical domain were obtained by acid-urea polyacrylamide
gel electrtophoresis (AU-PAGE) elution and HPLC purifica-
tion.



Http://www.chinaphar.com Feng Y  et al

1089

Results
Analysis of the HMGN2 two-dimensional struc-

ture   OMIGA protein structure software analysis revealed a
transmembrane α-helical structure, the putative antimicro-
bial domain, located from position 18 to 48 of the HMGN2
protein sequence (Figure 1).

Antimicrobial activity of the synthetic peptide frag-
ments   Sodium dodecyl sulphate-polyacrylamide gel elec-
trophoresis of the synthetic fragments of HMGN2 is shown
in Figure 2.  The agar radial diffusion assay indicated that
the α-helical domain of HMGN2 had strong antimicrobial
activity against an antibiotic-resistant strain of E coli.  In
contrast, no antimicrobial activity  was observed for its

N-terminal or C-terminal fragments using this assay system
(Figure 3).

Construction of holo-HMGN2 and HMGN2 ααααα-helical do-
main prokaryotic expression vectors   The cDNA encoding
mature holo-HMGN2 and its α-helical domain were obtained
by PCR (Figure 4), and their corresponding prokaryotic ex-
pression vectors were constructed.  Sequence analysis indi-
cated that the insert sequences and their orientation were
correct in the recombinant vectors.

E coli-based production of human holo-HMGN2 and its
ααααα-helical domain   pGEX-1λT-HMGN2 or pGEX-1λT-
HMGN2α-transformed E coli produced bulk amounts of the
HMGN2 and HMGN2α fusion proteins.  The fusion proteins

Figure 1.   OMIGA protein structure software analysis of high mo-
bility group nucleosomal binding domain 2 (HMGN2). (A) Hydro-
phobicity analysis using the Janin method. (B) Transmembrane heli-
ces analysis using the Argos Method.

Figure 2.   Tricine sodium dodecyl sulphate-polyacrylamide gel elec-
trophoresis of synthetic N-and C-terminal fragments and the α-
helical domain of high mobility group nucleosomal binding domain 2
(HMGN2). M, protein marker; 1, C-terminal fragment; 2, α-helical
domain; 3, N-terminal fragment.

Figure 4.   The cDNA fragments of high mobility group nucleoso-
mal binding domain 2 (HMGN2) and its α-helical domain. A, Full
length of HMGN2 cDNA; B, HMGN2 α-helical domain cDNA
fragment.

Figure 3.   Antimicrobial activity against E coli of the synthetic
peptide fragments of high mobility group nucleosomal binding do-
main 2 (HMGN2). A1, Lysozyme (10 g/L); A2, lysozyme (5 g/L); B1,
α-helical domain (1 g/L); B2, N-terminal fragment (1 g/L); B3,
C-terminal fragment (1 g/L).
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were purified by glutathione S-transferase (GST) affinity
chromatography.  The purified recombinant holo-HMGN2
and its α-helical domain were obtained using AU-PAGE elu-
tion from thrombin-digested fusion proteins and reverse-
phase HPLC (Figure 5).

Antimicrobial properties of human holo-HMGN2 and its
ααααα-helical domain   As shown in Table 1, the MIC, MEC,  and

MBC assays indicated that the recombinant human HMGN2
and its transmembrane α-helical domain (synthetic and
recombinant) had potent antimicrobial activity against E coli,
P aeruginosa and, to some extent, against C albicans.
However, human HMGN2 was inactive against S aureus in
this assay system (data not shown).    All experiments were
repeated 3 times.

Discussion
High mobility group (HMG) proteins have been described

as an abundant family of non-histone proteins in the cell
nucleus of vertebrate and invertebrate organisms[15].  In the
narrowest traditional sense, this HMG protein family con-
sists of 6 proteins and is subdivided into 3 subfamilies: the
HMG-box (HMGB) (formerly HMG-1/-2), the HMG AT-hook
(HMGA) (formerly HMG-I/Y/C), and the HMG nucleosomal
binding domain (HMGN) (formerly HMG-14/-17) subfamilies.
Each of these classes seems to have a distinct function in
the nucleus[16].  HMGN has a cell cycle-related cellular loca-
tion[17].  The functional gene is located on chromosome 1p36.1[9],
and it contains 6 exons, with an extremely high GC content
and a “HTF” island, indicative of a housekeeping gene that
could be crucial for regulating the function of cells[9].  How-
ever, up to now, the biological role of this protein has not
been clear.  A variety of experiments have shown that HMGN2
is preferentially associated with chromatin subunits contain-

Table 1.   Antimicrobial activities of several peptides.

                   Peptide                                    Assay                         Escherichia              Pseudomonas aeruginosa           Candida albicans
                                                                                                    coli Ml-35p                       ATCC27853                          ATCC10231

HMGN2 α-helical domain MIC 12.5 25 100
(synthetic) MBC 25 50 150
/mg·L-1 MEC N T N T  NT
HMGN2 α-helical domain MIC 12.5 25 100
(E coli-based prod uction) MBC 25 50 150
/mg·L-1 MEC                                6.25 N T  NT
HMGN2 MIC 12.5 25 100
(E coli-based production) MBC 25 50 150
/mg·L-1 MEC                                3.125 N T  NT
HNP1-3 MIC 12.5 N T  NT
/mg·L-1 MBC 25 N T  NT

MEC 6.25 N T  NT
NP-1 MIC 6.25 12.5   25
/mg·L-1 MBC 12.5 25   50

MEC 3.125 N T  NT

HMGN2, high mobility group nucleosomal binding domain 2; HNP-1, human neutrophil defensin 1; MBC, minimal bactericidal concentration;
MEC, minimal effective concentration; MIC, minimal inhibitory concentration; NP-1, rabbit neutrophil defensin 1; NT, not tested.

Figure 5.   Tricine sodium dodecyl sulphate–polyacrylamide gel elec-
trophoresis of recombinant high mobility group nucleosomal binding
domain 2 (HMGN2) and HMGN2 α-helical domain. 1, Total protein
of recombinant Escherichia coli (HMGN2); 2, GST–HMGN2 fusion
protein; 3, Purified HMGN2; 4, Total protein of recombinant E coli;
5, GST–HMGN2 α−helical domain fusion protein; 6, Purified HMGN2
α-helical domain; 7, Protein marker.
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ing transcribed genes and enhances the transcriptional po-
tential of corresponding genes[10,11].  Other experiments indi-
cate that HMGN2 maintains the timing of early embryonic
development in the mouse, and shows developmental regu-
lation during organogenesis[12].  Furthermore, abnormal gene
or protein expression of HMGN2 is related to some diseases
such as neoplasms and autoimmune diseases[18,19].  The sig-
nificance of HMGN2 in the host defense against infection is
unclear.  Frohm and colleagues attempted to identify antimi-
crobial polypeptides from human wound and blister fluid.
Several known antimicrobial peptides or proteins, eg
defensins HNP1–3, lysozyme, FALL-39 and histone H2B
fragments, were found.  Although HMGN2 was isolated, its
antimicrobial property was not determined[20].  More recently,
Fernandes et al have described a potent antimicrobial pep-
tide isolated from the skin mucus secretions of fish[21, that is
a member of the HMG protein family.    In our experiment we
observed the antimicrobial activity of the HMGN2 protein.

Many cationic antibiotic peptides are suggested to be
membrane-active, assembling to form channels[22].
Alternatively, certain peptides cluster at the membrane sur-
face cause a cooperative permeabilization by the carpet ef-
fect[23–25].  On the other hand, apidaecins function through a
receptor-activated non-pore-forming mechanism involving
stereospecificity[25].  PR-39 kills bacteria by interrupting both
DNA and protein synthesis and the DNA binding property
of tachyplesin I has also been implicated in antimicrobial
activity[26].  By protein structure analysis of HMGN2, a trans-
membrane α-helical structure located at residues 18–48 was
found, and this location is related to the DNA binding do-
main of this protein.  As such, we prepared a recombinant α-
helical domain and confirmed its antimicrobial activity.    Thus,
the transmembrane α-helical domain may be essential for the
antimicrobial activity of HMGN2.  The antimicrobial mecha-
nisms of HMGN2 should be further studied.
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