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Abstract
The pore-forming alpha subunits of voltage-gated calcium channels contain the
essential biophysical machinery that underlies calcium influx in response to cell
depolarization.  In combination with requisite auxiliary subunits, these pore sub-
units form calcium channel complexes that are pivotal to the physiology and
pharmacology of diverse cells ranging from sperm to neurons.  Not surprisingly,
mutations in the pore subunits generate diverse pathologies, termed
channelopathies, that range from failures in excitation-contraction coupling to
night blindness.  Over the last decade, major insights into the mechanisms of
pathogenesis have been derived from animals showing spontaneous or induced
mutations.  In parallel, there has been considerable growth in our understanding
of the workings of voltage-gated ion channels from a structure-function, regula-
tion and cell biology perspective.  Here we document our current understanding
of the mutations underlying channelopathies involving the voltage-gated calcium
channel alpha subunits in humans and other species.

Key words
calcium channels; channelopathies; mutation

1 Projec t su pported  by fu nds from the
Biotechnology and B iological Sciences
Research Council UK (No 34/C15752).

2 Correspondence to Dr Owen T JONES.
Ph n 44-0-161-275-5604.
Fax 44-0-161-275-5600.
E-mail owen.t.jones@manchester.ac.uk

Received 2006-05-19
Accepted 2006-05-30

doi: 10.1111/j.1745-7254.2006.00394.x

Introduction
Voltage-gated calcium channels (VGCCs) are critical de-

terminants of physiological function in both excitable and
non-excitable cells[1,2].  The ability of VGCCs to couple
changes in membrane potential to the influx of the pivotal
“second messenger” calcium (Ca2+) bestow VGCCs with a
unique and privileged position among ion channels in the
coupling of electrical signaling to intracellular biochemical
events.  In tissues such as muscle and heart, VGCCs are
used for specific functions such as neurotransmitter release
and excitation-contraction coupling, respectively.  More
generally, VGCCs orchestrate cell excitability[3], second mes-
senger signaling[4] and gene expression[5].

Owing to such diverse roles, it is perhaps not too sur-
prising that disruption in VGCC function has been impli-
cated and, in many cases, demonstrated to underlie diverse
inherited pathologies ranging from cardiac failure to epilepsy.
The goal of this article is to review disparate data on such
calcium “channelopathies” from a molecular perspective, fo-
cusing on the key pore-forming alpha subunits.

Structure and function of VGCCs
Although the existence of VGCCs had been known for

many decades, their emergence as functionally discrete sub-
types was not revealed until the pioneering electrophysi-
ological studies of Tsien[6], Lux[7] and many others during
the 1980s.  Originally, VGCCs were classified into two groups,
according to their functional and pharmacological characteri-
stics: T VGCCs [low voltage-activated (LVA) subtype]; and
N, L, P/Q, and R VGCCs [high voltage-activated (HVA)
subtypes][8] (Table 1).  However, molecular cloning, expres-
sion and biochemical studies revealed inadequacies in the
above classification notation and a more rigorous structure-
based nomenclature (Table 1) was subsequently introduced[9].

All VGCCs are large (>400 kDa) heteromers comprised
minimally of 3 core subunits α1, α2/δ, and β found in a 1:1:1
stoichiometry[8].  Expression studies in Xenopus oocytes[10,11]

and transfected mammalian cells[12–14] have revealed that the
α1 subunits contain the gating, channel pore and inactiva-
tion machinery required for function.  However, interactions
between α1 and the auxiliary α2/δ and β subunits are required
for optimal cell surface expression and channel kinetics.
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Additional protein interactions have been identified that
appear necessary for trafficking and regulation (Table 2).

A cardinal feature of VGCCs is their extraordinary pro-
pensity for diversity.  In mammals, 10 α1, 3 α2/δ and 4 β sub-
unit genes have been identified.  Moreover, most of the RNA
transcripts have been shown to undergo alternative splicing,
and the number of reported variants is growing rapidly[8].
The precise nature of the α1, α2/δ and β gene products in the
VGCC complexes define their biophysical characteristics,
therefore such diversity has significant functional implica-
tions[8].  However, the contribution of any ion channels to
integrative physiology also depends on their distribution.
Thus, it is notable that specific VGCCs have unique, but
often overlapping, patterns of expression in discrete regions
of brain and other tissues.  Even the distribution over the
cell surface can differ[15–22], suggesting that diversity is used
to hone voltage-dependent Ca2+ influx to the demands of
discrete functional compartments[23].

An emerging paradox concerns a subunit, termed γ, first
identified as a constituent of the skeletal muscle VGCC but
now known to have relatives in heart and brain[24].  Precisely
what function these γ subunits serve is unresolved.  Expres-
sion studies suggest an ability to normalize calcium currents
to those resembling endogenous VGCCs[25].  However, not
all γ subunits show this effect and one subunit, γ2, has been
shown to interact with the AMPA-subtype of glutamate re-
ceptors[26].

Ca2+ channelopathies

Inherited defects in VGCCs give rise to some of the most
interesting and widely studied channelopathies[27].  Here we

summarize, specifically, current information on those defects
arising from mutations in the pore-forming alpha subunits in
human and other model systems (Table 1).

CaV1.1 (α1S)  The pore-forming subunit of CaV1.1, en-
coded in humans by the CACNA1S (formerly CACNL1A3)
gene on chromosome 1q 31–32[28], is expressed mainly in
skeletal muscle traverse tubules where it mediates excita-
tion-contraction coupling and calcium homeostatsis[29,30].

Muscular dysgenesis in mice is a lethal mutation derived
from a frameshift at nucleotide 4010.  The resulting deletion
of the C-terminus leads to a loss in muscle contraction and
was the first mutation reported to affect calcium currents in
vivo[31,32].  Missense mutations in CACNA1S have been iden-
tified in human cases of hypokalemic periodic paralysis
(hypoPP) and malignant hyperthermia susceptibility
(MHS)[33–38].  The Arg-His or glycine substitutions found in
hypoPP (Table 1) are located in the voltage-sensing seg-
ments (S4) of domains II and IV, leading to a loss of myotube
function[33,39,40].  Arg-His mutations have also been found in
patients suffering from MHS.  However, although both allelic,
MHS and hypoPP appear to be distinct non-overlapping dis-
eases[41].  Genetic studies of MHS have mainly linked associ-
ated mutations to the ryanodine receptor (RyR).  However,
as the RyR comes under the control of CaV1.1 and the R1086H
mutation is located in the cytoplasmic loop between trans-
membrane spanning segments 3 and 4, such mutations might
disrupt the functional link between the CaV1.1 and RyR[36].

CaV1.2 (α1C)  CaV1.2 is primarily localized to cardiac or
smooth muscle but is also found in endocrine cells and
neurones.  Functionally, CaV1.2 mediates excitation-contrac-
tion coupling in smooth and cardiac muscle, hormone secre-
tion and action potential propagation in sino-atrial and atrio-

Table 1. Classification and nomenclature of VGCCs. Each channel type is defined by a specific core α1 protein subunit and current yielded,
either high voltage-activated (HVA) or low voltage-activated (LVA).  Adapted from Catterall et al[8] and Ertel EA et al[9].

         Name                         Class            Current type    Alpha subunit Protein size (kDa)          Ligands

CaV1.1 L HVA α1S 212 Dihydropyridines
CaV1.2 L HVA α1C 240 Dihydropyridines
CaV1.3 L HVA α1D 187 Dihydropyridines
CaV1.4 L HVA α1F 222 Dihydropyridines
CaV2.1 P/Q HVA α1A 257 ω-Agatoxin IVA
CaV2.2 N HVA α1B 262 ω-Conotoxin-GVIA
CaV2.3 R HVA α1E 252 SNX-482
CaV3.1 T LVA α1G 250 Kurtoxina

CaV3.2 T LVA α1H 261 Kurtoxina

CaV3.3 T LVA α1I 224 None

a Ligand is low affinity and most probably unreliable.
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ventricular nodes[42].
The CaV1.2 subunit is encoded by the CACNA1C

(formerly CACNL1A1) gene on chromosome 12p13.3[43].  In
mice, knockout of the CaV1.2 gene is lethal due to cardiac
dysfunction (Seisenberger et al 2000).  However, two de novo
missense mutations in CaV1.2 in humans result in Timothy
syndrome, a multi-system disorder including syndactyly, im-
mune deficiency, long QT syndrome and ventricular
arrhythmias during infancy[44].  These gain of function phe-
notypes arise from highly conserved glycine substitutions
for either Arg at 406 or Ser at 402[44].  Mutation G406 is lo-
cated in alternatively spliced exon 8A, at the cytoplasmic
face of the transmembrane segment S6 of domain I, whereas
mutation G402 is located within the transmembrane region.
As glycine can act as a hinge-point in α helices, such muta-
tions have been suggested to disrupt the activation gate[44].
Further support for the role of CaV1.2 in cardiac develop-
ment and dysfunction comes from studies on zebrafish whose
embryos can survive without blood flow for several days.  In
their study, Rottbauer et al[45] mapped the genetic mutations
responsible for the zebrafish isl lethal mutant.  Mutants ex-
pressing two isl nonsense mutations at M379 or M458 (which
both caused premature truncation of CaV1.2) present with
abnormal heart growth during development.

 CaV1.3 (α1D)  The pore-forming subunit of the CaV1.1
channel is mainly expressed in endocrine cells of the pitu-
itary and adrenal chromaffin cells, but is also found in sen-
sory cells and in low densities in atrial muscle, heart and
neurons.  Originally classed as the neuroendocrine L-type
channel, CaV1.3 plays a role in hormone secretion, mood

behaviour, and control of cardiac rhythm at rest[46].
The CaV1.3 subunit is encoded by the CACNA1D

(formerly CACNL1A2) gene on chromosome 3p14.3[47].  In-
sights into the role of Cav1.3 in cardiac tissue have largely
evolved due to electrophysiology studies on cells from
knockout mice[48] and cardiac cells from human patients[49].
Although no human gene defect has been reported, animal
models have provided useful insights into potential deficits.
In one study, Wappl et al created a mouse model in which
the high dihydropyridine sensitivity of CaV1.2 subunits was
eliminated by replacement of Thr1066 in helix IIIS5 with a
tyrosine residue[50].  As the distribution of CaV1.2 and 1.3
often overlap, and they both mediate L-type currents, the
creation of this mouse model allowed Sinnegger-Brauns et
al, to isolate the function of CaV1.3 in brain, pancreatic beta
cells and the cardiovascular system[51].  These studies ruled
out a direct role for CaV1.3 in insulin secretion, cardiac
inotropy, and arterial smooth muscle contractility but sug-
gested it might play a role in depression.  Although no link-
age of CaV1.3 channel mutations has been reported for hu-
man inherited diseases, mice carrying a targeted null allele
display profound congenital deafness, thus providing in-
sight into the molecular basis of CaV1.3 function in auditory
processing[52,53].  Interestingly, the ise, mutant form of zebra-
fish larvae displays a deafness-imbalance phenotype, aris-
ing through two mutations (R1250X and R284C) in a gene
encoding for the CaV1.3 channel[54].  The first mutation in-
volves exchange of an Arg codon for a stop codon at posi-
tion 1250 and results in a nonsense mutation in domain IVS4
that disrupts the transmembrane region and removes the

Table 2. Summary of major cytoplasmic proteins interacting with VGCC α1 subunits, their binding sites and roles.

      Protein        VGCC  1 binding site                      Role/effect     Reference

Syntaxin 1 Synprint motif (II–III linker) SNARE member, vesicle exocytosis 149
SNAP-25 Synprint motif (II–III linker) SNARE member, vesicle exocytosis 150
Cysteine string protein Synprint motif (II–III linker) Vesicle exocytosis 151
Synaptotagmin Synprint motif (II–III linker) Vesicle exocytosis 152
CASK C-terminus VGCC–vesicle coupling 153
MIN T-1 C-terminus VGCC–vesicle coupling 153
Calmodulin C-terminus (IQ domain) Post Ca2+-influx inactivation 154
G-protein βγ subunit Domain I–II linker, C-terminus GPCR-coupled inactivation 155
Protein kinase C, Domain I–II linker, Synprint motif, Dependent on channel type and binding site 1
    protein kinase A     C- and N-termini
AKAP-79 Domain II–III linker Postsynaptic L-type channel trafficking 156
Calbindin C-terminus Decrease L-type channel activity in pancreatic

    beta cells 157
CaMKII (Ca2+/calmodulin- C-terminus Facilitation of Ca2+ current 158
    dependent kinase II)
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Table 3. The position of inherited and de novo  mutations in α1 genes and their resulting phenotypes.  Mutation refers to amino acid unless
followed by (n) for nucleotide.  Ic, intracellular loops; Ec, extracellular loops.

Channel     Gene Mutation     Type    Location       Inherited disease Reference

CaV1.1 CACNA1S R528H Missense IIS4 H ypoPP 33–35
R528G Missense IIS4 H ypoPP 3 8
R1239G Missense IVS4 H ypoPP 4 2
R1239H Missense IVS4 H ypoPP 133
R1086H Missense Linker III–IV MHS 36,37

 
CaV1.2 CACNA1C G406R Missense IS6 Timothy syndrome 44,50

G402S Missense Timothy syndrome 44,50
 

CaV1.4 CACNA1D S229P Missense Ic loop IS4–S5 XLCSNB 133
341delC Frameshift Linker I II XLCSNB 5 5
G369D Missense IS6 XLCSNB 56,133
R508Q Missense Linker I II XLCSNB 56,134
I745T Missense IIS6 XLCSNB 136
R680X Nonsense Pore IIS5–S6 XLCSNB 5 7
R830X Nonsense Ec loop IIIS1–S2 XLCSNB 5 5
R958X Nonsense IIIS4 XLCSNB 5 6
991insC Frameshift Pore IIIS5–S6 XLCSNB 5 5
R1049W Missense Pore IIIS5–S6 XLCSNB 5 6
L10 68P Missense Pore IIIS5–S6 XLCSNB 133
1159delC Frameshift Ec loop IVS1–S2 XLCSNB 5 5
R1234X Nonsense IVS4 XLCSNB 5 5
S1254I Missense IVS4 XLCSNB 5 7
R1285S Missense IVS4 XLCSNB 5 7
Q1348X Nonsense Pore IVS5–S6 XLCSNB 5 6
L1364H Missense Pore IVS5–S6 XLCSNB 56,134
W13 86X Nonsense C terminal XLCSNB 5 5
W14 40X Nonsense C terminal XLCSNB 133
1516delC Frameshift C-terminal XLCSNB 135
K1591X Nonsense C-terminal XLCSNB 5 6
R1919H Missense C-terminal XLCSNB 5 7
3133insC (n) Frameshift Pore IIIS5–S6 XLCSNB 5 6
3658–3669(n) Deletion IVS2 XLCSNB 5 6

 
CaV2.1 CACNA1A R192Q Missense IS4 FHM 8 5

R195K Missense IS4 FHM 9 5
S218L Missense Ic loop IS4–S5 FHM 137
R583Q Missense IIS4 FHM 138
T666M Missense Pore IIS5–S6 FHM 8 5
V714A Missense IIS6 FHM 8 5
D715E Missense IIS6 FHM 9 4
K1336E Missense Ec loop III S3–S4 FHM 9 4
Y1385C Missense IIIS5 FHM 139
V1457L Missense Pore IIIS5–S6 FHM 140
R1668W Missense IVS4 FHM 9 5
L16 82P Missense IVS4 FHM 141
W1684R Missense IVS4 FHM 9 5
V1696I Missense IVS5 FHM 9 5

 
H253Y Missense Pore IS5–S6 EA-2 9 2

(continue)
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carboxy-terminal tail.  The second mutation substitutes a
highly conserved Arg for a Cys residue at position 284 within
the extracellular region of the pore loop between S5 and S6
of domain I.

CaV1.4 (α1F)  The CaV1.4 subunit, encoded in humans
by the gene CACNA1F, maps to chromosome Xp11.4[55] and
is mainly expressed in retinal rods and bipolar cells, spinal
cord, adrenal gland and mast cells.  As its main cellular func-
tion is thought to be neurotransmitter release from photo-
receptors, it is no surprize that mutations in this channel are
involved with inherited diseases of the eye.

The locus for X-linked congenital stationary night blind-
ness type 2 (XLCSNB-2) was mapped to the CACNA1F
gene[55,56] and several mutations have since been identified.

In case studies of patients with XLCSNB, over 73 CACNA1F
mutations have been detected, of which 51% are nonsense
mutations, 32% missense mutations and 8% frameshifts[57].
A list of several of the mutations identified and their posi-
tions within the channel is given in Table 2.  Very recently,
Wei and Hemmings detected a genetic association between
schizophrenic patients and the CACNA1F locus, although
the exact mutations are unknown[58].  The prevalence of vi-
sual abnormalities in schizophrenia makes an association with
CACNA1F especially interesting.

CaV2.1 (α1A)  The P/Q-type calcium channel CaV2.1
(alpha1A) represents one of the most important channels
both from a physiological perspective and its role in
channelopathy.  Found throughout the nervous system,

Channel     Gene                  Mutation    Type  Location                            Inherited disease  Reference

SS Missplice IIS2 EA-2 142
2145del 8(n) Frameshift IIS5 EA-2 9 2
2317del8(n) Frameshift Pore IIS5–S6 EA-2 142,92
FS1067X Frameshift Linker II–III EA-2 143
FS1144X Frameshift Linker II–III EA-2 144
FS1294X Frameshift IIIS1 EA-2 85,142
R1279X Nonsense IIIS2 EA-2 145
SS Missplice IIIS3 EA-2 8 5
4451delC(n) Frameshift IIIS5 EA-2 9 2
SS Missplice Pore IIIS5–S6 EA-2 142
Y1444X Nonsense Pore IIIS5–S6 EA-2 142
R1547X Nonsense Linker III–IV EA-2 142
5056del8 (n) Frameshift IVS1–S2 EA-2 142
5123del Frameshift IVS2 EA-2 143
R1662H Missense IVS4 EA-2 146
H1736L Missense IVS5–S6 EA-2 147
E1757K Missense Pore IVS5–S6 EA-2 148
SS Missplice IVS3 EA-2 8 7
7213 GAG (n) Expansion C-terminal Spinocerebellar ataxia type 6 9 6
R1664Q Missense IVS4 149

CaV3.2 CACNA1B F161L Missense IS2–IS3 Childhood absence epilepsy 126
E282K Missense Pore IS5–S6 Childhood absence epilepsy 126
C456S Missense Linker I–II Childhood absence epilepsy 126
G499S Missense Linker I–II Childhood absence epilepsy 126
P648L Missense Linker I–II Childhood absence epilepsy 126
R744Q Missense Linker I–II Childhood absence epilepsy 126
A748V Missense Linker I–II Childhood absence epilepsy 126
G773D Missense Linker I–II Childhood absence epilepsy 126
G784S Missense Linker I–II Childhood absence epilepsy 126
V831M Missense IIS2 Childhood absence epilepsy 126
G848S Missense IIS3 Childhood absence epilepsy 126
D1463N Missense Pore IIIS5–S6 Childhood absence epilepsy 126
A480T Missense Linker I–II IGE 128
P618L Missense Linker I–II IGE 128
G775D Missense Linker I–II IGE 128



804

 Acta Pharmacologica Sinica ISSN 1671-4083Mckeown L et al

CaV2.1 is considered to be the primary VGCC controlling
fast neurotransmitter release, especially at excitatory
synapses.  Not surprisingly, CaV2.1 is found in high concen-
trations in the presynaptic nerve terminus, where it exists in
discrete release sites that are more efficiently coupled to the
vesicle release machinery than other VGCCs[59–62].  However,
CaV2.1 is also found throughout the dendritic arbour, espe-
cially in cerebellar Purkinje cells, where it contributes to inte-
grative dendritic physiology[63].

Historically, one of the first lines of evidence linking CaV2.1
to neurological disorders came from studies of the tottering
(tg) mouse[64].  The tg mouse is a neurological mutant dis-
playing ataxia, and involuntary spasms indicative of tonic-
clonic seizures as well as neurophysiological signs of ab-
sence epilepsy[65].  The underlying defect in tg mice has
been identified, through positional cloning, as a point muta-
tion (P601L) in cacna1a, the mouse CaV2.1 gene[64].  Using
whole cell patch clamp methods, Wakamori et al found sig-
nificant (40%) decreases in P-type (Ba2+) currents in dissoci-
ated Purkinje cells obtained from tg/tg versus wild-type (wt)
mice that could be replicated in a simple heterologous ex-
pression system[66].  Surprisingly, they found no change in
the voltage-dependence of activation or inactivation, single
channel conductance or reversal potential, suggesting that
the decreased current density is not due to impaired ion
conductance or activation/inactivation mechanisms.

Three other mouse mutations showing varying degrees
of seizure activity have been identified that map to the
cacna1a locus rocker (rkr), tottering leaner (tgla) and rolling
Nagoya (tgrol) [64,67,68].  Remarkably, each mutant mouse shows
considerable differences in the extent and times of onset of
seizure, cerebellar atrophy and ataxia.  Thus tg, tgla and rkr
but not tgrol mice show seizure activity, whereas tgla, rkr and
tgrol but not tg mice show marked ataxia[65,67-69].

Rocker arises through a point mutation within the extra-
cellular S5–S6 region (T1310K) of domain III[67].  Surprisingly,
the precise effect of the rkr mutation on P/Q currents has
not been forthcoming, but is likely to resemble those in tg
mice.  A distinct mutation in domain III, (R1262G), within the
S4 voltage sensor, occurs in tgrol mice[68].  This mutation dis-
plays a marked reduction in the voltage sensitivity of chan-
nel activation.  The tgla mutant has absence seizures, severe
ataxia and cerebellar damage[70].  In tgla, a point mutation at a
splice/donor consensus sequence leads to aberrant RNA
splicing in the region encoding the carboxy terminus of the
α1A subunit.  As a result, translation yields two primary pro-
tein products corresponding to truncated CaV2.1 subunits
bearing a novel and distinct C-termini.  Electrophysiological
studies on Purkinje cells show that the major deficit caused

by the tgla mutation is a 60% reduction in P/Q-type currents
or current densities compared to the wild-type mouse[66,71,72].
Single channel recordings suggest the decrease in current
densities is not due to effects on either the channel conduc-
tance or lifetimes[72], but due to effects on channel opening
probability (Po) or, more likely, a decrease in channel densi-
ties at the cell surface, perhaps due to a trafficking defect.
Interestingly, in transfected cells, only the tgla

short form shows
a significant reduction in current density[66].

Just how the phenotypes of these spontaneous mouse
mutants arise is unclear but might give insight into the analo-
gous human conditions[73].  In general, aberrant activity of
CaV2.1 channels cannot be functionally compensated for at
many central synapses.  Apart from the ‘gain of function’
FHM mutations (below), impairment of neurotransmission
appears to be the rule for CaV2.1 knockout[74–76], tg/tg(77) and
tg/tgrol[78,79].  However, at the climbing fiber-Purkinje cell
synapse, evoked glutamate release is similar between wild-
type and CaV2.1-/-, tgrol/tgrol or tg/tg mice[76,78].  Inhibitory
transmission does not appear to be affected[80].  An obvious
complication is the degree to which alternate VGCCs can
stand in for the aberrant CaV2.1 channels and to what extent
this might contribute to the neurological phenotype.  Based
on their similar trafficking and biophysical properties, the
most likely replacements are expected to be the CaV2.2 VGCCs.
Indeed, compensation by CaV2.2 has been documented at
the calyx of Held synapse in CaV, CaV2.1-/- knockout mice
and other mutants[74,77,78,81].  However, there is also evidence
for upregulation of both CaV2.2 and CaV2.3 at the neuro-
muscular junction of CaV2.1-/- mice[82].

In humans, the gene encoding CaV2.1 is designated as
CACNA1A (formerly known as CACNLA4) and is localized
to a large 300 kb region containing 47 exons at chromosome
position 19p13[83].  Whereas gene expression yields a pri-
mary transcript of 9.8 kb, several splice variants have been
identified[84], most notably an isoform that differs in exon 37
by 97 nucleotides.

In humans, the cardinal mutation associated with CaV2.1
is a rare disorder termed episodic ataxia type 2 (EA-2) that
causes paroxysmal attacks of cerebellar ataxia that can last
for several days.  In 1996, Ophoff et al identified 2 mutations
in unrelated patients displaying EA-2 that mapped to the
CACNA1A gene[85].  One mutation involves a base deletion
and the other occurs at a splice junction site, but both are
predicted to lead to a frameshift such that the CaV2.1 protein
is truncated prematurely after the S1 region of domain III
(Figure 1).  The partially complete channel is, thus, predicted
to be non-functional or to be incorrectly folded and trafficked.
More recently, additional familial EA-2 mutations have been
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identified that induce mis-splicing either through a G-A sub-
stitution at an intron-exon boundary or, especially
interesting, through a 4 bp ACGT deletion within an intron
(the first described for CACNA1A), which might unmask a
cryptic splice downstream[86].  Typically, clinical signs of
EA-2 are evident prior to adulthood.  However, just recently,
a case of late-onset (aged 61 years) EA-2 has been identified
involving a 9 bp insertion in the cytoplasmic domain II–III
linker.  To date this is the largest insertion reported for the
human gene[87].  Quite what the mutation does is unclear.
Although it lies within the II–III linker, it is just downstream
of the synprint region for SNAP-25/syntaxin binding.  Ex-
pression studies indicate a significant (approximately 82%)
reduction in current and a 20 mV depolarization shift in acti-
vation threshold with some change in activation and inacti-
vation kinetics.  Together, these data might be indicative of
an effect on gating.  Why the clinical symptoms appeared so
late in this patient is unclear.  An examination of compensa-
tory expression of other VGCCs in this patient would cer-
tainly be interesting.  A novel CACNA1A mutation, IVS36-
2A>G, at the 3' acceptor splice site of intron 36 was identified
by sequencing[88].  It is the first described CACNA1A accep-
tor splice site mutation and the most C-terminal EA-2-caus-
ing mutation reported to date.

Another highly debilitating CACNA1A channelopathy
is the rare autosomal dominant disorder familial hemiplegic
migraine (FHM).  Characterized by intense attacks of mi-
graine with aura, often lasting for several days, FHM has
often been misdiagnosed as epilepsy or stroke[89].  Cerebel-
lar dysfunction has also been noted in some families.  Fol-
lowing the initial work by Ophoff et al[85], several missense
mutations have been found within CACNA1A that lead to
increased calcium influx through the expressed channels[90].

However, the precise biophysical characteristics conferred
by the mutations on the CaV2.1 channel are not identical.
Thus, single channel recordings on expressed channels show
changes in gating with mutants T666M, V714A, and I1819L,
but not R192Q.  Recovery from inactivation can be slower
(T666M) or faster (V714A and I1819L) compared to wild-type
CaV2.1[91].  Subsequent studies have found an increased pro-
pensity for activation at weakly depolarizing potentials for
three additional FHM-associated mutants[92].  Powerful in-
sights into the neuropathology of FHM have come from a
recent study by Van den Maagdenberg et al[93] who gener-
ated a transgenic mouse model bearing the human CACNA1A
mutation R192Q.  Recordings from cerebellar granule cells
showed increased CaV2.1 channel current densities, which
activated at more negative voltages in R192Q mice than wild-
type channels.  Significantly, the R192Q mice showed en-
hanced neurotransmission and susceptibility to cortical
spreading depression.  Taken together the above suggests
that FHM is a CACNA1A channelopathy that arises through
a gain of function that enhances neurotransmitter release.

As FHM and EA-2 both involve CACNA1A, an interest-
ing question concerns the extent to which they overlap.  In
this respect it is notable that approximately 20% of FHM
cases show signs of mild cerebellar ataxia[94].  Although cross-
correlational prediction is not straightforward, 83% of pa-
tients with six missense mutations associated with migraine
also showed ataxia and or nystagmus[95].

A third clinical disorder associated with mutations in
CaV2.1 has been identified.  Termed Spinocerebellar ataxia
type 6 (SCA6), this disorder appears in early middle age (30−
40 years) and is characterized by a mild progressive (over a
subsequent 25 years) cerebellar atrophy causing dysarthria,
nystagmus, ataxia, loss of gait and sometimes death[96].  Un-
like EA-2 and FHM, SCA6 appears to arise through a shift in
the reading frame and triplet (CAG) repeat expansion at the
distal carboxy terminus[97].  Based on a study by Ishikawa et
al[98] the critical size of the CAG encoded polyglutamine
stretch appears to be 19 repeats, with cases showing longer
stretches having poorer neurological outcomes and earlier
disease onset.  Precisely what functional effects the SCA6
remains unclear.  In a model of SCA6, elongation of the poly-
glutamine tract in SCA6 CaV2.1 caused a concomitant hy-
perpolarizing shift of voltage-dependent inactivation to more
negative potentials, suggesting an overall reduction of cal-
cium influx might contribute to SCA6 symptomology.
However, just recently, compelling evidence has been pre-
sented that a portion of the CaV2.1 carboxy-terminus is
cleaved in vivo and can enter the nucleus by virtue of nuclear
localization signals[99].  Although the wild-type carboxy ter-

Figure 1.  The predicted structure of a prototypical VGCC consists
of an α1 pore-forming subunit and at least two auxiliary/regulatory
subunits, β and α2d.  The α1 subunit is a transmembrane protein
organized into 4 repeating domains (I–IV), each containing 6 hydro-
phobic transmembrane regions (S1–S6).  Segments S5 and S6 of each
domain line the channel pore (P loop) and S4 is designated as the
voltage sensor.
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minal fragment is weakly toxic, a fragment containing an ex-
panded polyglutamine tract (Q33) corresponding to SCA6 is
highly toxic to Purkinje neurons and other cells.  Thus, SCA6
might share a similar mechanism of action with some other
expansion disorders where pathogenesis requires entry of a
polyglutamine-containing fragment into the nucleus.

Given the above, one would anticipate that mutations in
the human CaV2.1 gene are associated with epilepsy[100].
Nevertheless, the evidence has been slow to emerge.  One
early study found no statistically significant evidence that
genetic variants of the CACNA1A gene might play a caus-
ative role in common forms of idiopathic generalized epi-
lepsy (IGE)[101].  Moreover, reports of an allelic association
of a silent single nucleotide polymorphism (SNP8) with
IGE[102,103] have been refuted[104].  Nevertheless, there is grow-
ing recognition that in some cases patients with EA-2 also
show an epilepsy phenotype most usually of a primary gen-
eralized nature[105,106].

The first human EA-2-epilepsy case was described in 2001
by Jouvenceau et al in an 11-year-old who showed frequent
episodes of ataxia and poorly controlled absence seizures,
and generalized tonic–clonic seizures[105].  The underlying
mutation was found to lie in exon 36 (C5733T) giving rise to
a premature truncation behind the domain IV S6, and, thus,
complete loss of the C-terminus.  In an expression system,
the primary effect of this mutation is a massive loss of func-
tional channels at the cell surface.  However, it is interesting
to note that the mutation appears to have a dominant-nega-
tive effect when co-expressed with wild-type CaV2.1 (as an-
ticipated for the heterozygous state).  It is our contention
that it is only a matter of time before further epilepsy-associ-
ated CANA1A mutations are documented.

CaV2.2 (α1B)  Given its established role alongside CaV2.
1 in neurotransmitter release, it is remarkable that mutations
in the CACNA1B gene (locus 9q34) have not been identified
in the human population.  Based on studies in CaV2.2–/– knock-
out mice one would anticipate problems in nociception[107],
decreases in sympathetic nervous system function[108] and
alterations in response to ethanol[109] and anaesthetics[110].

CaV2.3 (α1E)  The CaV2.3 channel (CACNA1E) (locus
1q25–q31)[83] is primarily localized to the somata and den-
drites of central neurones.  However, such channels are also
found in the nerve terminals of central synapses[111,112] where
they might participate in transmitter release[113].  Although
no human mutations have been identified in CaV2.3, obser-
vations in knockout mice by Jing et al predict that mutations
impairing this VGCC are likely to affect glucose-stimulated
insulin release from pancreatic beta cells by facilitating the
global entry of calcium needed for granule replenishment[114].

CaV3.1 (α1G)  The CaV3.1 subunit gene CACNA1G, lo-
cated on chromosome 17q22[115] is thought to encode a T-
type (ie low threshold) VGCC.  This channel is highly ex-
pressed in brain, especially on dendrites, and it is consid-
ered to be the primary T-channel in the thalamus[116].  However,
CaV3.1 is also found in the ovary, placenta and heart[117] To
date no mutations have been identified in inherited human
diseases.  However, studies on knockout mice indicate re-
duced sleep patterns[118,119], bradycardia and delayed
atriventricular conduction[5,120].

CaV3.2 (α1H)  In humans, the CaV3.2 gene (CACNA1H)
has been mapped to chromosomal locus 16p13.3[6,121].  This
subunit appears to be widely expressed in brain (especially
the neocortex), kidney, smooth muscle, liver and heart.  Tar-
geted knockout studies in the rat nociceptive root ganglion
suggest CaV3.2 plays a role in nociception[7,122].  Knockout
mice show constitutively constricted coronary arterioles and
focal myocardial fibrosis[123], and CaV3.1 knockouts in hu-
man spermatazoa demonstrate that CaV3.2 is a key player in
the T-type current accompanying the acrosome reaction[124].
Mutations in CACNA1H are now thought to underlie di-
verse epilepsies.  Thus, in 2003, Chen et al found 12 mis-
sense mutations in 14 patients with childhood absence epi-
lepsy[125], and several of the 12 appeared to promote calcium
influx during activation[126].  Even more recently, a study by
Heron et al[127] identified 3 missense mutations and a single
nonsense mutation in CACNA1H in a subset of patients with
IGE.  On expression, these latter mutations yield statistically
significant changes in the kinetics of activation and inacti-
vation of the CaV3.2 channel.  Interestingly, many of these
mutations lie in the same domain I–II linker region.  Even
more significant is the possibility that mutations in this re-
gion might block the selective inhibition of this VGCC by G-
protein β2α2 subunits[128].  Changes in T-type channels have
long been implicated in epilepsy[100].

CaV3.3 (α1I)  In humans, the CACNA1I gene maps to
chromosome position 22q12.3 [129].  In common with the other
T-type VGCCs it is expressed highly in brain[130] where it is
thought to play a role in thalamic oscillation[131].  Little is
known about possible CaV3.3 gene defects, either in the
human population or inferred from knockout animals.

Summary

With just a few exceptions, pathological mutations have
now been identified in every VGCC pore-forming alpha sub-
unit in humans.  In many cases the pathology can be pre-
dicted on the basis of the tissue patterns of gene expression.
Studies on spontaneous mouse mutants provide important
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clues to the human condition and, in the case of knockout or
knockin mutants, might predict disease phenotype and
outcome.  What is especially striking is the extent to which
small differences in function can have major and very dis-
tinct effects on behavior.  Such phenotypic pleiotropy does
not simply reflect gain or loss of VGCC function, but more
subtle effects on biophysical parameters such as pore
conduction, gating and inactivation kinetics.  In some cases,
effects could be attributed to sites of interaction with pro-
teins involved in channel regulation.  However, a largely
unexplored area is the extent to which VGCC mutations af-
fect channel trafficking to and from the cell surface.  Just
recently, Papazian’s group[132] identified mutations in tg/tg
mice that appear to disrupt trafficking of CaV2.1 to the cell
surface.  Preliminary work in our laboratory suggests that
similar effects might occur in other VGCC mutants.  What-
ever their origin, it is clear that the list of VGCC mutations
identified in the human population will continue to expand.
It is our contention that a detailed understanding of the struc-
tural and functional basis of such mutations is essential for
treating the disorders they manifest.
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