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Cellular mechanism for spontaneous calcium oscillations in astrocytes1
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Abstract
Aim: To determine the Ca2+ source and cellular mechanisms of spontaneous Ca2+

oscillations in hippocampal astrocytes.  Methods: The cultured cells were loaded
with Fluo-4 AM, the indicator of intracellular Ca2+, and the dynamic Ca2+ tran-
sients were visualized with confocal laser-scanning microscopy.  Results: The
spontaneous Ca2+ oscillations in astrocytes were observed first in co-cultured
hippocampal neurons and astrocytes.  These oscillations were not affected by
tetrodotoxin (TTX) treatment and kept up in purity cultured astrocytes.  The
spontaneous Ca2+ oscillations were not impacted after blocking the voltage-gated
Ca2+ channels or ethylenediamine tetraacetic acid (EDTA) bathing, indicating that
intracellular Ca2+ elevation was not the result of extracellular Ca2+ influx.
Furthermore, the correlation between the spontaneous Ca2+ oscillations and the
Ca2+ store in endoplasmic reticulum (ER) were investigated with pharmacological
experiments.  The oscillations were: 1) enhanced when cells were exposed to both
low Na+ (70 mmol/L) and high Ca2+ (5 mmol/L) solution, and eliminated completely
by 2 µmol/L thapsigargin, a blocker of sarcoplasmic reticulum Ca2+-ATPase; and
2) still robust after the application with either 50 µmol/L ryanodine or 400 µmol/L
tetracaine, two specific antagonists of ryanodine receptors, but depressed in a
dose-dependent manner by 2-APB, an InsP3 receptors (InsP3R) blocker.
Conclusion: InsP3R-induced ER Ca2+ release is an important cellular mechanism
for the initiation of spontaneous Ca2+ oscillation in hippocampal astrocytes.
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Introduction
Astrocytes were traditionally regarded as a passive glue

that connects and supports neurons in the central nerve
system (CNS).  It builds the micro-environment in which neu-
rons fulfill their tasks and recover from injury.  However,
growing evidence indicates that the role of astrocytes in the
CNS may be underestimated, as bidirectional communica-
tion between neurons and astrocytes at the site of synapse
has been found in types of astroglia from different tissues,
leading to the concept of  “tripartite synapse”[1–3].  With
glutamate or other factors diffusing out of the synapse, the
activation of neurons is able to affect astrocytes[4,5].  However,
the activation of astrocytes can also affect neurons[6], via
releasing varieties of neurotransmitters, including glutamate
and ATP[7,8].  Although the mechanism of neurotransmitter

secreting is unclear, this process is believed to couple with
intracellular Ca2+ elevation[9,10].

Ca2+ is one of the most important second messengers
and is thought to mediate communication between neurons
and astrocytes[3,11].  Astrocytes are described as non-excit-
able cells, for their lack of voltage-gated sodium channels;
however, they exhibit complicated intracellular Ca2+ activity[12].
It has been reported that astrocytes express voltage-gated
Ca2+ channels[13] and the receptors of neurotransmitters[11].
Intracellular Ca2+ oscillation in astrocyte in situ, coupled
with neurotransmitter release, can drive NMDA receptor
mediated neuronal excitation[14].  Many studies have shown
that the spontaneous Ca2+ oscillations existed in astrocytes
and suggested that such Ca2+ events are essential for com-
munication between neurons and astrocytes[14–16].  These
findings imply that astrocytes may act as command genera-
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tors in neural regulation.  Understanding the initiation of
spontaneous Ca2+ oscillations in astrocytes is thus substan-
tial for better evaluation of the contribution of astrocytes to
the whole neural system.

The increase in plasmic Ca2+ concentrations during spon-
taneous Ca2+ oscillations is either caused by the influx of
extracellular Ca2+ or the release from endoplasmic reticulum
(ER) Ca2+ store.  In the present study, we sought to deter-
mine the Ca2+ source in hippocampal astrocytes.  With cul-
tured hippocampal astrocytes from the neonatal rat, we in-
vestigated the correlation between the spontaneous Ca2+

oscillations and ER Ca2+ store with some pharmacological
experiments using a confocal microscope.  We found that
the content of ER Ca2+ store was necessary for the sponta-
neous Ca2+ oscillations, and the activation of InsP3 receptor
(InsP3R) played a key role in the process of the oscillations.
Our finding suggests that InsP3R-induced ER Ca2+ release is
an important cellular mechanism for the spontaneous Ca2+

oscillation in hippocampal astrocytes.

Materials and methods
Cell cultures  After the brain of neonatal rats (Sprague-

Dawley rats, purchased from Vital River Lab Animal
Technology, China) were removed and placed into dissec-
tion solution (NaCl 137 mmol/L, KCl 5.4 mmol/L,
Na2HPO4·12H2O 0.67 mmol/L, KH2PO4 0.22 mmol/L, HEPES
10 mmol/L, glucose 8.3 mmol/L and sucrose 11 mmol/L; pH
7.35), hippocampus were dissected and treated with 4 mL of
0.5% trypsin (Invitrogen, USA) at 37 oC for 30 min.  Digestion
was stopped by fetal bovine serum (FBS; HyClone, USA).
Culture medium consisted of minimum essential medium
(Invitrogen), containing 26 mmol/L NaHCO3, 40 mmol/L
glucose, 1 mmol/L pyruvate, 1×105 U/L penicillin, and 100
mg/L streptomycin, supplemented with 10% FBS and 2 mmol/L
glutamine immediately before use.  Cells were plated into 35-
mm culture dishes for co-culture of neurons and astrocytes
or 25 cm2 culture flasks for purification later at a density of
approximately 5×108 cells/L.  Cells in flasks were grown to
confluence at 37 °C in a humidified 5% CO2/95% air.  In order
to get the purity culture of astrocytes, the flasks were shaken
on a horizontal orbital shaker at 250 rpm for 18 h after 5–7 d.
The remaining adherent cells were enzymatically detached
with trypsin (0.5%) plus EDTA (0.06%), resuspended in cul-
ture medium, and plated onto poly-D-lysine-coated (12.5 mg/L)
glass coverslips.  Cells were fed every 3–4 d by replacing the
medium with fresh medium.  The cells were used in experi-
ments after 1–4 d, by which time they had grown to
confluence.

Ca2+ imaging  The bathing solution consisted of NaCl

141 mmol/L, KCl 2.5 mmol/L, MgCl2 1.3 mmol/L, CaCl2 2.4
mmol/L, NaH2PO4 1.25 mmol/L, glucose 11 mmol/L, HEPES
10 mmol/L, pH 7.35.  Cells were loaded with the Ca2+ indicator,
Fluo-4-AM (Invitrogen), at a concentration of  1.82 µmol/L
in bathing solution for 5 min at room temperature.  Confocal
series-scan imaging was performed by using a Zeiss LSM
510 confocal microscope equipped with an argon laser (488
nm) and 40×, 1.3 NA oil immersion objectives.  Series-image
scanning was used to record the Ca2+ oscillation in cells.
The sampling rate was 1 Hz, and the optical slice was ap-
proximately 3 µm.

Results
Spontaneous Ca2+ oscillations in hippocampal astrocytes

  To evaluate the effects of neurons on spontaneous Ca2+

oscillations of astrocytes, the co-cultured hippocampal neu-
rons and astrocytes were loaded with Fluo-4 AM first, and
the intracellular Ca2+ oscillations in astrocytes were investi-
gated with confocal-laser-scanning microscope.  The cells
were then exposed to 1 µmol/L TTX (Figure 1B), a selective
antagonist of voltage-gated Na+ channels, which can effec-
tively block the action potential of neurons, in order to exam-
ine whether this activity comes from neurons or originates
from astrocytes themselves.  We found that the robust ac-
tivity of astrocytes was not impacted (Figure 1C; n=30).
These results indicated that the process of the oscillations
was neuronal action potential-independent.

Considering the possibility that the treatment of TTX
may not completely occlude neurons’ effects, eg, via spon-
taneous transmitter release, purified astrocytes (Figure 1A)
from the co-cultured system were employed in all other
experiments.  To determine the purity of astrocytes, we la-
beled astrocytes with anti-GFAP antibody and cell nuclei
with Hoechst 33258, after the culture was fixed by 4%
paraformaldehyde in PBS.  Immunofluorescence analysis
showed that approximately 97% (132 in 136) cells were GFAP
marked astrocytes (Figure 1E–1G).  We observed the Ca2+

activity in purity cultured astrocytes as above, and there
was no significant change in the activity when compared
with the cells in co-culture (Figure 1D).  This result implied
that the spontaneous Ca2+ oscillations in astrocytes did not
require the participation of neurons.

Spontaneous Ca2+ oscillation does not depend on extra-
cellular Ca2+  The results mentioned above suggested an
astrocytic-originated Ca2+ signal in the network, we then
sought the cellular mechanism of such spontaneous action.
The elevation of intracellular Ca2+ may result either from the
Ca2+ influx of the extracellular environment, or from the Ca2+

release of intracellular Ca2+ stores.  We first tested the former,
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and found that the spontaneous Ca2+ oscillations in astro-
cytes were insensitive to the treatment of nifedipine, which
can selectively block the L-type Ca2+ channels.  Neither the
frequency nor the amplitude of the intracellular Ca2+ oscilla-

tion was altered (Figure 2A, 2B).  This data indicated that the
elevation of intracellular Ca2+ was not resulted from Ca2+

influx through L-type Ca2+ channels.
Apart from L-type Ca2+ channels, there might be other

Figure 1.  The neuronal-independent activity in astrocytes.  (A) A sample image of purity culture of astrocytes that loaded with Fluo-4 AM
(40× oil immersion objectives).  (B) The intracellular Ca2+ oscillations in astrocytes from the co-cultured astrocytes network were insensitive
to the treatment of TTX (1 µmol/L). The different colors indicated the recording from different cells respectively.  (C) Data analysis from (B),
the numbers of action for 5 min before and after TTX application (n=30).  (D) The spontaneous Ca2+ oscillations in astrocytes from purity
cultured astrocytes network.  (E,F) Sample images of purified astrocytes (40× optical objectives) labeled with anti-GFAP antibody (E) and
Hoechst 33258 (F).  (G) Overlay of (E) and (F).
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Ca2+-permeable channels on plasma membrane.  So we bathed
the cells in 20 mmol/L EDTA, which eliminated the source of
extracellular Ca2+.  Even under this condition, the spontane-
ous Ca2+ oscillations in astrocytes were not impacted (Figure
2C, 2D).  This evidence does not support the extracellular
origination of the spontaneous Ca2+ oscillations.

ER Ca2+ store is necessary in spontaneous Ca2+ oscilla-
tions  The results above implied that an intracellular mecha-
nism must be responsible for spontaneous Ca2+ oscillations
in astrocytes.  In order to realize the role of ER Ca2+ store in
the process, the cells were exposed to low Na+ (70 mmol/L)
solution (Figure 3A), which could increase the content of ER
Ca2+ store without significant change of intracellular Ca2+

concentration[17].  The frequency of spontaneous Ca2+ oscil-
lations was enhanced to 237%±17% of control by low Na+

solution treatment (Figure 3B; P<0.01, n=51 and n=82 in con-
trol and low Na+ group respectively).  High Ca2+ solution (5
mmol/L) was also applied (Figure 3C), and a similar result
was observed (Figure 3D; enhanced to 172%±25% of control;
P<0.05, n=30 in both the control and high Ca2+ group).  We
next blocked the sarcoendoplasmic reticulum Ca2+-ATPase
(SERCA) on ER with its specific antagonist, thapsigargin,

and found that 2 µmol/L thapsigargin completely eliminated
the spontaneous Ca2+ oscillations in astrocytes (Figure 3E).
The frequency of oscillations was 1.06±0.12 time/min (n=35)
before and no event after thapsigargin treatment.  These
results suggest that the content of ER Ca2+ store is neces-
sary for generating spontaneous Ca2+ oscillations.

Essential role of InsP3R in the spontaneous Ca2+ oscilla-
tions  The ER Ca2+ store may generate intracellular Ca2+ sig-
nal through two types of Ca2+ release channels, the InsP3Rs
and ryanodine receptors (RyRs).  To test the role of RyRs in
spontaneous Ca2+ oscillations, the cells were treated with 50
µmol/L ryanodine or 400 µmol/L tetracaine, two specific an-
tagonists of RyRs.  The spontaneous Ca2+ oscillations were
still robust after blockers application (Figure 4A, 4B).  How-
ever, treating the cells with 100 µmol/L 2-APB (Figure 4C),
the blocker of InsP3Rs, depressed the spontaneous Ca2+ os-
cillations by approximately 90% (Figure 4D, n=115).
Furthermore, the inhibition of 2-APB behaved in a dose-
dependent manner (Figure 4E).  In the presence of tetracaine,
the effect of 2-APB was more potent than in the absence of
tetracaine (Figure 4E), suggesting a potential interaction
between InsP3Rs and RyRs.  The above evidence suggests

Figure 2.  The extracellular-independence of the spontaneous Ca2+ oscillations in astrocytes.  (A) The intracellular Ca2+ oscillations in purity
culture of astrocytes were insensitive to the treatment of nifedipine (10 µmol/L).  (B) Data analysis from (A), no significant difference was
observed in either frequency or amplitude between control cells and nifedipine treated cells.  (C) The intracellular Ca2+ oscillations in purity
culture of astrocytes were insensitive to the treatment of EDTA (20 mmol/L).  (D) Data analysis from (C).  The value of each group in (B) and
(D) was from three separated experiments with over 20 cells in each experiment.
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Figure 3.  The content of ER Ca2+ store is a necessary factor for the spontaneous Ca2+ oscillations.  (A) Loading the ER Ca2+ store with low
Na+ (70 mmol/L, 50% alternative with Li) bath solution enhanced the spontaneous Ca2+ oscillations.  (B) Data analysis from (A), the frequency
of spontaneous Ca2+ oscillations was significantly increased by low Na+ (n=51 and n=82 in control and low Na+ group, respectively).  cP<0.01
vs control group (Student’s t-test).  (C) Loading the ER Ca2+ store with high Ca2+ (5 mmol/L) bath solution enhanced the spontaneous Ca2+

oscillations.  (D) Data analysis from (C), the frequency of spontaneous Ca2+ oscillations was significant increased by high Ca2+ (n=30 in both
control and high Ca2+ group).  bP<0.05 vs control group (Student’s t-test).  (E) Depleting the ER Ca2+ store with thapsigargin (2 µmol/L), which
completely blocks the SERCA, abolished the spontaneous Ca2+ oscillations.

that, in the process of spontaneous Ca2+ oscillations, InsP3Rs
plays an essential role while RyRs may play an assistant role.

Discussion

Astrocytes might have a much more essential role than

has been revealed in CNS.  Thereby understanding the ini-
tiation of spontaneous Ca2+ oscillations in astrocytes be-
comes very important.  Using confocal laser-scanning mi-
croscopy we found that: 1) the content of ER Ca2+ store was
necessary for the spontaneous Ca2+ oscillations; and 2) the
activation of InsP3R played a key role in the process of spon-

http://www.chinaphar.com


866

 Acta Pharmacologica Sinica ISSN 1671-4083Wang TF et al

Figure 4.  InsP3R plays an essential role in the spontaneous Ca2+ oscillations in astrocytes.  Both ryanodine (50 µmol/L; A) and tetracaine (400
µmol/L; B) treatment did not affect the spontaneous Ca2+ oscillation in astrocytes.  (C) Incubating the cells in 2-APB (100 µmol/L), which
blocked InsP3R, depressed the cell activity.  (D) Data analysis from (C), 2-APB significantly reduced the frequency of spontaneous Ca2+

oscillations in astrocytes (n=115). cP<0.01 vs control group (Student’s t-test).  (E) The dose-response curve of 2-APB in normal bath solution
(—•—) or tetracaine (400 µmol/L) containing bath solution (···o···). The inhibition of 2-APB was increased in the presence of tetracaine,
revealing that RyRs may have an indirect effect on the oscillations of astrocytes.

taneous Ca2+ oscillation.  Our results suggest that InsP3R-
induced ER Ca2+ release is an important cellular mechanism

for the spontaneous Ca2+ oscillation in hippocampal
astrocytes.



Http://www.chinaphar.com Wang TF et al

867

Although there is still an argument that the intracellular
Ca2+ oscillations in astrocytes comes from neurons[18], most
believe the existence of spontaneous Ca2+ oscillations in
astrocytes.  Many investigators have been trying to probe
the mechanism for the initiation of spontaneous Ca2+

oscillations, but the results have been rather inconsistent.
Some reports showed that the spontaneous Ca2+ oscillations
in astrocytes required extracellular Ca2+[14,16], while others
supported the contribution of intracellular Ca2+[19].  This dis-
agreement may be the result of different subtypes of astro-
cytes and different preparations conditions.  Our results
support the view that the spontaneous Ca2+ oscillations in
astrocytes originate via intracellular mechanism, and the ER
Ca2+ store is necessary for the process.

Most of studies supported that the InsP3Rs played an
essential role in the process of spontaneous Ca2+ oscilla-
tions in astrocytes[19–21], and our results is consistent with
these reports.  However, RyRs are also richly expressed on
the ER of astrocytes[12], and a functional Ca2+ sensitive store
has been reported[22].  All these findings lead to an open
question of what the role is of RyRs in spontaneous Ca2+ of
astrocytes.  In the present study, we compared the property
of the spontaneous Ca2+ oscillations in astrocytes before
and after blocking RyRs.  Although RyRs blockers-perfu-
sion could not block the spontaneous Ca2+ oscillations, we
found that tetracaine had some depressing effect when
coapplied with 2-APB.  Therefore, there may be some inter-
action between RyRs and InsP3Rs.  The crosstalk between
RyRs and InsP3Rs has been reported[20], but its physiologi-
cal significance needs to be investigated further.

Recently studies have revealed that Ca2+ signaling in
astrocytes-mediated control of cerebral blood flow, is a
mechanism of neurovascular coupling[23,24].  It has been
shown also that the activity of astrocytes may lead to syn-
chronized Ca2+ oscillation in neurons[6].  We believe that the
spontaneous Ca2+ oscillations in astrocytes play a substan-
tial role in the process of information transferring from astro-
cytes to neurons.  In summary, we demonstrated that the
spontaneous Ca2+ oscillations in astrocytes were dependent
on release from ER Ca2+ stores through InsP3Rs, and there
was interaction between RyRs and InsP3Rs in the process of
spontaneous Ca2+ oscillation.  Our findings present a new
aspect for understanding the Ca2+ signal in astrocytes and
the essential role of astrocytes in CNS.
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