

Short communication

Receptor subtype involved in α_1 -adrenergic receptor-mediated Ca²⁺ signaling in cardiomyocytes¹

Da-li LUO^{2,3,4}, Jian GAO², Lin-lin FAN², Yu TANG², You-yi ZHANG³, Qi-de HAN³

²Department of Pharmacology, School of Chemical Biology and Pharmaceutical Sciences, Capital University of Medical Sciences, Beijing 100069, China; ³Institute of Cardiovascular Science at the Health Science Center, Peking University, Beijing 100083, China

Key words

 α_1 -adrenergic receptor; subtype; cardiomyocyte; Ca^{2+} signaling; A61603

¹Project supported by grant from the National Natural Science Foundation (No 30470692). ⁴Correspondence to Dr Da-li LUO. Phn/Fax 86-10-8391-1517. E-mail luodl@bjmu.edu.cn

Received 2006-10-08 Accepted 2006-12-22

doi: 10.1111/j.1745-7254.2007.00605.x

Abstract

Aim: The enhancement of intracellular Ca²⁺ signaling in response to α_1 -adrenergic receptor (α_1 -AR) stimulation is an essential signal transduction event in the regulation of cardiac functions, such as cardiac growth, cardiac contraction, and cardiac adaptation to various situations. The present study was intended to determine the role(s) of the α_1 -AR subtype(s) in mediating this response. **Methods:** We evaluated the effects of subtype-specific agonists and antagonists of the α_1 -AR on the intracellular Ca²⁺ signaling of neonatal rat ventricular myocytes using a confocal microscope. **Results:** After being cultured for 48 h, the myocytes exhibited spontaneous local Ca²⁺ release, sparks, and global Ca²⁺ transients. The activation of the α_1 -AR with phenylephrine, a selective agonist of the α_1 -AR, dose-dependently increased the frequency of Ca²⁺ transients with an EC₅₀ value of 2.3 μ mol/L. Blocking the α_{1A} -AR subtype with 5-methylurapidil (5-Mu) inhibited the stimulatory effect of phenylephrine with an IC₅₀ value of 6.7 nmol/L. In contrast, blockade of the α_{1B} -AR and α_{1D} -AR subtypes with chloroethylclonidine and BMY 7378, respectively, did not affect the phenylephrine effect. Similarly, the local Ca^{2+} spark numbers were also increased by the activation of the α_1 -AR, and this effect could be abolished selectively by 5-Mu. More importantly, A61603, a novel selective α_{1A} -AR agonist, mimicked the effects of phenylephrine, but with more potency (EC₅₀ value =6.9 nmol/L) in the potentiation of Ca^{2+} transients, and blockade of the α_{1A} -AR by 5-Mu caused abolishment of its effects. Conclusion: These results indicate that α_1 -adrenergic stimulation of intracellular Ca²⁺ activity is mediated selectively by the α_{1A} -AR.

Introduction

The α_1 -adrenergic receptors (α_1 -AR) play a key role in the modulation of sympathetic nervous system activity as well as a site of action for therapeutic agents, such as antihypertensive drugs. Three subtypes of the α_1 -AR, α_{1A} -AR, α_{1B} -AR, and α_{1D} -AR have been cloned and each has specific tissue distribution and pharmacological properties^[1,2]. All subtypes of the α_1 -AR are Gq protein-coupled receptors, which upon activation, catalyze the cleavage of polyphosphoinositide into dual signaling molecules, inositol 1,4, 5-trisphosphate (IP₃), and diacylglycerol via the activation of phospholipase C. IP₃ leads to the opening of IP₃ receptor

channels at the endoplasmic/sarcoplasmic reticulum, and subsequently the release of intracellular Ca^{2+} , while the activation of protein kinase C is the downstream signaling pathway for diacylglycerol^[3,4]. Through these signal transduction pathways, the intracellular responses upon α_1 -AR stimulation are induced.

Accumulating studies have indicated that the α_I -AR system appears to play a role in cardiac growth, cardiac contraction, and cardiac automaticity in physiological condition^[4-6], as well as in cardiac pathological processes, such as arrhythmogenesis or cardiac adaptation to various situations^[5,7,8]. Although the exact underlying mechanisms have not been conclusively determined, the increase in intracellular Ca^{2+}

968 ©2007 CPS and SIMM

Http://www.chinaphar.com

signaling, a common event seen in α_1 -AR stimulation, is considered to be a primary signaling pathway initiating acute as well as chronic cardiac function modulations by the α_1 -AR[2,7-11]. For instance, the α_1 -AR-mediated mobilization of Ca²⁺ from the sarcoplasmic reticulum contributes significantly to excitation—contraction coupling in atrial myocytes, and causes arrhythmogenic intracellular Ca²⁺ oscillations in the ischemic heart[7,9,10]. Additionally, α_1 -AR-mediated Ca²⁺ signaling is essential for the activation of calmodulin-dependent protein kinase II and nuclear factor of activated T cells, both of which signal a hypertrophic program of cardiac gene expression[8,12,13].

All 3 subtypes of α_1 -AR have been detected at the levels of messenger RNA as well as protein in the heart [14,15]. How-ever, the subtype of the receptor in the mediation of cardiac function is not clear. Many studies have suggested that the α_{IA} - AR and α_{IB} -AR appear to play major roles in the heart $^{[3,6,15,16]}$. More recently however, the α_{1A} -AR has been demonstrated to sufficiently induce cardiac arrhythmias and hypertrophy, while the $\alpha_{\text{IB}}\text{-AR}$ seems less important^[7,17,18]. Furthermore, the avtivation of α_{IB} -AR even inhibits α_{IA} -AR mediated cardiac remodeling[19], but plays a crucial role in the generation of dilated cardiomyopathy^[16]. As an increase in intracellular Ca²⁺ is the primary signaling transduction pathway for α_1 -AR-mediated cardiac function^[2,7–11], and the subtype involved is unclear, in this study we intended to identify the subtype of the α_1 -AR involved in mediating intracellular Ca²⁺ signaling by using neonatal rat ventricular myocytes (NRVM), which express all 3 α_1 -AR subtypes^[14,15] and respond to α_1 -AR stimulation markedly in the profiles of intracellular Ca²⁺ signaling and hypertrophic growth^[8,20,21].

Material and methods

Isolation and culture of cardiomyocytes NRVM were isolated from 1–2-d-old Sprague-Dawley rats by enzymatic digestion with 0.1% trypsin and 0.03% collegenase, as previously described^[20]. Then the myocytes were plated onto laminin-coated, 35 mm dishes at a density of $0.5 \times 10^3 - 0.8 \times 10^3$ cells/mm² and cultured for 42 h in Dulbecco's modified Eagle's medium (DMEM) and Medium 199 (4:1) containing 10% fetal bovine serum, 4 mmol/L L-glutamine, 100 units/mL penicillin/streptomycin, and 0.1 mmol/L 5-bromo-2-deoxyuridine to inhibit fibroblast proliferation. Before use, the myocytes were further cultured for 6 h in serum-free DMEM to eliminate any influence of some factors in the serum.

Confocal Ca²⁺ imaging The cultured NRVM were loaded with 4 µmol/L Fluo-4/AM (Molecular Probes, Eugene, OR,

USA) at 37 °C for 30 min, and were then washed with 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid *N*-(2-Hydroxyethyl)piperazine-*N*'-(2-ethanesulfonic acid) (HEPES)-buffered salt solution (in mmol/L: NaCl 135, KCl 5, MgCl₂ 1, CaCl₂ 1.8, HEPES 10, and glucose 11, with pH 7.4 adjusted by NaOH) for 20 min. All the treatments for each dish were finished within 2 h.

Confocal images of fluo-4 fluorescence (excitation at 488 nm and emission detection at >515 nm) were obtained using a Leica SP2 inverted microscope equipped with a $63\times$, 1.3 numerical aperture, oil immersion objective. Time-lapsed (xy, 1.63 s/frame) or line-scan (xt, 2 ms/line, 0.15 µm/pixel) images were obtained with 1.5-µm axial resolution. Image data analysis used customer-devised routines coded in the Interactive Data Language Research System. All experiments were performed at room temperatures (22-24 °C).

Materials 5-Bromo-2-deoxyuridine, phenylephrine, 5-methylurapidil (5-Mu), chloroethylclonidine (CEC), BMY 7378 {8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro [4,5]decane-7,9-dione dihydrochloride}, propranolol, and prazosin were purchased from Sigma-Aldrich (St Louis, MO, USA). A61603 {N-[5-(4,5-dihydro-1*H*-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetra hydronaphthalen-1-yl]methanesulfonamide hydrobromide} was from Tocris (Ellisville, MO, USA).

Statistical analysis The data were analyzed and presented as mean±SEM. When appropriate, statistical comparison was carried out with 2-way paired or unpaired Student's *t*-test or χ^2 test. The accepted level of significance was P < 0.05.

Results

In fluo-4-loaded NRVM, due to spontaneous action potentials as the trigger, rhythmic and spontaneous Ca²⁺ oscillations, were observed at a rate of 6.02 ± 0.58 min⁻¹ (n=12experiments). Phenylephrine (PE, 10 µmol/L), a non-subtype specific agonist of the α_1 -AR^[17,19,22], increases the frequency of the spontaneous Ca²⁺ transients (Figure 1A, upper panel), which was completely blocked with 1 µmol/L prazosin, an α_1 -AR antagonist, but not the β -AR antagonist propranolol at 1 µmol/L. This effect of PE is dose-dependent with an EC₅₀ value (the concentration for inducing 50% of maximal response) of 2.3 μ mol/L (Figure 1B). To determine the role of the α_1 -AR subtypes in $[Ca^{2+}]_i$ regulation, we then examined the effects of subtype-specific antagonists on PEmediated Ca²⁺ signal. As shown in Figure 1 (1A, bottom panel, 1C), pretreatment of myocytes with 5-Mu for 10 min, a specific inhibitor of the α_{1A} -AR^[23], caused dose-dependent

suppression of the stimulatory response to PE (10 μ mol/L) with an IC₅₀ value (the concentration for 50% inhibition of agonist-induced response) of 6.7 nmol/L, and a complete abolishment was seen at a concentration of 30 nmol/L. In contrast, pretreatment of the cells for 30 min with CEC to inhibit the α_{IB} -AR showed no influence, except that CEC at higher concentration (30 μ mol/L) induced a 33.5% inhibition of PE-enhanced Ca²⁺ transients (Figure 1D). The alkylating agent CEC primarily inactivates the α_{IB} -AR, but studies have shown that this compound can also produce partial inactivation of the other subtypes, especially α_{IA} -AR, with prolonged exposure at high concentrations^[24,25]. Thus, the partial blockade of the PE effect by CEC at higher concentration is most likely due to its non-specific inhibition of other subtypes.

Nevertheless, blockade of the $\alpha_{\rm ID}$ -AR with BMY 7378 (0.1 $\mu mol/L$)^[26,27] demonstrated no any influence in the PE effect (Figure 1D). Presently, the $\alpha_{\rm ID}$ -AR expressing much less than other subtypes in cardiomyocytes is functionally unknown in the heart^[3,15]. These findings provide clues that the $\alpha_{\rm IA}$ -AR, not the $\alpha_{\rm IB}$ -AR and $\alpha_{\rm ID}$ -AR, may be the primary mediator of PE-regulated spontaneous Ca^{2+} transients.

At present, the determination of the role of the α_{IA} -AR versus the α_{IB} -AR subtypes in mediating physiological responses to α_{I} -adrenergic stimulation is difficult because of the paucity of highly selective antagonists specific for one subtype over the other. Therefore, to further discriminate the α_{IA} -AR from other subtypes, we investigated subtype specific agonists in this protocol. So far no specific com-

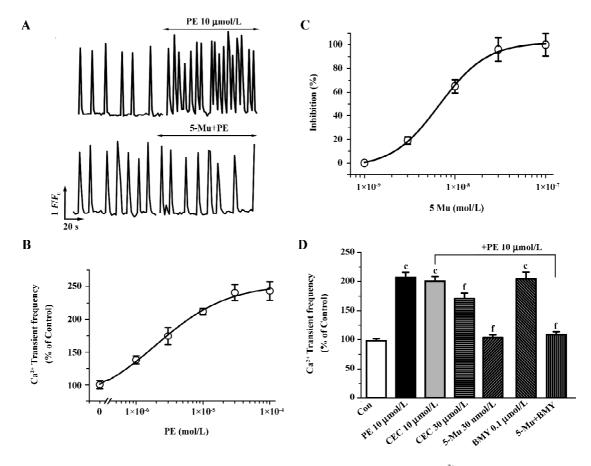


Figure 1. Effects of different $α_1$ -AR subtype blockade on PE-induced potentiation of spontaneous Ca²⁺ transients in neonatal rat ventricular myocytes. (A) in myocytes loaded with the Ca²⁺ indicator fluo-4, increased spontaneous Ca²⁺ oscillations were observed 3 min after 10 μmol/L PE treatment, and were abolished by the pretreatment of cells with 30 nmol/L 5-Mu for 10 min. (B) dose-dependence of PE effect on spontaneous Ca²⁺ oscillation frequency (EC₅₀=2.3 μmol/L). Data were expressed as the percentage of the control. n=5–9 separated experiments for each PE concentration. (C) concentration-dependent inhibition of 5-Mu on PE induced enhancement of spontaneous Ca²⁺ transients (IC₅₀=6.7 nmol/L). n=6–7 separated experiments for each point. (D) effects of CEC, 5-Mu, BMY 7378, and 0.1 μmol/L BMY 7378+30 nmol/L 5-Mu (pretreated cells for 30, 10, 10 and 10 min, respectively) on PE-potentiated spontaneous Ca²⁺ transients. Data are presented as the percentage of the vehicle control (con, H₂O). c P<0.01 c P<0.02 c P<0.03 c P<0.01 c P<0.03 c P<0.03 c P<0.03 c P<0.04 c P<0.05 c P<0.05 c P<0.07 c P<0.09 c P<0.0

Http://www.chinaphar.com

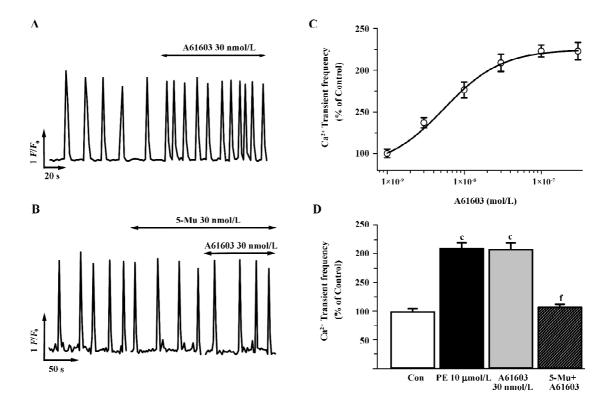


Figure 2. Effect of A61603 on spontaneous Ca^{2+} oscillations in neonatal rat ventricular myocytes. Increased spontaneous Ca^{2+} oscillations were observed 3 min after 30 nmol/L A61603 treatment (A), and were abolished by 30 nmol/L 5-Mu pretreatment of myocytes for 10 min (B). (C) dose-response effect of A61603 on spontaneous Ca^{2+} transients ($EC_{50}=6.9 \text{ nmol/L}$). n=7-8 separated experiments for each point. (D) comparable effects of PE (10 μ mol/L) and A61603 (30 nmol/L) on spontaneous Ca^{2+} transients and abolishment of these effects by 30 nmol/L 5-Mu, pretreatment of cells for 10 min. Data are presented as the percentage of the vehicle control (con, H₂O). cP <0.01 c 0.01 $^$

pound for the α_{IB} -AR or the α_{ID} -AR subtype is available, so we examined the effects of A61603, the recently described potent α_{1A} -adrenergic agonist^[28], and compared the doseresponse characteristics of PE and A61603. As shown in Figure 2 (2A,2C), A61603 induced a dose-response increase in spontaneous Ca2+ transients with an EC50 value of 6.9 nmol/L, indicating a 330-fold greater potency for PE (2.3 µmol/L). Furthermore, we tried to find the concentration of A61603 at which stimulated Ca²⁺ transients with a similar potency to that of PE so as to evaluate and compare the inhibitory effect of 5-Mu. We observed that 30 nmol/LA61603 potentiated the rate of Ca²⁺ transients with an almost same potency as that of 10 µmol/L PE (2.11 and 2.09 times that of the control, respectively; Figure 2C,2D). Similar as its effect on PE (Figure 1D), 5-Mu (30 nmol/L), pretreatment of cells for 10 min, abolished the increment in Ca²⁺ transients induced by 30 nmol/L A61603 (Figure 2B,2D), while no effect was observed in 10 μmol/L CEC- or 0.1 μmol/L BMY 7378-treated cells (data not shown).

As spatial temporal Ca²⁺ sparks or waves constitute the elementary events of Ca^{2+} signaling in response to α_1 -adrenergic stimulation inside the cells, we then investigated the characteristics of Ca²⁺ sparks mediated by PE and A61603 in NRVM. With the aid of the line-scan confocal imaging of NRVM (Figure 3A, inset), we found that Ca²⁺ sparks occurred at a frequency of 1.56±0.2/100 μm·s or 1.27±0.15/100 um·s in the control condition (in the absence of PE or A61603, respectively). PE (10 µmol/L) and A61603 (30 nmol/L) elicited a spark increase by 2.0- and 2.3-fold, respectively (Figure 3A, 3B), while the amplitude, width, and duration of the Ca²⁺ sparks were not altered by either treatment of the agonists. Consistent with the data in global Ca²⁺ transients, the local Ca²⁺ release responses to PE and A61603 could be abolished by 30 nmol/L 5-Mu (Figure 3B, 3C), but not by 10 µmol/L CEC or 0.1 µmol/L BMY 7378 treatment (data not shown). Therefore, the similar responses to A61603 and PE from local Ca2+ release to global Ca2+ transients, and a complete abolishment of both effects by specific α_{1A} -AR antagonist,

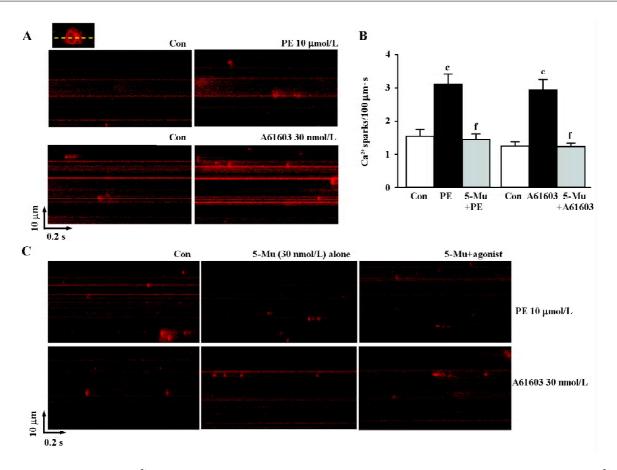


Figure 3. Modulation of local Ca²⁺ sparks by PE and A61603 in neonatal rat ventricular myocytes. (A) typical line-scan images of Ca²⁺ sparks under control conditions (con) and in the presence of PE (10 μmol/L, 3 min, upper panel) or A61603 (30 nmol/L, 3 min, bottom panel). Inset: dashed line shows the position of confocal line-scanning across the nucleus and the cytosol where the images were taken. (B) statistics of spark numbers (events/100 μm·s) from line-scan images in A for the control, PE or A61603, and 5-Mu+PE or A61603 groups as indicated. n=24–30 cells. cP <0.01 v s control (con). f P<0.01 v s PE or A61603 group, respectively. (C) typical line-scan images of Ca²⁺ sparks under control condition (con) in the presence of 5-Mu (10 min) alone, and PE or A61603 after 5-Mu treatment.

strongly suggest that the α_{IA} -AR subtype plays a major role in the α_{I} -AR-associated regulation of intracellular Ca^{2+} signaling in NRVM.

Discussion

Increases in intracellular Ca^{2+} signaling have been implicated to be an essential signal transduction event in the regulation of cardiac functions by α_{1} -AR stimulation^[2,7-11,20,21]. However, the subtype involved is not clear. The present study demonstrates that the stimulatory responses of spontaneous Ca^{2+} oscillations to α_{1} -AR activation were greatly sensitive to and selectively abolished by the α_{1A} -AR antagonist, but not by antagonism of the α_{1B} -AR or the α_{1D} -AR subtype (Figure 1). Additionally, A61603, the novel α_{1A} -AR-selective agonist, exhibited a 330-fold greater potency

than PE in stimulating spontaneous Ca²⁺ transient activity (Figure 2). This is in agreement with the findings that A61603 produces 340- and 330-fold greater potency than PE in stimulating sarcolemmal Na-H exchange activity in rat ventricular myocytes and in inducing contraction of the rat vas deferens, respectively. These physiological activities of α_1 -AR activation are further confirmed to be mediated by α_{1A} -AR selectively^[22,28]. Furthermore, Ca²⁺ sparks, an important event of the local Ca²⁺ releasing activity, were also stimulated by PE and A61603 with almost an equal potency with that in stimulating Ca²⁺ transients. This response to PE or A61603 is consistently abolished by the α_{1A} -AR antagonist, but not by α_{1B} -AR or α_{1D} -AR inhibition (Figure 3). Taking these results together, these observations provide supportive evidence that α_1 -adrenergic stimulation of Ca²⁺ signaling activity is mediated selectively by the α_{1A} -AR subtype.

Http://www.chinaphar.com Luo DL et al

Our previous study and those of others have shown that stimulated intracellular Ca²⁺ signaling plays an important role in the induction and perpetuation of cardiac hypertrophy by α_1 -AR activation^[11,12,20,21]. Importantly, studies have shown that the α_{IA} -AR subtype is sufficient in inducing hypertrophy in cultured cardiac myocytes^[17,18] and is important in the development of the heart^[6]. Thus, combined with the previous reports, the present study suggests that $\alpha_{\text{IA}}\text{-}AR\text{-}medi$ ated Ca²⁺ signaling response may assume greater significance in hypertrophy formation. Additionally, Ca²⁺ signal abnormity has also been suggested to play a key role in triggering ectopic automaticity in physiological as well as pathological circumstances, such as cardiac ischemia and heart failure $^{[7,9,10]}$ and α_1 -AR activation appears to be one of the important underlying mechanisms in this regard^[7,29–31]. Interestingly, the α_{1A} -AR has been suggested to be the crucial arrhythmogenic subtype by both in vivo and in vitro studies^[7, 9]. Therefore, taken these results together, the finding that the α_{1A} -AR is the major subtype in intracellular Ca²⁺ signaling regulation during α_1 -AR activation may provide significant information for the functional roles of the α_1 -AR subtype and an alternate insight into the potential therapeutic candidates in heart remodeling and arrhythmias, particularly in humans as the α_{1A} -AR appears to be the predominant subtype expressed in the human ventricular myocardium^[32].

In summary, the present study has shown that the α_{IA} -AR is the predominant subtype in regulating intracellular Ca^{2+} signaling for the α_{I} -AR activation of neonatal rat ventricular myocytes, which may provide potential information for more specific drug development to hinder the cardiac remodeling process.

Acknowledgement

We thank Dr Qi-hua HE for outstanding technical assistance.

References

- 1 Piascik MT, Perez DM. α₁-Adrenergic receptors: new insights and directions. J Pharmacol Exp Ther 2001; 298: 403-10.
- 2 Graham RM, Perez DM, Hwa J, Piascik MT. α₁-Adrenergic receptor subtypes: molecular structure, function, and signaling. Circ Res 1996; 78: 737–49.
- 3 Lazou A, Fuller SJ, Bogoyevitch MA, Orfali KA, Sugden PH. Characterization of stimulation of phosphoinositide hydrolysis by α_l -adrenergic agonists in adult rat hearts. Am J Physiol 1994; 267: H970–8.
- 4 Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 1999; 51: 651-90.
- 5 Li K, He H, Li C, Sirois P, Rouleau JL. Myocardial alphaladrenoceptor: inotropic effect and physiologic and pathologic

- implications. Life Sci 1997; 60: 1305-18.
- 6 O'Connell TD, Ishizaka S, Nakamura A, Swigart PM, Rodrigo MC, Simpson GL, et al. The α_{1A/C}- and α_{1B}-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 2003; 111: 1783-91.
- 7 Harrison SN, Autelitano DJ, Wang BH, Milano C, Du XJ, Wood-cock EA. Reduced reperfusion-induced Ins(1,4,5)P3 generation and arrhythmias in hearts expressing constitutively active alpha1B-adrenergic receptors. Circ Res 1998; 83: 1232-40.
- 8 Hunton DL, Lucchesi PA, Pang Y, Cheng X, Dell'Italia LJ, Marchase RB. Capacitative calcium entry contributes to nuclear factor of activated T cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 2002; 277: 14266-73.
- 9 Tolg R, Kurz T, Ungerer M, Schreieck J, Gorge B, Richardt G. Influence of alpha- and beta-adrenoceptor antagonists on ventricular fibrillation in ischemic rat hearts. Naunyn Schmiedebergs Arch Pharmacol 1997; 356: 62-8.
- 10 Mackenzie L, Bootman MD, Laine M, Berridge MJ, Thuring J, Holmes A, et al. The role of inositol 1,4,5-trisphosphate receptors in Ca²⁺ signalling and the generation of arrhythmias in rat atrial myocytes. J Physiol 2002; 541: 395–409.
- 11 Liu SJ, Kennedy RH. α₁-Adrenergic activation of L-type calcium current in rat ventricular myocytes: perforated patch clamp recordings. Am J Physiol 1998; 274: H2203-7.
- 12 Sugden PH. Signaling in myocardial hypertrophy: life after calcineurin? Circ Res 1999; 84: 633-46.
- 13 Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med 2000; 6: 1221-7.
- 14 Luther HP, Podlowski S, Schulze W, Morwinski R, Buchwalow I, Baumann G, et al. Expression of alpha1-adrenergic receptor subtypes in heart cell culture. Mol Cell Biochem 2001; 224: 69– 79
- 15 Stewart AF, Rokosh DG, Bailey BA, Karns LR, Chang KC, Long CS, et al. Cloning of the rat α_{1C}-adrenergic receptor from cardiac myocytes: α_{1C}, α_{1B}, and α_{1D} mRNAs are present in cardiac myocytes but not in cardiac fibroblasts. Circ Res 1994; 75: 796–802
- 16 Lemire I, Ducharme A, Tardif JC, Poulin F, Jones LR, Allen BG, et al. Cardiac-directed overexpression of wild-type alpha1B-adrenergic receptor induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2001; 281: H931–8.
- 17 Autelitano DJ, Woodcock EA. Selective activation of alpha1A-adrenergic receptors in neonatal cardiac myocytes is sufficient to cause hypertrophy and differential regulation of alpha1-adrenergic receptor subtype mRNAs. J Mol Cell Cardiol 1998; 30: 1515-23.
- 18 Pönicke K, Schlüter KD, Heinroth-Hoffmann I, Seyfarth T, Goldberg M, Osten B, et al. Noradrenaline-induced increase in protein synthesis in adult rat cardiomyocytes: involvement of only α₁-adrenoceptors. Naunyn-Schmiedebergs Arch Pharmacol 2001: 364: 444-53.
- 19 Deng XF, Sculptoreanu A, Mulay S, Peri KG, Li JF, Zheng WH, et al. Crosstalk between alpha-1A and alpha-1B adrenoceptors in neonatal rat myocardium: implications in cardiac hypertrophy. J Pharmacol Exp Ther 1998; 286: 489-96.
- 20 Luo DL, Gao J, Lan XM, Wang G, Wei S, Xiao RP, et al. Role of inositol 1,4,5-trisphosphate receptors in α₁-adrenergic recep-

- tor-induced cardiomyocyte hypertrophy. Acta Pharmacol Sin 2006; 27: 895-900.
- 21 Garcia KD, Shah T, Garcia J. Immunolocalization of type 2 inositol 1,4,5-trisphosphate receptors in cardiac myocytes from newborn mice. Am J Physiol Cell Physiol 2004; 287: C1048– 57
- 22 Yokoyama H, Yasutake M, Avkiran M. α_1 -Adrenergic stimulation of sarcolemmal Na⁺-H⁺ exchanger activity in rat ventricular myocytes: evidence for selective mediation by the a_{1A} -adrenoceptor subtype. Circ Res 1998; 82: 1078–85.
- 23 Li HT, Long CS, Gray MO, Rokosh DG, Honbo NY, Karliner JS. Cross talk between angiotensin AT1 and alpha1-adrenergic receptors: angiotensin II downregulates alpha1a-adrenergic receptor subtype mRNA and density in neonatal rat cardiac myocytes. Circ Res 1997; 81: 396-403.
- 24 Laz TM, Forray C, Smith KE, Bard JA, Vaysse PJ, Branchek TA, et al. The rat homologue of the bovine α_{1C} -adrenergic receptor shows the pharmacological properties of the classical α_{1A} subtype. Mol Pharmacol 1994; 46: 414–22.
- 25 Perez DM, Piascik MT, Malik N, Gavin R, Graham RM. Cloning, expression, and tissue distribution of the rat homolog of the bovine α_{1C}-adrenergic receptor provide evidence for its classification as the a_{1A} subtype. Mol Pharmacol 1994; 46: 823–31.
- 26 Deng XF, Chemtob S, Varma DR. Characterization of α_{1D} -adrenoceptor subtype in rat myocardium, aorta and other tissues. Br J

- Pharmacol 1996; 119: 269-76.
- 27 Turnbull L, McCloskey DT, O'Connell TD, Simpson PC, Baker AJ. α_{l} -Adrenergic receptor responses in α_{lAB} -AR knockout mouse hearts suggest the presence of α_{lD} -AR. Am J Physiol Heart Circ Physiol 2003; 284: H1104–H9.
- 28 Knepper SM, Buckner SA, Brune ME, DeBernardis JF, Meyer MD, Hancock AA. A-61603, a potent α_1 -adrenergic receptor agonist, selective for the α_{1A} receptor subtype. J Pharmacol Exp Ther 1995; 274: 97–103.
- 29 Kontula K, Laitinen PJ, Lehtonen A, Toivonen L, Viitasalo M, Swan H. Catecholaminergic polymorphic ventricular tachycardia: recent mechanistic insights. Cardiovasc Res 2005; 67: 378-87.
- 30 Lanzafame AA, Turnbull L, Amiramahdi F, Arthur JF, Huynh H, Woodcock EA. Inositol phospholipids localized to caveolae in rat heart are regulated by alpha1-adrenergic receptors and by ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2006; 290: H2059-65.
- 31 Ravingerova T, Pancza D, Ziegelhoffer A, Styk J. Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: the role of alpha-adrenergic stimulation and K (ATP) channels. Physiol Res 2002; 51: 109-19.
- 32 Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. Localization of mRNA for three distinct α₁-adrenergic receptor subtypes in human tissues: implications for human α₁-adrenergic physiology. Mol Pharmacol 1994; 45: 171-5.