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Abstract

Aim: The influence of niflumic acid (NFA), a Cl– channel antagonist, on the mem-

brane potentials in smooth muscle cells (SMC) of the cochlear spiral modiolar

artery (SMA) in guinea pigs was examined.  Methods: The intracellular recording

and whole-cell recording technique were used to record the NFA-induced re-

sponse on the acutely-isolated SMA preparation.  Results: The SMC had 2 stable

but mutually convertible levels of resting potentials (RP), that is, one was near –45

mV and the other was approximately –75 mV, termed as low and high RP,

respectively.  The bath application of NFA could cause a hyperpolarization in all

the low RP cells, but had little effect on high RP cells.  The induced responses were

concentration-dependent.  Large concentrations of NFA (≥100 µmol/L) often in-

duced a shift of a low RP to high RP in cells with an initial RP at low level, and NFA

(up to 100 µmol/L) had little effect on the membrane potentials of the high RP cells.

However, when the high RP cells were depolarized to a level beyond –45 mV by

barium and ouabain, NFA hyperpolarized these cells with the similar effect on

those cells initially being the low RP.  The NFA-induced response was almost

completely blocked by charybdotoxin, iberiotoxin, tetraethylammonium, 1,2-bis(2-

aminophenoxy) ethane-N,N,N’,N’-tetraacetic acid tetrakis acetoxymethyl ester, but

not by 4-aminopyridine, barium, glipizide, apamin, ouabain, and CdCl2.  Conclusion:

NFA induces a concentration-dependent reversible hyperpolarization in SMC in

the cochlear SMA via activation of the Ca2+-activated potassium channels.
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Introduction

Changing blood circulation in the inner ear is implicated

in many physiological and pathological conditions of hear-

ing function.  For example, the stimulation of loud sound can

cause a significant reduction in cochlear blood flow[1], while

anoxia or interruption of cochlear blood flow causes a dras-

tic reduction of cochlear function[2].  Some forms of sudden

deafness may also be due to inner ear circulation problems[3,4].

In addition, disturbances of inner ear circulation are associ-

ated with increased sensitivity to ototoxic drugs and noise-

induced trauma[5,6].  Thus it is very important to study the

characteristics of inner ear microcirculation to reveal the

physiological function of the smooth muscle cells (SMC) in

the cochlear spiral modiolar artery (SMA), which is only an

arteriole into the inner ear.

Large-conductance calcium-activated potassium (KCa)

channels are present in a variety of cell types[7-12].  In neurons,

they may regulate cell firing[13,14], and in smooth muscle, they

seem to play an important role in maintaining visceral and

vascular tone[15-18].  Many chloride channel inhibitors, in-

cluding members of the non-steroidal anti-inflammatory drug

family, such as niflumic acid (NFA), not only inhibit Cl– con-

ductance[19-21], but also stimulate large-conductance KCa chan-

nels in vascular smooth muscle of the rabbit portal vein[22] and

pig coronary[23].  In our preliminary study, we found that KCa

channels might exist in the SMC and endothelial cells (EC) of

the cochlear SMA[12].  Moreover, chloride channel blockers

could inhibit excitatory junction potentials in the SMC of the



790

 Acta Pharmacologica Sinica ISSN 1671-4083Li L et al

cochlear SMA in guinea pigs[24].

The aim of the present work was to use direct intracellu-

lar recordings of membrane potential and conventional

whole-cell recordings to investigate the effect of NFA (a chlo-

ride channel blocker) on the SMC in the cochlear SMA of

guinea pigs.  The results suggest that NFA hyperpolarizes

SMC by activating KCa channels in the SMA of guinea pigs.

Materials and methods

Animals and SMA preparation  Guinea pigs (300–500 g)

were anesthetized and then killed by exsanguination[25].  The

anesthesia was accomplished by an intramuscular injection

of an anesthetic mixture (1 mL/kg) of 500 mg ketamine, 20 mg

xylazine, and 10 mg acepromazine in 8.5 mL H2O.  Both bullae

were rapidly removed and transferred to a Petri dish filled

with a physiological solution (Krebs) composed of (in mmol/L):

125 NaCl, 5 KCl, 1.6 CaCl2, 1.2 MgCl2, 1.2 NaH2PO4, 18

NaHCO3, and 8.2 glucose, and saturated with 95% O2 and 5%

CO2 at 35 oC (pH 7.4).  The SMA and some related radiating

arterioles were further dissected from the cochlea under a

dissecting microscope.  The vascular preparation was incu-

bated for 0.5–24 h in the physiological solution and then

transferred to a recording bath.  A 2-5 mm long segment of

the SMA was cleaned free of spongy connective tissues

and pinned with minimum nails to the silicon rubber layer

(Sylgard 184, Dow Corning, USA) in the bottom of an organ

bath (volume 0.5 mL) and continuously perfused with a 35 oC

Krebs solution.  When needed, a high potassium Krebs so-

lution was made by additional KCl and accordingly-reduced

NaCl.

Intracellular recording  Intracellular recording was made

from a segment of the SMA in the basal and the second turn

of the cochlea, as described previously[25,26].  Briefly, the

micro-electrode was filled with 2 mol/L KCl, with a tip resis-

tance of 60–150 MΩ.  Intracellular penetration was obtained

by advancing the electrode into the adventitial surface of

the vessel.  The transmembrane potentials and current were

simultaneously monitored by an Axoclamp 2B preamplifier

(Axon Instruments, Burlingame, CA, USA).

The electrical signals were recorded on a pen recorder

and a personal computer equipped with Axoscope8 and

pClamp6 software (Axon Instruments, USA) using sampling

intervals of 0.1, 0.5, or 10 ms.  The resting potential was

usually determined 5 min after the initial voltage jump at

penetration, and checked by the voltage jump at the with-

drawal of the electrode.  The input resistance was measured

by applying 0.5 nA 0.5–1 s current pulses via the recording

electrode with the bridge balance well adjusted on the pream-

plifier[26].

Tight-seal whole-cell recording  Using the Axopatch

200B amplifier (Axon Instruments, Union City, CA, USA),

conventional whole-cell recordings were performed on

smooth muscle cells in situ from the SMA[27].  The specimen

was continuously superfused with the normal external solu-

tion (0.2 mL·min–1) at room temperature (22–25 oC).  Record-

ing pipettes were made of borosilicate glass capillaries with

filament (OD 1.5 mm, ID 0.84 mm; World Precision

Instruments, Sarasota, FL, USA) and pulled by a P-80 puller

(Sutter Instruments, USA).  The pipette was filled with an

internal solution containing (in mmol/L): 130 KCl, 10 NaCl, 2

CaCl2, 1.2 MgCl2, 10 HEPES, 5 EGTA (118 nmol/L free Ca2+),

and 7.5 glucose, and adjusted to pH 7.2 and to osmolarity

290 mOsm/L.  The recording pipettes had a tip of ~1 µmol/L

OD and a resistance of ~5 MΩ.  Pipette capacitance was well

compensated, while membrane input capacitance uncompen-

sated to monitor access resistance and membrane param-

eters online.  The voltage clamping error introduced by the

current passing the access resistance was corrected offline

according to the equation Vm=Vc-IRa (where Vm is the actual

clamping membrane voltage and Vc is the apparent command

voltage), except where noted otherwise.  Leak subtraction

was done offline when appropriate.  The membrane current

or voltage signal was low-pass filtered at 5 or 10 kHz (–3 dB);

data were recorded on a personal computer equipped with a

Digidata 1322A AD-interface and pClamp 9.2 software (Axon

Instruments, USA) at a sampling interval of 10, 20, or 100 ms.

A gap-free recording was simultaneously carried out by a

Minidigi digitizer and Axoscope 9.2 software (Axon

Instruments, USA) at a sampling interval of 50 ms.

Drugs application  Drugs in known concentrations were

applied via the bathing solution.  The solution passing the

recording chamber could be switched, without change in the

flow rate or temperature, to one that contained a drug or one

that was of different ionic composition.  The drugs used in

this study were: NFA, indanyloxyacetic acid 94 (IAA-94),

disodium 4,4’-diisothiocyanatostilbene-2,2’-disulfonate

(DIDS), charybdotoxin (ChTX), iberiotoxin (IbTX), 1,2-bis(2-

aminophenoxy) ethane-N,N,N’,N’-tetraacetic acid tetrakis

acetoxymethyl ester (BAPTA-AM), tetraethylammonium

(TEA), 4-aminopyridine (4-AP), barium, glipizide, apamin,

CdCl2, and ouabain (all from Sigma Research Biochemicals,

St Louis, MO, USA).

Statistical analysis  The values of NFA-induced responses

were expressed as mean±SEM and compared with t-test.

Results

Effects of NFA, IAA-94, and DIDS on SMC in SMA  The

resting potentials (RP) of SMC in the SMA were measured in



Http://www.chinaphar.com Li L et al

791

a normal Krebs solution (5 mmol/L potassium) with 5–10 min

duration after the cell was penetrated and the membrane

potential level became stabilized.  We previously reported

that SMC have 2 stable but mutually-convertible (Figure 1B,

2A,4A), levels of RP, that is, 1 was near -45 mV and the other

was approximately –75 mV, termed as low and high RP, re-

spectively[26].  So under the same condition, stable intracel-

lular recordings were successfully made in more than 210

cells randomly penetrated along the segments of the proxi-

mal half of 77 SMA from either side.  The recording lasted

from 5 min to 6.5 h.  The mean RP were –75.46±0.59 mV (n=87)

and –40.66±0.41 mV (n=123) in the high and low RP cells,

respectively.  The mean RP showed no difference from our

preliminary study result (–74±0.46 mV and –41±0.52 mV)[26].

Direct intracellular recordings of SMC membrane poten-

tial indicated that membrane potential responses to bath

application of the Cl– channel antagonists (10–1000 µmol/L

NFA, 0.1–10 µmol/L IAA-94 and 200 µmol/L DIDS) made

striking difference between the low RP and high RP types of

SMC (Figure 1,2A,4A).  In low RP SMC, NFA (100 µmol/L)

caused a hyperpolarization of 13.9±3.4 mV (mean±SEM, n=27,

P<0.01) from an initial low resting membrane potential of

–43.59±1.47 mV (Figure 1A,1C).  The amplitude of NFA (100

µmol/L)-induced hyperpolarization ranged from 9.8 mV to

21.6 mV.  The NFA-induced responses were concentration -

dependent.  Figure 2A shows the records of membrane hy-

perpolarization in response to different concentrations of

NFA (10-300 µmol/L) obtained from 1 cell.  Figure 2B reveals

the concentration–response curve of NFA (3–1000 µmol/L)-

induced hyperpolarization.  The curve was a good fit for the

Figure 1.  The different effect of NFA on a high RP

cell and a low RP cell.  (A) Representative traces

show that 100 µ mol/L NFA hyperpolarized the cell

when it had an initial RP of -38 mV whereas NFA has

little response on the cell when it had an initial RP of

-76 mV.  (B) 300 µmol/L NFA shift the low RP cells to

the high RP cells with an initial RP of -48 mV, stayed

near thi s level dur ing the remaining period of

recording, and NFA also has little effect on the cell

shifted (curved arrow) to a high resting potential.  (C)

Column graph showing the amplitude of NFA-induced

hyperpolarzation on low or high RP cells, respectively.
bP<0.05, paired t test.
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data to the logistic equation Y=Emax/(1+[Kd/C]n) (where C

was the concentration of NFA, and Kd, the dissociation con-

stant of NFA, was 108 µmol/L).  The Hill coefficient (n) was

2.38.  (In some data, this figure was reached with the pre-

application of  50–100 µmol/L barium.) However, NFA (up to

100 µmol/L)  had little effect on the membrane potential of

cells that had an initial high RP level (Figure 1A) or that had

a high RP shifted from a low RP level (Figure 1B).

NFA shifts membrane potential  A shift of low RP SMC

to a permanent high RP level (approximately –65 mV to –90

mV) was frequently observed.  The hyperpolarization shift

was triggered by a 1–3 min application of high extracellular

potassium (10 mmol/L), acetylcholine (ACh; 3–10 µmol/L),

DPTA–NONOate (10 µmol/L, a nitric oxide donor), pinacidil

(≥100 µmol/L, an activator of the ATP-sensitive potassium

channel), or an unknown spontaneous reason.  In these

cases, the washout recovery of the membrane potential was

aborted[25, 26].  In the present experiment, NFA (≥100 µmol/L),

IAA-94 (≥10 µmol/L), and DIDS (≥200 µmol/L) also shifted

the low RP cells to the high RP cells with an initial RP at a low

RP level, the RP further shifted to a level near –75 mV and

stayed at this level during the remaining period of recording

from 15 min to 2 h (Figure 1B, 2A, 3A, 4A).

Effects of barium and ouabain on NFA-induced hyperpo-

larization  Barium (1–500 µmol/L) caused a robust depolar-

ization in high RP cells to a low level from –50 to –25 mV [26].

The depolarization induced by 1–50 µmol/L barium was usu-

ally completely reversible after a 5–10 min washout.

Moreover, in some cells, the RP shifted from a high level

(–71 to –85 mV) and remained at a level of approximately

-40 mV in the remaining 25–45 min recording time after the 50

µmol/L barium washout.  Figure 3A shows that barium (100

µmol/L) could cause depolarization of the high RP cell.

Barium (100 µmol/L) and NFA (300 µmol/L) did not shift the

RP from a high level to a low level.  On the contrary, NFA (300

µmol/L) did not shift the RP from a low level to a high level

with simultaneously-incubating barium (100 µmol/L).  We

noted that NFA (300 µmol/L) maintained the membrane po-

Figure 2.  The NFA-induced hperpolarizations and concentra-

tion-response curve on low RP cells.  (A) Representative trace

showing the records of membrane hyperpolarization in response

to different-concentration of NFA (10–300 µmol/L) obtained

from one cell.  (B) The concentration-response curve of NFA (3–

1000 µmol/L)-induced hyperpolarization.  The curve was a good

fit for the data to the logistic equation Y=Emax/[1+(Kd/C)n], C was

the concentration of NFA, Kd, the dissociation constant of NFA,

was 108 µmol/L.  The hill coefficient (n) was 2.38.
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tential around –63 to –64 mV with incubating barium (see

arrows of Figure 3A).  Ouabain (a Na+–potassium pump cur-

rent inhibitor, 100 µmol/L)-induced depolarization in the high

RP cells was often largely (32.8±1.8 mV, n=10) or fully revers-

ible after 15 min washout.  Figure 4A shows that NFA (100

µmol/L) could cause hyperpolarization in low RP cells and

shift the membrane potential from a low to high RP level.

Ouabain (100 µmol/L) could shift the membrane potential

from a high to low RP level again.  Moreover, NFA (100 µmol/L)

did not shift from a low to high RP level with simultaneously-

incubating ouabain (100 µmol/L).  Note that the membrane

potential of cells automatically shifted from a low to high RP

level when ouabain was removed (Figure 4A).

The responses of the cells that had shifted from a high to

low RP level with or without barium and ouabain were almost

always hyperpolarized by NFA (Figure 2A, 3A, 4A).  However,

the amplitude of NFA-induced hyperpolarization with simul-

taneously-incubating barium and ouabain was lower than

those seen in the low RP cells without the presence of barium

(100 µmol/L) and ouabain (100 µmol/L) (n=7, P>0.05, paired

t-test ).  Figures 3 and 4 reveal the different concentrations

of NFA (10–300 µmol/L)-induced hyperpolarization with and

without the pre-application of barium (100 µmol/L; Figure

3B) and ouabain (100 µmol/L; Figure 4B).

Moreover, 4-AP (1–10 mmol/L), glipizide (1–10 µmol/L),

ChTX (50–100 nmol/L), apamin (50–100 nmol/L), IbTX (100

nmol/L), and TEA (10 mmol/L) also caused either a small

depolarization (1–5 mV) or no membrane potential change in

high RP cells (n≥4), but never caused a shift to the low RP

level.  These compounds each caused a 3–10 mV depolariza-

tion in the low RP cells (n≥4, data not shown).

Mechanism of NFA-induced responses  To test the mecha-

nism of NFA-induced response in the SMC of the SMA, the

effect of antagonists of the potassium channels was obtained.

Figure 3.  The effect of barium on NFA-induced hyperpola-

rization.  (A) The responses of the cells that had shifted

from high RP level to low RP level, with or without Ba2+,

were almost always hyperpolarized by NFA.  However, the

amplitude of NFA induced hyperpolarization with simulta-

neously incubating Ba2+ were lower than those seen in low-

RP cells without the presence of Ba2+ (100 µmol/L) (n=7,

P>0.05, paired t test).   (B) The different-concentra tion

NFA (10-300 µmol/L)-induced hyperpolarization with and

without pre-applicating barium (100 µmol/L).
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NFA-induced hyperpolarization was almost completely

inhibited by IbTX (100 nmol/L, n=6, P<0.05, paired t-test), a

specific blocker of large-conductance Ca2+-activated potas-

sium channels (Figure 7C), ChTX (50-100 nmol/L, n=8, P<0.05,

paired t-test), a non selective blocker of Ca2+-activated po-

tassium channels (Figure 7A), and TEA (1-10 mmol/L, n=10,

P<0.05, paired t-test), a general blocker of a variety of potas-

sium channels, including the Ca2+-activated potassium cur-

rent (Figure 5A).  Besides this, we also used conventional

whole-cell patch-clamp to determine what kind of channel

was activated by NFA.  Figure 6A shows that the gap-free

trace represents the trace of the NFA-induced outward

current.  The 2 deflections (a and b) were whole-cell currents

caused by ramp voltage commands applied before (a) and

during (b) the NFA-induced outward current.  Figure 6B

shows the I/V curves (a and b) constructed by the ramp

commands (a and b) in Figure 6A.  Figure 6C shows the I/V

relation of the NFA-induced net current (b–a), which had a

reversal potential at –77 mV (after correction for Ra).  The

reversal potential was very close to the calculated Ek (–83 mV).

We also studied the effects of 4-AP (a selective voltage-

activated potassium channel [KV] blocker), barium (a selec-

tive inwardly-rectifying potassium channel [Kir] blocker),

glipizide (a selective ATP-sensitive potassium channel [KATP]

blocker), apamin (a selective small conductance Ca2+-acti-

vated potassium channel [SKCa] blocker) and ouabain (a Na+–

potassium pump current inhibitor) on SMC in order to test

whether other types of potassium channels take part in the

response induced by NFA.  However, they had little effect

on NFA-induced hyperpolarization in SMC in spite of the

concentration of 4-AP (0.5-1 mmol/L, n=7), barium (20-100

µmol/L, n=25), glipizide (3–5 µmol/L, n=7), apamin (50-100

nmol/L, n=7), and ouabain (100 µmol/L, n=19), which were

many times the half-block constant when corresponding to

potassium channels (Figure 2A,3,4,5B,5C,8)[28,29].

In addition, our experiment found that NFA-induced hy-

perpolarization could be almost completely inhibited by

BAPTA-AM (a membrane-permeant Ca2+ chelator, 50-100

Figure 4.  The effect of ouabain on NFA-induced hyper-

polarization.  (A)The responses of the cells that had shifted

from high RP level to low RP level, with or without ouabain,

were almost always hyperpolarized by NFA.  However, the

amplitude of NFA-induced hyperpolarization with simulta-

neously incubating ouabain were lower than those seen in

low-RP cells without the presence of ouabain (100 µmol/L)

(n=7, P>0.05, paired t test ).  (B) The different-concentra-

tion NFA (10-300 µmol/L)-induced hyperpolarization with

and without pre-applicating ouabain (100 µmol/L).
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µmol/L, n=9, P<0.05, paired t-test; Figure 7D).  After more

than 20 min, the response induced by BAPTA-AM largely

recovered if the bath time of BAPTA-AM was less than 7

min.  However, CdCl2 (a blocker of the non-selective Ca2+

channel, 100 µmol/L, n=6) had little effect on NFA-induced

hyperpolarization in SMC (Figure 7E).

The column plots of data statistics exhibited that 100 nmol/L

ChTX, 100 nmol/L IbTX, 10 mmol/L TEA, and 50 µmol/L

BAPTA-AM had a significant (P<0.05, P<0.01, paired t-test)

inhibition, but 1 mmol/L 4-AP, 3 µmol/L glipizide, 50 nmol/L

apamin, 10–300 µmol/L barium, 10-300 µmol/L ouabain, and

100 µmol/L CdCl2 had no significant (paired t-test) effects on

NFA  hyperpolarization.

NFA-induced hyperpolarizations could be blocked by

ChTX, IbTX, TEA, and BAPTA-AM, and the reversal po-

tential of the NFA-induced net current was near the Ek.  This

suggests that the Ca2+-activated potassium channels were

involved in the hyperpolarization in SMC.

Discussion

The main findings of this study include: (1) NFA, IAA-

94, and DIDS caused concentration-dependent hyperpolar-

izations in low RP level cells, but not in high RP level cells of

the SMA; (2) the NFA-induced hyperpolarization was spe-

cifically blocked by a non-selective Ca2+-activated potas-

sium channel blocker (ChTX), a specific large-conductance

Ca2+-activated potassium channel blocker (IbTX), a variety

of potassium channel general blockers (TEA), and membrane-

permeant Ca2+ chelator (BAPTA-AM), where it was not af-

fected by other potassium channel blockers; (3) these triggers

Figure 5.  Effect of K+ channel antagonists (TEA, 4-AP,

glilizide) on the NFA-induced hyperpolarization.  (A

to C) Representative traces show 100 µmol/L NFA-

induced hyperpolarization was almost completely sup-

pressed by 10 mmol/L TEA, but not significantly

changed by 1 mmol/L 4-AP and 3 µmol/L glipizide.  Scale

bars in C apply to all traces.  (D) Column graph shows

the data of mean±SEM from the cell groups.  bP<0.05,

paired t test.
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(including NFA) had a large membrane hyperpolarization in

common, which was a key factor to invoke the maximal Kir

and Na+–potassium pump activation and keep it activated in

the SMC.  Taken together, the results suggest that NFA, a

Cl– channel antagonist, hyperpolarizes the vascular cells

when the cells are at the low RP level.  Our findings extended

the observations from jejunum SMC, corneal epithelium cells,

and coronary SMC, where NFA and flufenamic acids  (a Cl–

channel antagonist) increased a calcium-dependent or inde-

pendent potassium current[23,30-32].

Moreover, the recorded cells were composed of both SMC

and EC roughly at a 2:1 ratio (data not shown).  Both types of

cells showed electrical coupling within the same type of cells

and between the 2 types of cells, thus they generally had

similar electrical membrane properties; for example, both had

2 RP levels and responded the same way to the application

of high potassium and ACh[26], so we refer to both SMC and

EC by “SMC” or “cells” unless specified.

Our data support the notion that the NFA-induced hy-

perpolarization or the outward current in SMC of the SMA is

generated by opening the KCa channel.  Evidence shows

that the hyperpolarization was blocked by ChTX for KCa,

IbTX for BKCa
[33], BAPTA-AM for chelate intracellular Ca2+,

TEA for a variety of potassium channels[34], and the reversal

potential of the NFA-induced net current near the Ek, but not

by selectively blockers for other potassium channels, in-

cluding barium for Kir, glipizide for KATP, 4-AP for KV, apamin

for SKCa and ouabain for the Na+–potassium pump[12,25,26,35-37].

Multiple types of KCa channels have been described in dif-

ferent systems and in the same tissue, including vascular smooth

muscle, and they are differentiated by several parameters ,such

as conductance, pharmacology, and kinetics[8,38-40].  Large,

intermediate, and small conductance KCa channels have all

been identified in EC[26,35].  The large-conductance KCa is a

special member of the family of ligand-gated potassium chan-

nels because its gating is both ligand- and voltage-

dependent.  Channel opening requires calcium binding to

sites on the cytoplasmic face of the channel, and in the pres-

ence of calcium, channel opening is increased by membrane

depolarization.  NFA may activate the BKCa that is sensitive

or not to ChTX[23, 41].  Ottolia and Toro[23] indicate that BKCa

channels possess a specific NFA receptor.  Furthermore, the

opening of BKCa channels by NFA is caused by an increase

in the sensitivity of channel gating to calcium.  The NFA

binding site is not the same as the one for ChTX and TEA.

Generally, the receptor for NFA is not located at or near the

pore of the BKCa channel, and NFA association to its recep-

tor does not alter the functional properties of TEA and ChTX

receptors located in the external vestibule of the channel

pore[23].  Jury et al reported that NFA acts by opening potas-

sium channels, some of them TEA sensitive and some not.

Figure 6.  The NFA-induced outward current from a situ smooth

muscle cell.  (A) Representative trace of NFA-induced outward current.

The two deflections (a and b) were whole-cell currents caused by

ramp voltage commands applied before (a) and during (b) the NFA-

induced outward current.  (B) I/V curves (a and b) constructed by the

ramp commands at (a and b) in (A).  (C) I/V relation of the NFA-

induced net current (b-a), which had a reversal potential at -77 mV

(after correction for Ra).  The reversal potential was very close to

calculated Ek (-83 mV).
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BKCa channels are sensitive to both Ca2+ and voltage.  It has

been postulated that these channels might be involved in

the membrane repolarization that follows depolarization and

the associated increase in intracellular free calcium during

an action potential[8].  Poronnik et al’s work has demon-

strated that flufenamic acid can raise intracellular calcium in

ST885 cells, a neonatal mouse mandibular line[43].  As the out-

ward potassium current reported in Farrugia et al’s study

was not calcium sensitive, changes in intracellular calcium

should not be a factor in modulating this current in jejunal

SMC[31].

The application of BAPTA-AM indicates that NFA-in-

duced hyperpolarization was dependent on the increase of

the intracellular calcium concentration.  Recently, it has found

that there is overlapping pharmacology of calcium-depen-

dent potassium and calcium-dependent Cl– channels[44].

Figure 7 .   Hyperpolarizat ion by NFA were

blocked by ChTX, IbTX and BAPTA-AM, but

not by apamin and CdCl2.  (A to E) Representa-

tive traces show 100 µmol/L NFA-induced hyper-

polarization was almost completely suppressed by

100 nmol/L ChTX, 100 nmol/L IbTX, 50 µmol/L

BAPTA-AM, but not significantly changed by 50

nmol/L apamin and 100 µmol/L CdCl2.  Scale

bars in E apply to all traces.  (F) Column graph

shows the data of means±SEM from the cell groups.
bP<0.05, cP<0.01, paired t test.
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However, in the present study, NFA-induced hyperpolariza-

tion could be blocked by ChTX , IbTX, and TEA.  Furthermore,

the reversal potential of the NFA-induced outward current

was near the Ek (approximately –77 mV; Figure 7D).  Also,

NFA-induced hyperpolarization was blocked by BAPTA-AM

(Figure 8D), not by CdCl2 (Figure 8E).  This evidence sug-

gests that the KCa channel is involved in NFA-induced

hyperpolarization.  However, a lot of questions still remain:

for example, where does cytosolic calcium come from, and

which receptor can be activated by NFA? This study will be

the basis of our significant work in the future.

The elevation of extracellular potassium can activate the

Kir and the electrogenic Na+–potassium pump that causes

hyperpolarization[45-47].  NFA indirectly hyperpolarizes the

SMC through potassium release by activating the KCa, then

the increased extracellular potassium activates the Kir and

Na+–potassium  pump current in SMC.  A permanent shift

from a low to high RP level can be triggered by high potas-

sium (Kir and Na+–potassium pump activator), ACh[23,26],

NFA[23,41] (activating BKCa), pinacidil, and nitric oxide (KATP

activators)[25].  Since these triggers (including NFA) have a

large membrane hyperpolarization in common, it is suggested

that the hyperpolarization itself is a key factor to invoke the

maximal Kir and Na+–potassium pump activation and keep it

activated.

In summary, using intracellular and tight-seal whole-cell

recording methods, we suggest that NFA induces concen-

tration-dependent, reversible hyperpolarization in SMC in

the cochlear SMA via the activation of the Ca2+-activated

potassium channels.  Thus we think NFA is an unreliable

pharmacological tool to evaluate Cl– channel contributions

to smooth muscle function[42].
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