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Abstract
Aim: To examine the role of atorvastatin on volume-overload-induced heart fail-
ure and to test the hypothesis that atorvastatin inhibits MMP-2 and 9 expression
in heart failure with non-ischemic etiology.  Methods: Arteriovenous (AV) fistula-
treated rats were administered with atorvastatin (3 mg·kg-1·d-1) or vehicle for 17
weeks.  Ventricular hypertrophy and heart failure were assessed by echocardio-
graphy, B-type natriuretic peptide BNP mRNA level and morphological measure-
ment.  MMP-2, 9 expression were measured by Western blot and zymography.
Results: Atorvastatin decreased left ventricular end diastolic diameter from
6.86±0.51 mm to 6.28±0.37 mm (P<0.05), increased fractioning shortening from
41.4%±4.5% to 52.7%±4.2% (P<0.01), decreased ratio of BNP/GAPDH mRNA level
from 0.43±0.03 to 0.27±0.03 (P<0.05).  Similar data were observed for morphologi-
cal measurement.  Protein expression and enzyme activity of MMP-2 and 9 in the
left ventricle tissue were significantly increased 18 weeks after surgery and
atorvastatin also prevented those changes.  Conclusion: Left ventricular remod-
eling induced by AV fistula was profoundly changed by atorvastatin treatment.
Hypertrophy was attenuated and global function was improved.  These positive
effects of atorvastatin on heart failure were associated with decreased MMP-2
and 9 protein expression and enzyme activity.
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Introduction
3-Hydroxy-3-methylglutaryl-coenzyme A reductase

inhibitors, or statins, are widely used clinically as a lipid
lowering agent.  Many studies have demonstrated that
statins prevent the development of heart failure in ischemic
heart disease or after myocardial infarction[1–3], but those
effects of statins are always considered beneficial because
of its role on atherosclerotic plaque, such as decreasing
plasma cholesterol levels, inhibiting platelet activation, sta-
bilizing plaque, and preventing cell proliferation and
migration.  However whether statins also inhibit heart failure
in non-ischemic heart disease and its mechanism for it is still
controversial.  Recently, some clinical and basic studies in-
dicated that statins improved cardiac function and survival
in non-ischemic heart failure[4–8].  Concerns have also been
raised about the potential adverse effects of statins on heart

failure, such as decreased serum cholesterol, which causes
the worst outcomes in heart failure[9] and reduced ubiquinone
(coenzyme Q-10)[10–12], which may adversely affect mitochon-
drial and cardiac muscle function.

Matrix metalloproteinases (MMP) are a family of zinc-
dependent enzymes that play an important role in the degra-
dation of extracellular matrixes.  Changes in expression and
activity of several MMP have been identified in failing
myocardium, and pharmacological inhibition of some MMP
have resulted in the suppression of heart failure[13–17].
However, MMP species are not uniformly upregulated in
heart failure; it is dependent on different heart failure etiolo-
gies and different stimulus.  For example, MMP-2 and 3 were
only upregulated in human non-ischemic dilated cardiomy-
opathy (DCM); MMP-9 was upregulated while MMP-1 was
downregulated in both non-ischemic and ischemic DCM[18].

Some animal strains and heart failure models have been
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used to demonstrate the mechanisms of statins on heart
failure, such as spontaneously hypertensive rats, Dahl salt-
sensitive rats[19], the aortic stenosis model, and the rapid-
pacing-induced model.  However, all of the models have their
shortcomings and some do not closely mimic the alterations
observed clinically in most patients.  In the present study,
we planned to use the arteriovenous (AV) fistula-induced
heart failure model, a well-established and thoroughly char-
acterized model of volume-overload in rats, to evaluate the
effect of atorvastatin on heart failure and its role on myocar-
dial MMP-2 and 9 expression and activity.

Materials and methods

Surgical preparation and experimental protocol  This
study was approved by our institutional animal research com-
mittee (Zhejiang University, Hangzhou, China) and con-
formed to the Guide for the Care and Use of Laboratory Ani-
mals published by the United States National Institute of
Health (NIH publication, No 85-23, revised 1996).  Four-week
old, male Sprague-Dawley rats, weighing 70 g, were obtained
from the Medical Laboratory Animal Center (Zhejiang
University, China).  Chronic volume overload was induced
using an infrarenal AV fistula model.  A ventral abdominal
laparotomy was performed to expose a 20.0 mm portion of the
aorta and inferior vena cava at a level -3.0 mm below the renal
arteries.  Both vessels were occluded with finger pressure
above and below the fistula site, and an 18 gauge short-
bevel needle was passed through the exposed abdominal aorta
and advanced into the vena cava.  The rats were randomly
divided into groups as follows: controls (CON), untreated
fistula rats (FIS), treated fistula rats (ATO) and treated with 3
mg·kg-1·d-1 a dosage of atorvastatin.  The dosage we chose
was based on some of our pilot studies and previous pub-
lished research[20].  The atorvastatin was dissolved in 0.9%
saline and administered by daily gavages.  The rats were
weighed before the initial dosing and weekly thereafter dur-
ing treatment to ensure constant dosing.  Treated fistula rats
received the drug beginning 1 week after fistula and until the
completion of the study at 18 weeks after surgery.

Echo study  The rats were anesthetized with ketamine
HCl (50 mg/kg), and transthoracic echocardiography was
conducted at 18 weeks.  All rats with the HP Sonos 100
(Hewlett-Packard Co, Stockton, CA, USA) with a 10 MHz
imaging linear scan probe transducer.  The heart was imaged
at the level of the papillary muscles to obtain left ventricle
(LV) wall thickness and fractional shortening.  Three beats
were averaged for each measurement.

We determined the LV end diastolic diameter (LVEDd) as

the widest and the end systolic diameter (LVEDs) as the
narrowest dimension in the M-mode recordings.  LV
fractioning shortening (FS) was calculated according to the
following formula:

           LV FS (%)=(LVEDd–LVEDs)/LVEDd×100
Zymography of MMP activity  LV myocardial samples

were homogenized in 2 mL of an ice-cold extraction buffer
containing cacodylic acid (10 mmol/L), NaCl (0.15 mol/L),
ZnCl (20 mmol/L), NaN3 (1.5 mmol/L), and 0.01% Triton X-
100 (pH 5.0).  The homogenate was then centrifuged (4 °C, 10
min, 12 000×g) and the supernatant was saved and stored at
-80  °C.

The myocardial extracts were loaded onto SDS-PAGE gel
containing 1 mg/mL gelatin.  The gelatin was stirred and
heated at 50 °C for 1 h before adding to the gel.  The myocar-
dial extracts, at a final protein content of 4 µg, were loaded
onto the gels using a 3:1 sample buffer (10% SDS, 4% sucrose,
0.25 mol/L Tris-HCl, and 0.1% bromophenol blue, pH 6.8).
The gels were run at 20 mA/gel, maintaining a running buffer
temperature of 4 °C.  After that, the gels were washed twice
with 2.5% Triton X-100 for 30 min each on ice and incubated
with substrate buffer (50 mmol/L Tris-Cl, 5 mmol/L CaCl2,
0.02% NaN3, and 1% Triton X-100, pH 8) at 37 °C for 18 h.
After incubation, the gels were stained with 0.05% Brilliant
Blue R-250 (Sigma, St Louis, MO, USA), destained with 10%
acetic acid and 20% methanol (v/v), and digitized.  The
gelatinolytic activity was tested as specific MMP activity
by adding EDTA and phenylmethylsulphonyl fluoride PMSF.
EDTA inhibited gelatinolytic activity, but PMSF did not.

Immunoblot analysis  Proteins were isolated from the LV
tissue, and 50 µg of total proteins were analyzed on 10%
SDS-PAGE under the reducing condition.  The proteins were
blotted onto Polyvinylidene fluoride PVDF membranes and
incubated in 5% non-fat milk in PBS for at least 1 h.  After
incubation, the PVDF membranes were subjected to immuno-
blot analysis with rabbit polyclonal antibodies to MMP-2 or
MMP-9 (1:200 dilutions; Santa Cruz Biotechnology, Santa
Cruz, CA, USA) or actin (1:400 dilutions, Santa Cruz Biote-
chnology, USA) Immune complexes were detected with
appropriate horseradish peroxidase-conjugated secondary
antibodies and quantitated with Quantity One Image soft-
ware (Bio-Rad, Hercules, CA, USA).

RNA isolation and RT-PCR analysis  Total RNA was
extracted from the LV tissue using TRIzol reagent.  Briefly,
total RNA (2 µg) was converted to single stranded cDNA
using a reverse transcription system (Promega, Madison,
WI, USA).  The target cDNA was amplified using the follow-
ing sense primer and antisense primers for rat brain natri-
uretic peptide (BNP).  Sense: 5'-GGA AAT GGC TCA GAG
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ACA GCT C-3'; antisense: 5'-AAG TCT CTC CTG GAT CCG
GAA G-3'.  For GAPDH, sense: 5'-AAG GTC GGA GTC AAC
GGA TTT-3'; and antisense: 5'-AGA TGA TGA CCC TTT
TGG CTC-3'.  The amplification cycles were 95 °C for 1 min,
55 °C for 1 min, and 72 °C for 1 min.  After 30 cycles, the PCR
products were separated by electrophoresis on 1.8% agar-
ose (106 bp for BNP and 352 bp for GADPH).

Morphological measurement  The LV was fixed with 4%
paraformaldehyde, embedded in paraffin, sectioned at a thick-
ness of 6 µm, and stained with hematoxylin-eosin and van
Gieson staining.  The degree of collagen fiber accumulation
was quantified blindly on 6 sections per animal (12 randomly
selected fields per section), and the ratio of the van Gieson
staining fibrosis area to the total myocardium area was
calculated.

Statistical analysis  Statistical analyses were performed
with SPSS 10.0 software (SPSS Inc, Chicago, IL, USA).  All
grouped data were expressed as mean±SD.  Grouped data
comparisons were made by one-way ANOVA followed by
Bonferroni post-hoc testing.  A P value of <0.05 was consid-
ered statistically significant.

Results
Left ventricular dilation and hypertrophy  The FIS rats

developed remarkable left ventricular dilation and hypertro-

phy compared with the CON rats at 18 weeks.  LVEDd, LVEDs,
and heart weight HW/body weight (BW) increased signifi-
cantly in the FIS rats compared with the CON rats.  FS in the
FIS rats (41.4%±4.5%) decreased significantly compared with
the CON rats (55.1%±4.5%, P<0.01).  Atorvastatin treatment
suppressed left ventricular dilation and hypertrophy
significantly.  LVEDd, LVEDs, and HW/BW in the ATO rats
decreased remarkably compared with the FIS rats.  Atorvas-
tatin treatment also improved FS from 41.4%±4.5% to
52.7%±4.2% (P<0.01; Table 1).

Marked left ventricular dilation and interstitial fibrosis
were observed in the FIS group compared with the CON
group.  Atorvastatin treatment inhibited the left ventricular
dilation and interstitial fibrosis significantly (Figures 1, 2).
Atorvastatin reduced the ratio of fibrosis from 8.6%±1.4% in
the FIS group to 6.4%±1.2% in the ATO group (P<0.05;
Figure 2B).

Left ventricular BNP mRNA level  The mRNA levels of
BNP increased about 2-fold in the FIS group compared with
the CON group.  Atorvastatin treatment reduced the mRNA
levels of BNP significantly, and the ratio of BNP/GAPDH in
the FIS group decreased from 0.43±0.03 to 0.27±0.03 in the
ATO group (P<0.05, Figure 3A, 3B).

Effect of atorvastatin on myocardial MMP-9 and MMP-2
protein level and activity  In the FIS rats, the MMP-9 protein

Table 1.  Left ventricular dilation and hypertrophy in FIS rats.  Data are expressed as Mean±SD.  bP<0.05, cP<0.01 vs CON.  eP<0.05,
fP<0.01 vs ATO.

                           n     LVEDd (mm)         LVEDs (mm)        FS (%)                BW (g)      HW (g)     HW/BW (g/kg)

CON 7 5.63±0.26 2.53±0.21 55.1±4.5 428±16 1.25±0.10 2.92±0.15
AT O 8 6.28±0.37b 2.98±0.21b 52.7±4.2 408±21 1.25±0.07 3.06±0.07
FIS 7 6.86±0.51ce 3.99±0.37cf 41.4±4.5cf 397±18b 1.32±0.13 3.33±0.25ce

BW= body weight, HW=heart weight, CON= controls, FIS =untreated fistula rats, ATO=treated fistula rats, LVEDd= left ventricle end diastolic
diameter, LVEDs= left ventricle end systolic diameter, FS= fractioning shortening.

Figure 1.  Effect of atorvastatin
on left ventricular dialation at 18
weeks.  H-E staining of left ven-
tricular tissues.  CON=controls;
F IS = u nt r e a t ed  fi s t u l a  r a t s ;
ATO=treated fistula rats; IVS=
inter ventricular septum; LVPW=
left ventricular posterior wall.
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level at 18 weeks after surgery was significant higher
compared with the CON rats.  Although the protein level of
MMP-9 in the ATO rats was still significantly higher than
the CON group, treatment with atorvastatin 17 week after
surgery markedly inhibited the MMP-9 protein expression
compared with the FIS rats (P<0.01, Figure 4A, 4B).  Ator-
vastatin treatment slightly, but still significantly, decreased
the protein level of MMP-2 in the ATO rats compared with
the FIS rats (P<0.05; Figure 4A, 4B).  There were no signifi-
cantly differences in the MMP-2 protein level between the
ATO rats and the CON rats.  Changes of MMP-9 and MMP-2
activity measured by zymography were consistent with the
changes of MMP-9 and MMP-2 protein levels (Figure 5).

Discussion
The rats with an AV fistula can develop heart failure with

normal sodium balance.  This heart failure experimental model
is characterized by the hemodynamic and neurohormonal
changes, which closely mimic the alterations observed clini-
cally in patients with heart failure[21,22].  Previous reports in-
dicated that cardiac hypertrophy occurred within 1 week af-
ter AV fistula operation, while decompensate heart failure
developed 8–16 weeks after the creation of AV fistula, char-
acterized by circulatory congestion and decreased cardiac
function[23].  The present study demonstrates that long-term
administration of atorvastatin could prevent volume-over-
load-induced heart failure and left ventricular hypertrophy.
More and more research has indicated that statins have thera-
peutic properties that are of potential benefit to heart failure
with non-ischemic etiologies, irrespective of lipid levels.
Rainer et al[24] demonstrated that simvastatin normalized au-
tonomic neural control and reduced plasma norepinephrine

in rapid-pacing-induced heart failure rabbits.  Chen et al[20]

demonstrated that simvastatin, initiated after hypertrophy,

Figure 2.  Effect of atorvastatin on left ventricular fibrosis at 18
weeks. Van Gieson staining was used for the determination of left
ventricular fibrosis (A) and ratio of fibrosis (B).  CON=controls (n=7),
FIS=untreated fistula rats (n=7), ATO=treated fistula rats (n=8).  Data
are expressed as mean±SD. cP<0.01 vs CON, eP<0.05 vs ATO.

Figure 3.  Effect of atorvastatin on the level of BNP mRNA level.
BNP mRNA was analyzed by RT-PCR at the end of 18 weeks.  CON=
controls,  FIS =untreated fistula  ra ts,  ATO=treated fistula  ra ts,
M=marker.  Data are expressed as mean±SD.  bP<0.01 vs  CON,
eP<0.05 vs ATO, n=7 for all groups.
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inhibited oxidative stress and prevented heart failure in rats
with aortic stenosis.  Inflammatory cytokines may also be
involved in the role of statins on heart failure.  Inflammatory
cytokines, which are produced by activated macrophages,
vascular wall cells, and cardiac myocytes, were elevated in
heart failure.  These cytokines, especially TNF-α and inter-
leukin-6 (IL-6), exert negative inotropic effects and induce
apoptosis in cardiac myocytes.  Short-term simvastatin
therapy has been tested to improve cardiac function and
symptoms in patients with idiopathic dilated cardiomyopa-
thy by reducing plasma concentrations of TNF-α and IL-6[4].
Failing myocardium of patients with DCM was characterized
by upregulation of NADPH oxidase-mediated ROS release
associated with increased Rac1 activity.  Oral atorvastatin or
pravastatin treatment could inhibit myocardial Rac1-GTPase

activity[5].  These data suggest that antioxidative effects of
statins may also be beneficial for heart failure.  Other mecha-
nisms of statins, such as promoting angiogenesis[25], increas-
ing endothelial NO production, improving endothelial func-
tion and endothelial progenitor cell mobilization[3], have been
demonstrated to take effect in heart failure after myocardial
infarction, but whether these effects are also beneficial to
heart failure with non-ischemia etiologies is still unknown.

Interstitial collagenases (such as MMP-1 and MMP-13),
stromelysins (such as MMP-3), and gelatinases (such as
MMP-2 and MMP-9) are expressed in mammalian myo-
cardium.  The relationship between MMP and the LV remod-
eling process has been demonstrated through the use of
animal models of developing chronic heart failure, transgenic
models, and the use of pharmacological MMP inhibition
studies.  Clinical research has also shown that MMP are
involved in the process of LV remodeling and heart failure.
The Framingham Heart Study demonstrated that plasma
MMP-9 levels were associated with increased LV diastolic
dimensions and increased wall thickness in men[26].  Levels
of plasma MMP-2 were tested for an association with neuro-
hormonal activation and levels of noradrenaline in human
heart failure[27].  In ischemic heart failure, MMP-2 and MMP-
13 levels increased, and statins were demonstrated to ame-
liorate ventricular remolding through inhibiting them[28].
Fibrosis during the progression of heart failure was also
associated with increased MMP[29].  However, the types of
MMP expressed in normal and congestive heart failure states
remains unclear.  The molecular basis for a selective portfo-
lio of MMP to be increased within the failing human myocar-
dium is likely due to the type, degree, and duration of the
specific extracellular stimuli that are presented.  Statins have
been claimed to inhibit MMP in atherosclerosis[30–32], but its
role on MMP in non-ischemic heart failure is not clear.  This
study found that atorvastatin prevented heart failure and LV
hypertrophy, and these effects were associated with decreas-
ed MMP-2 and MMP-9 protein expression and activity.  Sev-
eral possible mechanisms may be involved in the role of
statins on the MMP system.  Decreasing the secretion of
inflammatory factor by statins is one of the possible
mechanisms.  For example, TNF-α, an important MMP regu-
lator which activates MMP through the MAPK, NF-kappaB,
and AP-1 pathways[33–35], may be involved in the role of statins
on MMP.  Turner NA et al[36] also demonstrated that
simvastatin reduces MMP-9 secretion from human saphen-
ous vein, smooth muscle cells by inhibiting isoprenoid for-
mation and RhoA kinase. But whether it is the same in myo-
cardium is unknown.  More research needs to be done about
the role of statins on different MMP species in heart failure.

Figure 4.   Effect of atorvastatin on the level of MMP-2,9 protein
level. CON=controls, FIS=untreated fistula rats, ATO=treated fistula
rats.  Data are expressed as mean±SD.  cP<0.01 vs CON, eP<0.05 vs
ATO, fP<0.01 vs ATO, n=5 for all groups.

Figure 5.   Effect of atorvastatin on MMP-2, 9 activities. MMP-2,
9 activities were measured by zymography.  CON=controls, FIS =un-
treated fistula rats, ATO=treated fistula rats, M=marker.
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In summery, our study demonstrated that atorvastatin
may be beneficial for non-ischemic heart failure and may
inhibit MMP-2 and 9 expression and activity.
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