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Introduction
In recent years there has been increasing interest in the

use of biologically active phytochemicals in cancer
prevention.  In particular, many in vitro studies using a wide
range of natural products have demonstrated a preferential
induction of cell cycle arrest or apoptosis in tumor cell lines
compared to lines derived from non-tumor tissue.  On further
investigation, phytochemicals have been found to modulate
the expression or activity of a large number of cellular pro-
teins which are key for cell survival and the transformed
phenotype.  However, there is also much concern that many
of these effects[1–3] are irrelevant in vivo, since the concen-
trations used are often orders of magnitude greater than

appear to be achievable in the human body.
In this review, we have attempted to address this con-

cern for a few of the most studied diet-derived compounds.
For each agent, we have assimilated reported in vivo concen-
trations, based where possible on human data.  We have
then surveyed the in vitro biological effects at these or lower
doses.  For the indoles only, we have included data on phase
I drug metabolizing activity relating to altered estrogen
metabolism.  Encouragingly, a significant amount of pub-
lished data validates some of these changes in vivo.

For a number of reasons, some guesswork was involved
in deciding on the most relevant in vitro doses for considera-
tion.  First, adding a compound directly to a cell culture may
deliver a much higher local dose than occurs following
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ingestion in the body.  Second, some if not all of the com-
pounds may undergo metabolism in vivo to other more or
less active derivatives and such metabolism may not be pos-
sible in culture.  Third, higher in vivo doses than those so far
reported may be achievable by administration of a pure com-
pound rather than a dietary source, or an optimized formula-
tion of a pure compound.  Fourth, some target tissues may
receive a higher (or more prolonged) dose than the reported
peak levels in plasma.  Fifth, some target tissues, such as
skin, oral cavity, gastrointestinal tract, and bladder, may
receive higher doses because they are not dependent on
circulating levels.  The colon, for example, can be exposed to
significant amounts of (unabsorbed) excreted material and
the lining of the bladder may be exposed for substantial
periods of time to any compounds concentrated in urine.
Finally, where diet is concerned, any one compound may be
poorly bioavailable, but with dozens, even hundreds, of
active molecules being ingested together, the cumulative
dose of similar acting compounds may be significantly higher.

It should not be forgotten that some natural products
have exhibited toxicity in vivo when given in high doses, so
there is also an argument for the use of higher concentra-
tions in vitro to indicate the full range of activity of these
molecules.

Indole-3-carbinol and diindolylmethane

Indole-3-carbinol (I3C) is derived from glucobrassicin,
found in cruciferous vegetables.  Diindolylmethane (DIM) is
an acid condensation product formed from 2 molecules of
I3C.  In vivo, this is thought to occur in the acid conditions of
the stomach.  Data for mammals only are considered here.

Bioavailability of I3C and DIM in humans  Information
on the bioavailability and tissue distribution of I3C or DIM
in humans is very limited[4–6].  However, there are a number
of studies in which oral administration of I3C resulted in a
biochemically or clinically measurable outcome, indicating
that the absorption of I3C and/or its acid-condensation prod-
ucts does occur.  Administered doses of I3C have ranged

from 200 to 500 mg/d (~ 6–7 mg/kg), typically for periods of
1–6 months, although treatments up to 82 months have also
been reported[7–14].  A dose-dependent effect (placebo, 200
and 400 mg/d for 3 months) was observed in the treatment of
cervical intraepithelial neoplasia[7], and 200 or 400 mg/d were
similarly effective against vulval intraepithelial neoplasia[14].
In dose-escalation studies for breast cancer prevention, 300
mg/d (minimum) increased the urinary estrogen metabolite
ratio of 2-hydroxyestrone to 16 alpha-hydroxyestrone; 800
mg/d did not provide additional benefits over 400 mg/d in
adult women[15,16].  Elevated cytochrome P450 activity was
responsible for an increase in 2-hydroxylation of estrogen,
increasing the ratio of 2-OH:16-OH estrone[16], which is
regarded as favorable for the prevention of breast cancer
and human papilloma virus (HPV)-related neoplasias[7–14].

Two studies detected DIM in plasma (2.5 µmol/L maxi-
mum at 2 h, gradually decreasing by 12 h) or in urine follow-
ing oral administration of I3C (Table 1).  I3C was not detected
in plasma or serum following oral doses of 400–1200 mg[4,5].
DIM was also detected in the urine of a patient receiving
DIM[4].  In a pilot study using a formulation of enhanced
absorption DIM (BioResponse DIM, 108 mg/d for 30 d),
increased 2-hydroxylation of estrogen was also reported[6].

Bioavailability of I3C and DIM in animals  Radio-labeled
I3C was used to follow distribution and tissue content in
several studies, although this method did not differentiate
between I3C and related products.  In rats receiving 50 mg
14C-I3C by gavage, I3C equivalents peaked at 28 µmol/L in
the blood and 121 µmol/L in the liver after 30 min.  The
labeled product was detectable in the 100 µmol/L range from
10 min to 2 h following dosing[17].  High maximal concentra-
tions of the I3C equivalent, but not I3C itself, were detected
in the liver (1154 µmol/L), kidney, lung (436 µmol/L), blood
(320 µmol/L), and tongue of the rats given 3H-I3C in the diet
for 1 week (0.88+/–0.074 mmol/kg/d)[18].  Once a steady state
had been reached, excretion in feces and urine accounted for
75% dose/d, the majority of this being present in the feces
by 110 h, indicating that either the dose was not absorbed or
that a major excretory route was via bile.  When 14C-I3C was

Table 1.  Bioavailability of DIM in humans following oral administration of I3C.

    I3C dose mg/day       Peak time point (h)               DIM plasma µg/mL (µmol/L)  DIM urine µg/mg creatinine     Reference

200 12.1 4
400 15.6
400–1200 2 (1 g)–3 (400 mg) 0.3 (400 mg)–2.5 (1g) 5
400 chronic 1.3 0.3
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given to pregnant mice, it was detected in the fetal liver,
stomach, kidney, intestine, and lung (100–300 µmol/L) after
8 h of maternal exposure[19].

Anderton et al detected I3C and DIM in tissues follow-
ing the dosing of mice with 250 mg/kg I3C (Table 2) using an
HPLC method allowing the simultaneous identification and
quantification of I3C and its derivatives[20].  The maximum
level of 28 µmol/L I3C was observed at 15 min, falling below
the level of detection by 1 h after dosing.  I3C was detected
in the liver (170 µmol/L)>kidney (116 µmol/L)>lung and heart>
plasma>brain.  The levels of DIM peaked at around 2 h in the
liver (16 µmol/L)>lung and kidney>heart>brain>plasma (4
µmol/L), and by 24 h, were still detectable at approximately
0.5 µg/g in the brain and liver.  The presence of linear trimer,
1-(3-hydroxymethyl)-indolyl-3-indolylmethane and indolo(3,
2b)carbazole, together with oxidative metabolites of I3C, was
also documented.  In a further study, Anderton et al com-
pared concentrations of DIM in tissues of mice dosed with
either pure DIM (250 mg/kg; Table 2) or an equivalent dose
of the enhanced absorption BioResponse DIM[21].  The tis-
sue distribution of DIM was similar to that reported previ-
ously following the administration of I3C with maximal con-
centrations around 160 µmol/L in the liver[20].  The BioRes-
ponse DIM resulted in levels approximately 50% higher than
those obtained with unformulated DIM.

Thus, following the oral administration of I3C, both I3C
and DIM were detectable at µmol/L concentrations in the
blood and multiple organs.  I3C was rapidly absorbed and
cleared from the blood and tissues within 1 h, while DIM
peaked slightly later and was more persistent.  The observa-
tion of I3C in the blood and tissues at these very early time
points belies previous assumptions that I3C is not absorbed,
but undergoes complete acid condensation in the stomach.
Several studies have revealed distinct responses to I3C and
DIM in animal models[22–26].  Therefore, the in vivo activity of
dietary I3C cannot be attributed completely to the produc-
tion of DIM, although response due partially to DIM con-
version is probable.

Physiologically relevant concentrations of I3C and DIM
As no data are available for achievable levels of I3C in

humans, we extrapolated from animal studies[20,21].  The maxi-
mum plasma and tissue concentrations attained in mice for
I3C were 28 and 170 µmol/L (15 min) and for DIM, 4 and 16
µmol/L (2 h), respectively (Table 2).  By allometric scaling,
the I3C dose given to mice would equate to a 20 mg/kg dose
in humans (1200 mg/d), which yielded the maximal serum
concentration 2.5 µmol/L DIM (2 h), with no I3C detectable
after 1 h[5].  Therefore, maximal detectable DIM concentra-
tions following I3C administration are similar in mice and
humans, and the discrepancy in I3C detection is likely to be
caused by the sensitivity of methods and selection of time
points.

The maximum levels of DIM achieved in animals follow-
ing a dose of a pure compound range from 24–200 µmol/L
(Table 2), with BioResponse DIM resulting in 50% higher
bioavailability.  The dose of BioResponse DIM used in
humans was 108 mg (~1.3–1.9 mg/kg)[6], which might be
expected to give levels in the range 3–30 µmol/L.

For the purposes of this review, the effects of the physi-
ological concentrations up to 150 µmol/L I3C and 50 µmol/L
DIM in vitro have been considered.

In vitro mechanistic studies using low doses of I3C or
DIM  Several mechanisms are responsible for the chemo-
preventive activities of I3C and DIM, as summarized in Tables
3 and 4.  Both agents induce activity of phase I and II
enzymes involved in the biotransformation and elimination
of carcinogens and steroid hormones.  While detailed
molecular interactions involved have not been completely
elucidated, DIM interacts with the aryl hydrocarbon recep-
tor (AhR), resulting in its nuclear translocation and induc-
tion of the genes encoding phase1 and II enzymes[27].  Sev-
eral lines of evidence suggest that DIM exerts agonist and/
or modulator activity on the AhR[28,29].  I3C can activate the
NF-E2-related factor-2 (Nrf2) transcription factor which
interacts with the antioxidant response element in the pro-
moter of many cytoprotective enzymes, as described later.
The induction of cytochrome P450 (CYP450) by physiologi-
cal concentrations of I3C and DIM was observed in cancer
cells[30] and confirmed by an analysis of mRNA expression
profiles[31].  Increased CYP450 activity led to increased

Table 2.  Bioavailability of I3C and DIM in animals following oral administration.

               Dose                Time point      Cmax plasma µg/mL (µmol/L)    Tissue concentration µg/g (µmol/L)     Reference

 I3C (250 mg/kg) 15 min I3C  4 (28) 27–25 (20–170) 2 0
2 h DIM 1 (4) 1–4 (4–16)

DIM (250 mg/kg) 0.5–1 h DIM 6 (24) 8–50 (32–200) 2 1
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estrogen metabolism and the degradation of estradiol
(E2)[27], which is required for the growth of estrogen recep-
tor-alpha (ERα)-positive cancer cells.  I3C (50 µmol/L) inhib-
ited the estradiol-stimulated growth of estrogen-responsive

MCF7, T47D and ZR75.1 breast and cervical cells.  It inhib-
ited receptor phosphorylation and DNA binding as well as
estrogen-dependent reporter gene activity in breast tumor
cells and cervical cancer cell lines[32,33].  DIM (10 µmol/L) also

Table 3.  Bioactivity of I3C in vitro .

       Model             Dose (µmol/L)                    Biomarkers affected                                        Outcome                     Reference

Breast cancer 100 ↓ p-Akt Growth IC50 30 µmol/L, 40, 41, 180, 181
MDA-MB468 25–100 ↓ MUC1 protein and mRNA apoptosis

125 ↓ mitochondrial potential, ↑ caspase-9,
↑ Src ⇒ EGFR signaling, ↓ EGFR

MDA-MB231 5 0 ↑ 2-hydroxylation of E Apoptosis 182

MDA-MB435 30–60 ↑ Bax and induced translocation to mitochondria Apoptosis 183
MCF7 Sub µmol/L -50 ↑ 2-hydroxylation of E Growth IC50 50 µmol/L 32, 33, 37, 43,

Apoptosis, G0/G1 arrest 181, 184–190
10–50 ↓  E2-induced ER–DNA binding and ERE
50–60 reporter activity; ↓ E responsive genes;

↓ E2-stimulated ER phosphorylation;
↑ BRCA1 and BRCA2 mRNA and protein
↑ CYP1A

25–50 ↓ MUC1 protein, mRNA, and promoter activity
100 ↓ cdk6; ↓ p-Rb; ↑ p27; ↑ p21; ↓ cdk2 activity;

altered cdk2/cyclin E complex and localization;
↓ ERα mRNA and protein

MCF10CA1a 60–100 ↓ p-Akt; ↓ Akt activity; ↓ BclXL; Apoptosis 49, 191
↓ NF-κB–DNA-binding

T47D 5 0 ↑ 2-hydroxylation of E; ↓ E2-induced ER-DNA Growth inhibition 32, 186, 192
binding; ↓ cell migration 4 3

6 0 ↑ BRCA1 and BRCA2 mRNA and protein

Prostate cancer 30–60 ↓ p-Akt; ↓  Bad; ↓  BclXL; ↓ EGFR Apoptosis 31, 193
PC-3 6 0 ↓ gene expression of EGFR, PI3K, TGF-β2,

FGF, cyclin E2, ATF, Bcl2
LNCaP 30–90 ↑ DR4 and DR5, ↑ BRCA1 and BRCA2 mRNA Growth inhibition, 43, 194

and protein ↑ TRAIL-induced apoptosis
DU145 6 0 ↑ BRCA1 and BRCA2 mRNA and protein 4 3

Myeloid and 25–50 ↓ TNFα-induced activation of NF-κB, 5 2
leukemia cells ↓ activity of IKK and phosphorylation of IκBα,
(Jurkat, KBM-5, ↓ NF-κB DNA binding, ↓ NF-κB-regulated
U266, MM.1), expression of a reporter gene and endogenous
epithelial cancers genes
H1299, SCC-4,
A293 1–25 ↑ cytotoxicity, induced by

TNFα, cisplatin, and
doxorubicin

Colon cancer 50–100 ↑ NAG-1 expression Growth inhibition 179
HCT-116
HCT-116 clones 1 0 PARP cleavage, caspase-9 activation, ↓ Bcl-XL IC50 ≅ 5–10 µmol/L 195
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Table 4.  Bioactivity of DIM in vitro .

       Model             Dose (µmol/L)                    Biomarkers affected                                        Outcome                     Reference

Breast cancer 10–50 ↑ CYP1A1; ↑ formation of Ah-receptor nuclear Apoptosis, G1 cell cycle 27, 34, 37, 45,
MCF7 complex arrest, growth inhibition 48, 69, 196–198

1–10 ↑ ER-DNA binding, ↑ ER-regulated pS2 mRNA
and reporter gene expression, ↓ ERα mRNA

5 0 ↑ GADD proteins; ↑ IFNγ expression; ↑ p-JNK;
↑ p-p38; ↑ p-Jun; ↑ p-ATF-2,
↑ p21Cip1 mRNA and protein, ↓ cdk2 activity,
↑ Sp1 DNA binding, ↓ Bcl-2; inhibits mitochondrial
H+-ATP synthase, ↑ ROS

MCF10CA1a 15–50 Growth inhibition 5 0
30–50 ↓ NF-κB–DNA-binding
5 0 ↓ p-Akt

MDA-MB231 40–50 ↑ mRNA levels for p21Cip1, p57Kip2, ↓ mRNA Apoptosis, G1 cell cycle 196, 198, 199
levels for genes involved in cell proliferation and arrest, growth inhibition,
survival as well as angiogenesis and metastasis, IC50 60 µmol/L
↓ Bcl-2

Endometrial cancer 1–30 ↑ p-ERK1/2; ↑ p-CREB; ↑ ERE-reporter gene Growth inhibition 35, 36
Ishikawa activity; ↑ ER-responsive genes (TGF-α, alkaline

phosphatase, PR)
HEC-1B 3 0 ↑ ERE-reporter gene activity 3 6
(ER transfected)

Prostate cancer 1 0 ↓ PSA protein and mRNA levels; binds toAR and Growth IC50 40 µmol/L 38, 53, 200
LNCaP 10–50 B-DIM blocks nuclear translocation, ↓ expression of AR-

regulated reporter gene expression, ↓ AR function.
↓ DHT-induced NF-κB DNA binding

5 0 ↓ expression of androgen receptor Decreased proliferation 3 9
PC-3 4 0 ↓ gene expression of EGFR, PI3K, TGF-β2, FGF, Growth IC50 40 µmol/L 31, 51, 200

cyclin E2, ATF, Bcl2
15–60 ↓ p-Akt, ↓ PI3K activity; ↓ NF-κB-DNA-binding, Apoptosis

↓ EFGR
DU 145 25–50 ↓ p-Akt, ↓ cdk4, ↓ cdk6, ↑ Ca2+ mobilization Apoptosis, growth inhibition, 47, 200, 201

G1 cell cycle arrest, IC50

20 µmol/L

Colon cancer 12–25 ↑NAG-1 expression, ↑NAG-1-promoter regulated 179
HCT-116 reporter gene expression

25–50 ↑ ATF3
HCT-116 clones 2 0 PARP cleavage, caspase-9 activation, ↓ Bcl-XL, IC50 ≅ 11 µmol/L 195
HT29 Blocked exit from G1 Growth IC50 10 µmol/L 202

HepG2 (hepatoma) 30–50 Inhibits topoisomerase IIα Growth inhibition, G1 4 4
cell cycle arrest

Adrenocortical <10 ↑ EROD activity
carcinoma H295R 203

Pancreatic cancer 2 0 ↑ endoplasmic reticulum stress, ↑ GRP78, CHOP,
Panc-1 and Panc-28 ↑ DR5, ↑ caspase-8, ↑ PARP cleavage, ↑ caspase3 Decreased survival, apoptosis 4 6
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inhibited the estradiol-stimulated growth of MCF7, but in the
absence of 17β-estradiol it appeared to stimulate growth[34].

DIM also exerted other estrogenic effects in these and
endometrial cells[34–36].  Conversely, earlier data indicated an
inhibitory effect of DIM on E2-regulated reporter activity
and ER DNA binding[27].  Both I3C (75–100 µmol/L) and DIM
(1–25 µmol/L) reduced the expression of  ERα  mRNA in
MCF7 cells[33,37].  DIM also interfered with androgen recep-
tor expression, DNA binding, and signaling[38,39].

Both compounds are growth inhibitory to a wide range
of tumor cell lines, including ER-negative cancer cells.  The
increased loss of viability of several breast cancer cell lines
when grown in a 3-D environment in the presence of I3C
implied greater susceptibility in vivo than in a monolayer cell
culture[40].  Recent studies have shown that I3C decreases
proliferation and induces apoptosis by reducing the expres-
sion and signaling of the genes essential for tumor cell
viability, such as ER and epidermal growth factor receptor
(EGFR) in breast cells of luminal A and basal-like subtypes[33,41].
I3C (50 µmol/L) can also inhibit phosphoinositide-3-kinase
(PI3K)[42], resulting in the inhibition of protein kinase B (Akt)
phosphorylation and decreased survival in cancer cells de-
pendent on this pathway.  A mechanism dependent on breast
cancer-related protein (BRCA)1/2 upregulation has also been
proposed[43].

DIM, which is considerably more potent than I3C, also
inhibits the growth of a range of cells (Table 4).  Topoisomerase
II-alpha and mitochondrial H+-ATP synthase were identified
as direct targets of DIM.  The inhibition of the latter enzyme
results in increased mitochondrial reactive oxygen species
(ROS) production and signaling via the p38 stress activation
pathway[44,45].  Apoptosis via the activation of the endoplas-
mic reticulum stress pathway has also been reported[46,47].

Both agents have a significant effect on several other
signaling pathways, such as those involving p38[45,48] and
NF-κB signaling[49–53].  They modulate a variety of growth-,
cell cycle-, and apoptotic-regulatory proteins at the mRNA
or protein level, including EGFR, PI3K, transforming growth
factor (TGF)-β2, fibroblast growth factor (FGF), cyclin E2,
activating transcription factor (ATF), B cell lymphoma Bcl2,
BclXL, Bad, and Bax.

In vitro effects of I3C or DIM observed in vivo  Both I3C
and DIM clearly inhibit tumor cell growth in vivo in a range
of animal models[54].  The reduced incidence and multiplicity
of mammary tumors was concurrent with increased phase I
and II drug metabolizing enzymes in I3C-treated animals[55–57].
An analysis of transgenic Nrf2–/– mice indicated that the I3C-
induced upregulation of phase II enzymes required the Nrf2
transcription factor[58,59].  The upregulation of CYP450 activ-

ity by DIM in vivo has been proposed to occur via a mecha-
nism involving the AhR[30], as reported in MCF7 cells in
vitro[27].  The induction of phase I and II enzymes has been
reported in liver, small intestine, and lungs of rodents receiv-
ing I3C (in the diet or by gavage)[30,54,57,60–63].  DIM also in-
duced P450 activity and flavin-containing monooxygenase
1 in the rat liver[30,60].

Apoptosis in response to I3C was observed in vivo in
initiated mammary glands with activation of caspases-8, -9,
and -3[25] and in cervical epithelium of transgenic mice
(HPV16), developing cervical cancer in response to estro-
gen[56].  Few studies have investigated the effect of either
agent on signal transduction intermediates in vivo, but in
one study, dietary I3C (0.5%) caused a significant decrease
in total tyrosine phosphorylation and ornithine decarboxy-
lase activity in the rat liver[62].  Many of the signaling events
modulated by I3C in vitro involve tyrosine phosphoryla-
tion[41], but interestingly, changes in ornithine decarboxy-
lase activity in breast and colon cells in vitro were only
observed at relatively high concentrations (>100 µmol/L)[62,64].
The downregulation of NF-κB-regulated genes by I3C
occurring in a variety of cancer cells in vitro, was also ob-
served in mouse xenografts of MDA-MB231 cells[52,65].

Evidence for I3C or DIM acting synergistically/ antago-
nistically  In rats, I3C (5 mg/kg) reversed vinblastine- or
vincristine-induced P-glycoprotein levels[66].  This group also
showed that a very high dose of I3C (10 mmol/L) decreased
P-glycoprotein levels in vitro in the multidrug resistant cell
line K562/R 10, sensitizing it to vinblastine, but had no growth-
inhibitory effect on the parent K562 cell line[67].  I3C (333 or
500 mg/kg per day) also reversed the MDR phenotype of the
B16/hMDR1 (drug-resistant MDR1-expressing murine
melanoma) tumor in vivo, and in combination with vinblastine,
actually reduced the tumor mass[68].  In the same study, an
I3C acid-condensation mixture (12.5 µmol/L) sensitized the
B16/hMDR1 cell line in vitro to vinblastine, while DIM (45
µmol/L) increased the drug content of cells by 50%[68].  Com-
bined treatments using I3C (50–125 µmol/L) in combination
with Src or/and EGFR inhibitors reduced the viability of breast
cancer cells MDA-MB468 and MCF7[41].

DIM (25 µmol/L) plus genistein (5 µmol/L) synergisti-
cally induced growth arrest and DNA damage-inducible
(GADD)34 protein levels and apoptosis, and at higher con-
centrations induced estrogen receptor response element
(ERE)-driven reporter gene activity[69].  I3C (50 or 100
µmol/L) has been shown to cooperate with tamoxifen (1
µmol/L) in vitro to increase cell growth inhibition and
G0/G1 cell cycle arrest of MCF7 cells[70]; in vivo, it reduces
tumor mass and increases latency of mammary cancers[71].  An



1280

 Acta Pharmacologica Sinica ISSN 1671-4083Howells LM et al

I3C acid condensation mixture also enhanced the efficacy of
vinblastine in mouse melanoma cells, while I3C itself had no
effect[68].

In vivo, dietary I3C, together with crambene (1-cyano 2-
hydroxy 3-butene), another glucosinolate from vegetables,
showed a greater than additive induction of glutathione-S-
transferase (GST) and quinone reductase activity[72].

Curcumin

Curcumin (diferuloylmethane) is a major constituent of
the spice turmeric, derived from the roots of Curcuma longa.
The major dietary source is curry, but it is also used as a
food coloring and in some medicines.

Bioavailability of curcumin in humans  Curcumin exhib-
its poor gastrointestinal absorption, with much of an oral
dose passing unchanged through the gastrointestinal tract,
and a further proportion undergoing conjugation, without

absorption, prior to fecal loss.  Absorbed curcumin under-
goes sequential reduction and conjugation (glucuronidation
and/or sulfation) within the gastrointestinal tract and liver,
with the resultant formation of metabolites and low systemic
levels of the parent compound[73,74].

Studies in humans have demonstrated that the oral ad-
ministration of curcumin furnishes very low systemic levels,
mostly in the low nanomolar range (Table 5).  An exception is
the study by Cheng et al, which reported serum levels in the
low micromolar range using the maximum tenable dose (8
g/d)[75].  Other groups have failed to replicate this finding,
with Sharma et al, for example, administering up to 3.6 g/d of
curcumin to patients for up to 4 months, yet only achieving
levels in the 10 nmol/L range[76].  The discrepancy between
these studies remains to be explained, but may have resulted
from the use of different formulations of curcumin.

Due to its poor bioavailability, curcumin levels in tissues
beyond the gastrointestinal tract are also in the low nanomolar

Table 5.  Bioavailability of curcumin in humans following oral administration.

        Source               Maximum dose       Cmax plasma/           Urinary/ fecal            Tissue levels              Metabolites                    Reference
                                      (mg/d)    serum (Tmax)              excretion                  (nmol/g)

Curcumin 8000 (3 months)   1.77 µmol/L1 60–120 min Urine ND 7 5

 Curcuma extract 2200 (up to 4 ND Urine ND          Plasma/urine  ND 7 6
 (8.2% curcumin)      months)

(=180 mg/d Faeces 64–1054          Feces             CS detected in 1case
curcumin) (dried) nmol/g

 Curcumin 3600 (7 d) low nmol/L Liver ND       Blood CS/CG(low nmol/L)    204
(systemic/portal) Bile   ND       Liver             Hexahydrocurcumin
(Sampled 60 min and hexahydrocur-
post-dose) cuminol(trace)

Curcuminoid 3600 curcumin 11.1 nmol/L Urine 1.3 µmol/L          Plasma CS (8.9 nmol/L); 7 6
capsules (90% (up to 4 months) (60 min) Faeces 25–116 CG (15.8 nmol/L);
curcumin) (dried) nmol/g          Urine CS (45 nmol/L);

CG (510 nmol/L)
          Faeces CS (trace)

Curcuminoid 3600 curcumin <3 nmol/L                     Colorectal  7.7  Plasma ND  77
capsules (90% (7 d) (Sampled 60 mucosa             Colon CS/CG detected
curcumin) min post-dose) CR cancer 12.7

Curcumin extract 12 000 (1 dose) 150 nmol/L2                                    205
(75% curcumin)                                                   (60 min)

1 Serum level declined within 12 h; figures given are maximum levels achieved unless otherwise indicated.  2 Curcumin detectable in only 1 of 3
patients receiving this dose; no curcumin was detectable at doses ≤8000 mg/d.  ND, not detected; CS, curcumin sulfate; CG, curcumin
glucuronide.
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range or below.  Garcea et al were unable to detect curcumin
in normal liver or colorectal liver metastases in patients who
had received 3.6 g/d for 1 week.  In the only human study to
examine colorectal tissue to date, this oral dose resulted in
levels in the 10 µmol/L range[77].

Bioavailability of curcumin in animals  A number of
groups have examined the bioavailability of curcumin in
animals, following oral, intragastric (ig) or intraperitoneal (ip)
dosing (Table 6).  Studies suggest that oral dosing may give
rise to significant levels of curcumin within the gastrointes-
tinal tract.  In a rat model, approximately 1.8 µmol curcumin/
g of tissue was demonstrated in colonic mucosa following
the dietary administration of 1200 mg/kg daily[78].  Perkins et
al reported 750 mg/kg of curcumin/d to result in ~100 nmol/
g in mouse small intestine mucosa and 500 nmol/g within
colonic mucosa[79].  Following oral dosing of 400 mg per rat,
liver and kidney levels were less than 20 µg per tissue[80].
Significant levels of curcumin may also be achieved locally
when administered topically to the skin or within the oral
cavity, but the exact dose achieved in these scenarios re-
mains to be confirmed.

It is neither practicable nor desirable to increase the oral
dose of curcumin above that already investigated.  Recent
animal studies, however, have demonstrated that the refor-
mulation of curcumin may enable further improvements in
bioavailability.  It has previously been shown that the for-
mulation of drugs with phosphatidylcholine increases their
plasma bioavailability.  Such a formulation led to significantly
higher levels of curcumin within plasma and the liver com-
pared with the parent compound, although lower levels within
the intestinal mucosa[81].  Several other animal studies have
also found curcumin bioavailability to be significantly
increased by its administration as a phospholipid complex[82,83].
These increases in bioavailability now require confirmation
in human studies.  Although the bioavailability data are
lacking, in vitro and animal studies have also shown prom-
ising anticancer potential for a liposomal preparation of
curcumin[84,85].  In addition, nanoparticle-encapsulated
curcumin may provide an alternative means to increase the
bioavailability of this agent[86].

Physiologically relevant concentrations of curcumin  The
bioavailability data suggest that in vitro studies with
curcumin in the 10 µmol/L range or below might have human
physiological relevance, but that its role as a chemopreventive
agent may lie primarily within the gastrointestinal tract.

In vitro mechanistic studies using low doses of curcumin
The anticancer effects of curcumin have been demonstrated
in multiple cell types, at concentrations between 5 and 50
µmol/L[87].  Selected studies demonstrating the anticancer

activity of curcumin at or below the 10 µmol/L level achiev-
able in the human colon in vivo are summarized in Table 7.
Where available, data are presented from studies using
colorectal cell lines; results from other cell types using a
maximal dose of 10 µmol/L are also included.  In addition to
these studies, curcumin also inhibited the proliferation of
squamous carcinoma SCC-25 cells[88] and the proliferation
and invasion of HBL100 breast cells[89].

In vitro effects of curcumin observed in vivo  In a rat
model, dietary curcumin significantly increased the apoptotic
index in azoxymethane-induced colonic tumors[90].  Rao et al
demonstrated the effect of a curcumin-containing diet on
azoxymethane-induced rat carcinogenesis[91].  Curcumin sig-
nificantly reduced tumor volume, as well as colonic mucosa
and tumor prostaglandin (PGE)2 expression by over 38%.
Similarly, it enhanced 2-amino-1-methyl-6-phenylimidazol(4,
5-b)pyridine-induced apoptosis in Min/+ mice and inhibited
tumorigenesis in the proximal small intestine.  Also in mice,
Mahmoud et al found dietary curcumin to normalize
enterocyte proliferation and restore the level of enterocyte
apoptosis to that of wild-type animals[92].  In rats, a gavage
administration of curcumin (200 or 600 mg/kg) inhibited
diethylnitrosamine (DEN)-induced hepatic hyperplasia and
inflammation.  Specifically, the increased expression of p21ras
and p53 in the liver was prevented.  The decreased expres-
sion of proliferating cell nuclear antigen, cyclin E, and cdc2
was also observed, along with the inhibition of DEN-induced
NF-κB activation[93].

While there are no in vitro studies for comparison, there
is evidence from both animal and human studies showing
that curcumin suppresses malondialdehyde-deoxyguanosine
adduct (M1dG) adduct formation in DNA[77,78].  However,
Garcea et al, while noting decreased M1dG adduct formation
in the colorectum following curcumin treatment, found no
alteration in cyclooxygenase 2 (COX2) protein levels[77].

Despite the low bioavailability of curcumin, there are
examples in animal studies of its biological activity at sites
distant from the locus of absorption, where levels are
expected to be inefficacious based upon the results of in
vitro studies.  Sharma et al, for example, demonstrated
increased hepatic GST expression and the attenuation of
hepatotoxin-induced adduct formation following curcumin
treatment[78].  Oral curcumin also led to the complete sup-
pression of tumor NF-κB activation in an orthotopic mouse
model of pancreatic cancer[94].  Anticancer activity has also
been reported at a number of other sites distant from the
gastrointestinal tract, including the breast[95], prostate[96],
lung[97], and liver[98].
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Table 6.  Bioavailability of curcumin in animals.

   Source Model     Maximum             Cmax plasma/serum        Urinary/fecal              Tissue levels                    Metabolites               Refer-
                                    dose1          (Tmax)                     excretion                                                                                           ence

           (% of dose)

Curcumin Rat 1000 mg/kg Trace Urine     trace Bile trace 206
 (po) Feces      75%

Curcumin Rat 600 mg (po) Urine      6%
600 mg (ip) Feces      89%

Feces      73% Bile 11% excreted Major biliary metabolites- 207
glucuronides

Curcumin Rat 400 mg (po) Systemic ND Urine      ND Liver <20 µg Urine-glucuronides and   80
Portal     <5 µg/mL Feces      38% Kidney <20 µg sulfates
       (13.5 µmol/L)* remaining in large

intestine (24 h)
Curcumin Rat 400 mg (po) Detectable in blood Urine     Minimal Detectable in liver 208

Feces     Major route    and kidney

Curcumin Mouse 1000 mg/kg (ig) 0.22 µg/mL   (60 min)2                             Following IP: 99% plasma curcumin 209
(0.6 µmol/L) Kidney 7.5 µg/g             conjugated with glucuronide

           (20 µmol/L)
100 mg/kg (ip) 2.25 µg/mL   (15 min)3 Spleen 26.1 µg/g

(6.1 µmol/L)             (71 µmol/L)
Liver   26.9 µg/g
            (73 µmol/L)
Brain    0.4 µg/g
            (1 µmol/L)
Intestine 117.0 µg/g
            (316 µmol/L)

Curcumin Rat 1200 mg·kg-1·d-1 Systemic/portal ND Faeces   8.6 µmol/g Colon     1.8 µmol/g       CS/CG ND in plasma/   78
(91% cur-             (14 d in diet) (dried) mucosa        (mmol/L)   tissues/ feces
cumin) Liver       0.8 nmol/g

                                                                                                                 (µmol/L)
                               200–400 mg/kg <10 nmol/L  (30 min) Colon      279 nmol/g   Plasma conjugates ND

(diet) mucosa          (µmol/L)
                                                                                             Liver        0.1 nmol/g

                                                                                                                                                  (µmol/L)
                               500 mg/kg (ig) 30 nmol/L    (30 min) Colon       1.7 nmol/g   Plasma conjugates detected

mucosa          (µmol/L)
Liver        0.1 nmol/g
                     (µmol/L)

Curcumin Rat 500 mg/kg (ig) <20 nmol/L    Plasma CG (1.7 µmol/L),   73
   CS (0.35 µmol/L), CG
   and others detectable

Curcumin Mouse 300–750               ~5 pmol/L Urine      ND Small        39–240 nmol/g  Colon and feces-CS          79
(97% cur- mg·kg-1·d-1 intestine4           (µmol/L)   (trace)

cumin) (7 d in diet) Feces      3.2–3.8     Colon4       15–715 nmol/g
              µmol/g                          (µmol/L)

Liver4        119 pmol/g
                         (nmol/L)

(Continue)
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Evidence for curcumin acting synergistically/antago-
nistically  The treatment of MCF7 breast cells with curcumin
(10 µmol/L) and genistein (25 µmol/L) demonstrated a syner-
gistic effect, leading to the total inhibition of proliferation
induced by an endosulfane/chlordane/DDT mixture[99].
Curcumin also synergistically potentiated the inhibitory ef-
fect of celecoxib on pancreatic carcinoma cells[100] and addi-
tively inhibited the growth of colorectal cancer with celecoxib
in the 1,2-dimethylhydrazine rat model[101].

In an in vitro model of oral cancer, EGCG blocked cells in
the G0/G1 phase, while curcumin blocked in the G2/M phase
of the cell cycle.  The combination showed synergistic inter-
actions in growth inhibition[102].  While tea or curcumin indi-
vidually decreased the number and volume of dimethylben-
zanthracene (DMBA)-induced oral tumors in hamsters, only
the combination decreased the proliferation index of squa-
mous cell carcinoma[103].

LNCaP prostate cancer cells are relatively insensitive to
tumor necrosis factor related, apoptosis-inducing ligand
(TRAIL).  At low concentrations, neither TRAIL (20 ng/mL)
nor curcumin (10 µmol/L) produced significant cytotoxicity,

whereas cell death was markedly enhanced by the combina-
tion.  Both agents together induced the cleavage of procas-
pases-8, -9, and -3, the truncation of Bid, the release of cyto-
chrome c, and apoptosis[104].

Recent studies have also demonstrated promising inter-
actions between curcumin and established chemotherapeu-
tic agents.  In colorectal carcinoma lines, the antiproliferative
and pro-apoptotic effects of curcumin and oxaliplatin
increased markedly when cells were treated with both
agents[84,105].  Similarly, curcumin potentiated the pro-
apoptotic effects of gemcitabine and paclitaxel in bladder
cancer cell lines[106] and the antitumor activity of gemcitabine
in an orthotopic model of pancreatic cancer.  Antagonistic
interactions have also been demonstrated, however, with
curcumin shown to inhibit chemotherapy-induced apoptosis
in breast tumor lines.  Camptothecin-, mechlorethamine-, and
doxorubicin-induced apoptosis in MCF7, MDA-MB231 and
BT474 cells was inhibited by as much as 70%, following 3 h
exposure to as little as 1 µmol/L curcumin.  The inhibition of
both c-jun N-terminal kinase (JNK) activation and cytochrome
c release occurred[107].  The same authors, using an in vivo

   Source Model     Maximum             Cmax plasma/serum        Urinary/fecal              Tissue levels                     Metabolites              Refer-
                                    dose1          (Tmax)                     excretion                                                                                           ence

           (% of dose)

Curcumin Rat 340 mg/kg (ig) 6.5 nmol/L   30 min Liver       <10 ng/mL Plasma metabolites   81
Meriva Intestinal  2.8 mg/g detected. Levels of
(curcumin+ mucosa metabolites in liver and
phospha- 33.4 nmol/L   15 min Liver         80 ng/mL gastrointestinal mucosa
tidyl- Intestinal    2 mg/g higher following
choline) mucosa administration of Meriva

 Curcumin Rat 100 mg (po) 266.7 ng/mL   97 min   82
(>99% purity) (0.72 µmol/L)
Curcumin- 300 mg (po) 600.98 ng/mL 140 min
phospholipid (1.63 µmol/L)
complex

Curcumin Rat 500 mg/kg (po) 0.06 µg/mL   42 min 210
(0.16 µmol/L)

Curcumin Rat g/kg (po)               0.5 µg/mL   45 min                                                                                                             83
(1.36 µmol/L)

Curcumin- 1.0 g/kg of 1.2 µg/mL   90 min
phospholipid curcumin (po) (3.26 µmol/L)
complex

1 Single dose unless otherwise stated; 2 Levels ND at 6 h; 3 Levels decline rapidly within 1 h; 4 Tissue levels decline to ND by 3–6 h; *Figures in
brackets are derived from the published data.  po , per orum/os; ND, not detected; CS, curcumin sulfate; CG, curcumin glucuronide; CGS,
curcumin glucuronide sulfate.
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xenograft model, found dietary curcumin (25 g/kg) decreased
the level of cyclophosphamide-induced tumor regression,
again with decreased JNK activation and less apoptosis.

Epigallocatechin-3-gallate (EGCG)

Green tea and its constituent molecules, including EGCG,
have been found to prevent tumor formation in a wide range
of tissues in animal models.  However, the possible influ-

ence of green tea on cancer in humans has been difficult to
interpret due to confounding factors, such as diversity in
types of tea used, preparation methods, including tempera-
ture of infusion, and frequency of tea drinking.

The relevance of in vitro studies with EGCG has been
reviewed by Lambert and Yang[108], who concluded that the
effectiveness of tea consumption in cancer prevention re-
mained unclear and required a better understanding of
bioavailability and fundamental mechanisms.

Table 7.  Bioactivity of curcumin in vitro .

   Model      Minimum                   Biomarkers affected                                                   Outcome                                   Reference
                       effective
                          dose
                       (µmol/L)

Colo320 12.5 Growth inhibition; apoptosis 211

HCT-116 5 Apoptosis 212, 213
1 0 ↑ GADD153 mRNA and protein expression;

↑ DNA damage

Moser 1 5 ↑ PPARγ; ↓ cyclin D1; ↓ EGF signaling Growth inhibition 214, 215
1 0 ↓ EGFR gene expression Growth inhibition

HCA-7 5 ↓ CD/PMA-induced COX2 and PGE2 production 216

HCEC 1 0 ↓ TNFα-induced COX2 mRNA 217

HT29 5 ↓ COX2 mRNA and protein Growth inhibition 218, 219
1 0 ↓ Arachidonic acid metabolism

SK-Hep-1 1 0 ↓ MMP-9 secretion; ↓ invasion (matrigel) 220

MDA MB468 1–5 Growth inhibition, ↓invasion (matrigel) 8 9
1 0  ↓ JNK activation by anisomycin

MCF7 1 0 Apoptosis (p53-dependent); growth inhibition; 99, 221, 222
G2/M arrest

KB-V1 1 ↓ MDR1 mRNA
5 ↓ P-glycoprotein expression 223

B cell 1 0 ↓ egr-1; ↓ c-myc; ↓ Bcl-XL; ↓ p53; ↓ NF-κB Growth inhibition; apoptosis 224
lymphoma

Jurkat 5–10 ↓ JNK activation by PMA and ionomycin Growth inhibition 225

HL-60 3.5 ↓ Bcl-2 expression Apoptosis 226

U266; RPMI
8226; MM.1S 1 0 ↓ constitutive STAT3 phosphorylation ↓ IL-6 induced proliferation 227



Http://www.chinaphar.com Howells LM et al

1285

Bioavailability of EGCG in humans   A number of studies
have reported the bioavailability of EGCG in various human
body fluids (Table 8) following the administration of green
tea or EGCG.  Levels in plasma up to a maximum of 7.3 µmol/L
(±3.6) have been reported, but more often are in the submicro-
molar range.  Bioavailability in two early studies found plasma

levels at 0.2%–2% of the ingested amount of EGCG (up to 4
µmol/L), but higher plasma concentrations have since been
reported in fasting patients compared to those who con-
sumed catechins with food[109–111].  The oral administration
in human patients resulted in high plasma clearance levels
and volume distribution, suggesting that the bioavailability

Table 8.  Bioavailability of EGCG in humans following oral administration.

          Source              Dose           Cmax plasma                          Tmax plasma            Elimination         Reference
                                                                                                                                                                            half-life

Decaffeinated tea solids 1.5 g (in 500 mL) 119 ng/mL (0.26 µmol/L)* 1.4–2.4 h 5.0–5.5 h 228
>98%purity 3.0 326 ng/mL (0.71 µmol/L)

4.5 321 ng/mL (0.70 µmol/L)

EGCG 2.78 mg/kg 0.15 µmol/L 2 h 2.7 h 229

Green tea 20 mg/kg 77.9 ng/mL (0.17 µmol/L) 1.6 h 3.4 h 230
Decaffeinated green tea 2 0 24.4 ng/mL (0.05 µmol/L) 1.2 h 2.3 h
EGCG 2 34.7 ng/mL (0.08 µmol/L) 1.6 h 3.7 h

Green tea 2–3 cups/d 4.8–22 µg/mL (10–40 µmol/L) 10–20 min 115
in saliva

EGCG 200 mg 74 ng/mL (0.16 µmol/L) 127.1±76.6 min 118.0±77.0 min 109
400 119 ng/mL (0.26 µmol/L) 108.7±26.4 162.3±84.3
600 169 ng/mL (0.37 µmol/L) 180.0±84.8 183.7±67.6
800 439 ng/mL (0.96 µmol/L) 240.6±84.6 114.0±33.3

EGCG 50–1600 mg 130–3392 ng/mL (0.28-7 µmol/L) 1.3–2.2 h 1.9–4.6 h 231

EGCG 688 mg 1.3 µmol/L 2.9 h 3.9 h 232

EGCG 225 mg 0.66 µmol/L 1.5 h 6.9 h 110
375 4.3
525 4.4

Black tea 16.74 mg EGCG 0.02 µmol/L 5 h 233
4×/6 h

Polyphenon (mg of EGCG) (free EGCG, ng/mL) (free EGCG, min) (free EGCG, min) 112,
E containing EGCG 400 mg fed   141.8±89.1 (0.30 µmol/L) 122.9±83.7 145.2±129.1 234

400 mg fasting   798.7±573.1 (1.74 µmol/L)   93.9±59.0 170.5±104.6
800 mg fed   294.0±113.5 (0.64 µmol/L) 154.9±78.3 220.9±209.3
800 mg fasting 1522.4±1357.8 (3.32 µmol/L)   83.3±31.0 156.5±77.5
1200 mg fed   923.6±755.3 (2.01 µmol/L) 175.1±74.6 254.9±59.9
1200 mg fasting 3371.6±1651.2 (7.34 µmol/L)   90.6±28.4 228.4±75.3

Polyphenon E containing EGCG 618 mg      0.7±0.4 µmol/L  2.5 h±1.1 235
Purified EGCG 580 mg      0.5±0.2 µmol/L  2.6 h±1.2

*Figures in brackets are derived from published data.
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of EGCG in the blood may be low, similar to the situation
found in rodents[109,112].  Dvorakova et al suggested that
topical application to skin of an ointment containing 10%
EGCG was likely to result in substantial intradermal uptake,
but very poor systemic absorption[113].

It has been found that holding a green tea solution (1.2
g/200 mL water) in the mouth for 1 min resulted in salivary
EGCG concentrations (mean) of 27 µmol/L, with values up to
48 µmol/L recorded, several fold higher than that achieved
through normal drinking, and many more times greater than
plasma concentrations[114,115].  However, holding the tea in
the mouth for 5 min resulted in salivary concentrations 4–5
times higher, whilst taking tea solids in capsules resulted in
no detectable salivary catechin levels.  Thus, drinking tea
slowly may be an effective way of delivering relatively high
concentrations to the oral cavity and esophagus.

EGCG can undergo metabolism through glucuronidation,
sulfation, methylation, or ring fission[108], processes which
are subject to interindividual variation.

Bioavailability of EGCG in animals  Surprisingly, few
studies have documented the bioavailability of EGCG in
animals.  Most have shown a maximum plasma concentra-
tion in the nmol/L to low µmol/L range, similar to the human
situation, although 1 study using a large dose of EGCG in
rats reported plasma concentrations up to 20 µmol/L (Table
9).  No animal studies have examined the effect of fasting on

bioavailability.  Fang et al, using liposomes for the local
(injection) delivery of EGCG, found that a liposomal cocktail
containing deoxycholic acid and ethanol greatly increased
the tumor uptake of EGCG in both melanoma and colon
murine tumor models[116,117].  However, liposomal delivery
was not superior following topical application.

Lambert and colleagues[118] reported that piperine from
black pepper enhanced the bioavailability of EGCG in mice.
Small intestinal levels following EGCG administration alone
resulted in a Cmax of 37.5±2.5 nmol/g at 60 min, decreasing to
5.1±1.7 nmol/g at 90 min.  Following cotreatment with piperine,
the Cmax was 31.6±15.1 nmol/g at 90 min, with levels still
above 20 nmol/g at 180 min.  The appearance of EGCG in the
colon and feces was slower in the cotreated mice.

In rats and mice 24 h after the intragastric administration
of radiolabeled EGCG, 10% of the dose was present in the
blood, with around 1% in tissues, such as liver, kidney, heart,
lung, and prostate[119].  Major elimination occurred in the
feces.  In line with these findings, another study suggested
that the transporter-mediated intestinal efflux of catechins
may play a role in the systemic elimination of these com-
pounds[120].  Following an intravenous (iv) dose in rats,
>70% was eliminated in bile and 2% in urine[119,121].  A study
in rats, in which different green tea catechins were adminis-
tered by iv or ip,  suggested that first-pass hepatic elimina-
tion did not play a major role in the metabolism of orally-

Table 9.  Bioavailability of EGCG in animals.

 Source    Model        Dose              Cmax plasma          Tmax                                       Tissue                                    Excretion                  Refer-
                                                                               plasma                                                                                                                 ence

EGCG Mouse 0.3% (po) 90.6 nmol/L Liver 42.9 ng/g (94.6 nmol/L)* Urine 26.9–98.6 µmol/L 229
0.1% (po) 22.4 13.4 (29.3 nmol/L) 13.4–40.3
in drinking Kidney 14.3 (31.5 nmol/L) Feces 18–89 µg/g
water 4.8 (10.6 nmol/L) 24–53

Intestine 14.4 (31.7 nmol/L)
14.8 (32.6 nmol/L)

EGCG Mouse 21.8 µmol/kg (iv) 2.70 µmol/L Lung, Prostate 0.31nmol/g (µmol/L) 236
163.8 (ig) 0.28 Colon 7.9

Intestine 45.2

EGCG Rat 10 mg/kg (iv) 85.5 min Intestine High Bile 237
75 mg/kg (ig) Kidney, Low

Lung, Liver

EGCG Rat 6000 µg (iv) ≥10 µg/mL Approx 30 min 122
6041 µg (ip) (21.8 µmol/L)

*Figures in brackets are derived from the published data.
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administered epigallocatechin, epicatechin, and EGCG[122].
Physiologically relevant concentrations of EGCG  The

plasma bioavailability of EGCG, whether administered as tea
or a pure compound, is in the range of 0.1–7 µmol/L in humans,
with concentrations over 100 µmol/L observed in saliva.  No
significant excretion occurred in urine (generally <0.1% of
dose).  Rodent data indicate levels up to 20 µmol/L may be
achievable.  Based on these data, we chose 20 µmol/L as the
maximum concentration at which to consider in vitro findings.

In vitro mechanistic studies using low doses of EGCG
Many in vitro studies show that EGCG, at concentrations
≤20 µmol/L, inhibits growth and induces cell cycle arrest or
apoptosis in a variety of cell types (Table 10).  A wide range
of signaling molecules is affected, including growth factor
receptors [EGFR, platelet derived (PDGFR), fibroblast (FGFR),
vascular endothelial (VEGFR)], survival signaling pathway
components [extracellular signal regulated kinase (ERK), p38,
activating protein-1 (AP-1), signal transducer and activator
of transcription (STAT), PI3K, Akt, and NF-κB], cell cycle
regulators [cyclin D1, p21, p27, phosphorylated retinoblas-
toma (pRb), cyclin-dependent kinases (cdk)2/4/6], and regu-
lators of apoptosis [Bcl2, Bax, Bad, caspases-3/7/8/9, and
poly (ADP ribose) polymerase (PARP)].  One interesting
effect of EGCG at the lowest doses (0.01–0.1 µmol/L) is the
inhibition of VEGF-dependent phosphorylation of the VEGFR
(Table 10), an anti-angiogenesis effect which also occurs in
vivo, as discussed later.

In vitro effects of EGCG observed in vivo  There is sub-
stantial evidence that the effects of EGCG or green tea
recorded in vitro have also been observed in animal models
or humans.  Green tea polyphenols inhibited the growth of
4T1 breast cancer cells and their metastasis to lungs in BALB/
c mice.  A reduction in tumor weight, increased survival time,
and later tumor appearance were observed.  The ratio of Bax/
Bcl2 was altered in favor of apoptosis, along with a decrease
in proliferating cell nuclear antigen and the activation of
caspase-3[123].  The topical application of EGCG to SKH-1
hairless mice that had been pretreated twice weekly with
UVB light decreased the multiplicity of skin tumors by 44%–
72% and increased the apoptotic index by 56%–92%, again
measured by increased caspase-3 activity[124].  Fang and
colleagues, who demonstrated that the liposomal delivery of
EGCG resulted in increased tumor uptake, also found that
this delivery system led to increased antiproliferative activ-
ity in basal carcinoma cells in vitro, where the EGCG concen-
tration in the liposomes was 21.3 µmol/L[117].

A study investigating the effect of EGCG in murine colon
26-L5 cells found that, using in vitro assays, 1,1-diphenyl-2-
picryl-hydrazyl free radicals were reduced with an ED50 of

2.9 µmol/L, and cell growth was inhibited with an IC50 of 41.8
µmol/L.  Following the injection of these colon cells into
female BALB/c mice to analyze the effect on lung metastases,
they found that EGCG, administered ip, reduced the number
of tumor nodules in a dose-dependent manner[125].

When green tea extract (400–500 mg/cup, 5 cups/d) was
administered for 4 weeks to 3 heavy smokers[126], smoking-
induced DNA damage was decreased, cell growth (keratino-
cytes) was inhibited, and the percentage of cells in S phase
was reduced, with accumulation in the G0/G1 phase.  DNA
content became less aneuploid and p53 and caspase-3 were
increased.  Li and colleagues found that in hamsters,
0.6% green tea inhibited DMBA-induced oral tumor number
and volume, with increased apoptosis and a decreased pro-
liferation index and microvessel density[103].  In vitro EGCG
inhibits AP-1 transcriptional activation, and this was also
observed in vivo in UVB-treated transgenic mice carrying a
luciferase reporter gene with an AP-1 binding sequence[127].

EGCG (10 or 50 µg/mL) significantly decreased the prolif-
eration of bovine capillary endothelial cells, and at 1–100 µg
per disc, it also inhibited neovascularization in the chick
chorioallantoic membrane assay[128].  These authors also
showed that green tea in drinking water (1.25% containing
708 µg/mL EGCG, giving plasma levels of 0.1–0.3 µmol/L)
could significantly suppress VEGF-induced corneal
neovascularization.  Such results suggest that EGCG may be
a useful in vivo inhibitor of angiogenesis.

Green tea consumption in 2 study groups, 1 in China and
1 in the USA, decreased oxidative DNA damage (8-hydroxy-
deoxyguanosine in white blood cells and urine), lipid
peroxidation (malondialdehyde in urine), and free radical
generation (2,3-dihydroxy benzoic acid in urine) in smokers.
Non-smokers (USA group) also exhibited a decrease in over-
all oxidative stress, which was correlated to decreased levels
of free radicals[129].

A recent clinical trial involving 60 volunteers with
(premalignant) prostate intraepithelial neoplasia, conducted
by Bettuzzi et al, showed that after 1 year, only 1 man (3%) in
the group receiving 600 mg/d green tea compounds in (oral)
capsule form, presented with cancer compared to 9 (30%)
from the placebo group[130].  No significant side-effects were
reported.  Therefore, despite the apparent poor bioavailability
of green tea catechins in many studies, they appear to have
great promise as chemopreventive agents.

Evidence for EGCG acting synergistically/ antagonisti-
cally  There are a number of reports documenting an en-
hanced chemopreventive effect when EGCG or green tea is
used in combination with another chemopreventive agent or
a therapeutic drug.
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Table 10.  Bioactivity of EGCG in vitro.

  Model                Dose          Biomarkers affected                                               Outcome                                    Reference

HT29 10 µmol/L ↓ p-ERK1/2; ↓ VEGF (serum starved) 238, 239
10–20 ↓ VEGF reporter gene activity ;

↑ AP-1 reporter activity; ↑ cyclin D1
↑ NF-κB reporter gene activity

HT29 spheroids 10–20 Inhibition of spheroid formation 240

LNCaP 1–10 µmol/L ↑ p27; ↑ IκB-α ↓ arachidonic acid-stimulated cell growth; 241-243
10 µmol/L ↓ Arachidonic acid-stimulated PGE2 levels G0/G1 arrest; Apoptosis, Growth inhibition
20 µmol/L– ↓ COX2 mRNA; ↓ PI3K (p85); ↓ p-Akt;
10 µg/mL ↑ p-ERK1/2
(22 µmol/L) ↓ Chymotrypsin-like activity of 20S proteasome

DU145 From 10 µg/mL ↓ PI3K (p85); ↓ p-Akt; ↑ p-ERK1/2 Growth inhibition 243, 244
(22 µmol/L)

Jurkat T From 1 µmol/L ↑ p27 G0/G1 arrest 241
1 0 ↓ chymotrypsin-like activity of 20S
5–20 proteasome (IC50 18 µmol/L)

CLL B 5–10 µg/mL Apoptosis 245
(10-22 µmol/L)
3 µg/mL ↑ caspase 3 and PARP cleavage; ↓ Bcl-2;
(6.5 µmol/L) ↓ XIAP; ↓ Mcl-1

↓ VEGF-R1; ↓ VEGF-R2 phosphorylation

Foreskin 10 µg/mL ↑ involucrin promoter activity; Growth inhibition 246
keratinocytes  (22 µmol/L) ↑ cornification

HCL14 From 5.45 nmol/L ↓ UVB-induced AP-1 activity No effect 247

HaCaT 7.5–10 µmol/L ↓ UVB-induced c-fos; ↓ UVB-induced p38 248
activation

A-375 1–5 µg/mL ↓ colony formation Growth inhibition; G0/G1 arrest; apoptosis 249
(0.5–10 µmol/L)
2.5–10 µg/mL ↑ Bax; ↓ Bcl2; ↑ Bax:Bcl2 ratio;
(1.5–22 µmol/L) ↑ caspase 3, 7, 9; ↑ PARP cleavage;
10 µg/mL ↑ p21; ↑ p16; ↓  cdk2
(22 µmol/L) ↓ cyclin D1; ↑ p27

Hs-294T 1–5 µg/mL ↓ colony formation Growth inhibition; ↑S phase; apoptosis 249
(0.5-10 µmol/L)
2.5–10 µg/mL ↑ Bax; ↑ Bax:Bcl2 ratio; ↑ caspase 7;
(1.5–22 µmol/L) ↑ PARP cleavage

↓ cyclin D1; ↓ cdk2; ↑ p16; ↑ p27; ↑ p21

JB6 (Cl 41) 1 µmol/L ↓ UVB-induced phospho-p70S6K  (possible 250-252
direct effect)
↓ p-Akt and PI3K activity and expression

5–20 ↓ TPA-induced cell transformation;
↓ TPA-induced NF-κB activity; ↓ NF-κB
DNA-binding; ↓ TPA-induced p-IκBα;
↓ AP-1–DNA binding and reporter activity

(Continue)
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   Model                Dose          Biomarkers affected                                               Outcome                                    Reference

A431 0.5–1 µg/mL ↓ tyrosine kinase activity of EGFR, Apoptosis 253-255
(0.5–2 µmol/L) PDGFR, FGFR
10 µmol/L– ↓ NF-κB–DNA binding; ↓ nuclear NF-κB
10 µg/mL (p65); ↑ caspases-3,-8,-9 activation
(22 µmol/L)

Immortalized 10 µmol/L ↓ p-ERK1/2; ↓ERK1/2 and Akt activity Growth inhibition 256
ECE16-1 2 0 (direct effect ); ↓ p-Bad

↑ p21; ↑ p27; ↑ p53

HeLa cells 1–25 µmol/L ↓ oxidative stress (↓ 8-OHdG and HMdU) 257

NBT-II 10 µmol/L ↓ p-Rb Growth inhibition 258
2 0 ↓ cyclin D1 G0/G1 arrest
10–40 ↓ cdk 4/6 Apoptosis

YCU-N861 10 µg/mL ↑ p21; ↑ p27; ↓ cyclin D1; ↓ pRb; Growth IC70 10 µg/mL; 133, 134
YCU-H891 (22 µmol/L) ↓ p-EGFR; ↓ p-ERK1/2; ↓ p-STAT3; G0/G1 arrest; apoptosis

↓ Bcl2; ↓ BclXL; ↓ Bax; ↓ p-HER2
0.1–1.0 µg/mL ↑ growth inhibition by 5-FU and Taxol
(0.2–2 µmol/L)

NOE (normal) 5.5 µmol/L ED50   5.5 µmol/L; G0/G1 arrest 259
MSK-Leuk1    8 µmol/L ↓ pRb; ↑ hypo-pRb ED50      8 µmol/L; G0/G1 arrest
MSK-Leuk1S   11.5 µmol/L ED50 11.5 µmol/L; G0/G1 arrest
1483 18 µmol/L ED50    18 µmol/L; G0/G1 arrest

KYSE <10 µmol/L ↓ DNA methyltransferase activity Growth inhibition 260
(in vitro assay)

20 µmol/L ↓Hypermethylation;
↑mRNA expression p16INK, RARβ, MGMT, hMLH1

Bovine From 10 µg/mL Growth inhibition 128
capillary cells  (22 µmol/L) ↓ in vitro angiogenesis

BAEC 0.01–1 µmol/L ↓ VEGF-dependent phosphorylation of ↓ in vitro angiogenesis 261
VEGFR-2;

HMVEC 2–20 µmol/L ↓ VEGF-stimulated VE-cadherin;                                                                                           262
↓ in vitro VEGF-induced angiogenesis

2 0 ↓ VEGF-stimulated p-VE-cadherin and p-Akt

Vascular 3 and 10 µmol/L ↓ Thrombin-induced activation of MMP-2 Prevent smooth muscle cell invasion 263
smooth at 10 µmol/L (at 30 µmol/L, lower concentration
muscle cells 1,3, and 10 µmol/L ↓ Thrombin-induced activation of membrane- not tested)

type MMP-1 at 1, 3, and 10 µmol/L

HEK293 cells 5 and 10 µmol/L ↓ nuclear and membrane-associated 264
β-catenin and membrane-associated
E-cadherin

A549 cells 10 µmol/L ↑ PGE2 265

PC-3 cells 10 µmol/L ↓ viability 266

SH-SY5Y cells 1 µmol/L ↓ Bad 267
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Suganuma et al found that epicatechin significantly en-
hanced the uptake of labeled EGCG into human lung PC-9
cells and suggested that whole green tea was a better pre-
ventive agent than EGCG alone[131].  In this study, the pro-
apoptotic effects of EGCG were also increased by tamoxifen
or sulindac.  Another study using the prostate cancer cell
lines PC-3, LNCaP, and CWR22Rv1 showed that while 10
µmol/L EGCG only resulted in a 12%–21% inhibition in cell
viability, the addition of 10 µmol/L NS-398 (a COX2 inhibitor),
resulted in a 44%–49% inhibition, greater than the additive
effect of either agent alone.  These results corresponded to
decreases in Bcl-2, procaspases-6 and -9, phospho-p65 and
peroxisome proliferator-activated receptor (PPAR)γ, and in-
creases in Bax and PARP[132].

EGCG at 0.1 µg/mL (equivalent to serum concentrations)
markedly enhanced the growth inhibitory effects of 5-fluo-
rouracil in head and neck squamous carcinoma cells[133].  The
IC50 values for 2 different cell lines were reduced by ~4-fold
(sensitive line) and 45-fold (resistant line).  EGCG on its own
at this concentration had no effect.  The same group also
found that EGCG enhanced the sensitivity of HNSCC (0.1
µg/mL) and breast (1.0 µg/mL) cells to Taxol[134].

Min/+ mice treated with a combination of white tea
(1.5%) and sulindac (80 ppm) had significantly fewer intesti-
nal tumors than mice treated with either agent alone.  While
β-catenin and β-catenin/T cell factor-4-regulated genes,
cyclin D1, and c-jun were detected in polyps, the expression
of these proteins was markedly reduced in the normal intes-
tine[135].  A combination of EGCG and sulindac was also found
to be efficacious in preventing azoxymethane-induced co-
lon cancer in rat, where the combination synergistically en-
hanced apoptosis[136].

Resveratrol

The phytoalexin resveratrol is found largely in grape prod-
ucts and peanuts, with red wine a major source of human
consumption.  Its potential role in disease prevention is well
documented, as it exhibits vasorelaxing, anti-inflammatory,
antilipidemic, anti-estrogenic, antioxidant, antifungal, and
antibacterial properties[137–139].

Whilst resveratrol appears to have great potential in vitro,
the relevance to in vivo effects in both humans and animals
is less clear, as its chemopreventive effect in vivo depends
greatly on its absorption, metabolism, and tissue distribution.

Bioavailability of resveratrol in humans  Several stud-
ies have looked at the rate of uptake in healthy human vol-
unteers via the oral administration of either resveratrol in its
pure form or when present in foodstuffs (Table 11).  Esti-
mates of the amount of resveratrol in red wine (mainly trans),
vary from 0.3 to 10.6 mg/L (1.3–46 µmol/L)[140–142].  Recent
studies by Boocock et al[143,144] found peak resveratrol plasma
concentrations of 0.3–2.4 µmol/L following single oral doses
of 0.5–5 g in healthy human volunteers.  Observed peak
plasma concentrations for resveratrol metabolites ranged
between 0.92 and 4.3 µmol/L (mono-glucuronides), and 3.7–
14 µmol/L (resveratrol 3-sulfate).  Plasma half-lives for the
parent compound and major conjugates were of a similar
order (2.9–10.6  h).

Subjects receiving a lower dose of 10–25 mg pure resvera-
trol/70 kg body mass were similarly found to have serum
resveratrol levels between 1.83 and 2.06 µmol/L at 30 min
post-dose, returning to baseline by 4 h[145].  Wang et al[146]

found both resveratrol and resveratrol glucuronide present

Table 11.  Bioavailability of resveratrol in humans following oral administration.

      Source                                   Dose                              Cmax plasma                    Clearance       Urinary         Reference
                                                                                                                                                                              excretion
                                                                                                                                                                           (% of intake)

Resveratrol 25 mg/70 kg body weight 491 ng/mL (2 µmol/L)* ~9 h 268

White wine 25 mg/70 kg body weight resveratrol 416 µg/L (1.82 µmol/L) 16.8
Grape juice 416 µg/L (1.82 µmol/L) ~4 h 16.0 145
Vegetable juice 471 µg/L (2.06 µmol/L) 17.0
Resveratrol 0.5–5 g 73–539 ng/mL (0.3–2.4 µmol/L) 143, 144
Red wine 7.5 µg/kg body weight 0–26 nmol/L                           269

*Figures in brackets are derived from the published data.
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at up to 6 h following a dose of 1 g.  It is likely that conju-
gated resveratrol is the main component in the circulation[147],
and plasma concentrations around 2 µmol/L appear typical
(Table 11).

Several major metabolites of resveratrol are found in
human subjects, including the sulfate-glucuronide, mono-
glucuronides, and mono- and di-sulfates[143,144], with sulfation
thought to occur primarily via the sulfotransferase 1A1[148]

and glucuronidation via the UDP-glucuronosyltransfera-
ses[149].  The rate of glucuronidation in the human liver ranges
between 0.23 and 1.2 nmol/min/mg and the rate of sulfation
is 80 pmol/min per mg[141,150].  The presence of sulfated prod-
ucts in vivo may vary depending upon whether pure
resveratrol is administered, as quercetin (also present in red
wine) is known to inhibit its sulfation.  Resveratrol glucu-
ronide has been assumed to be pharmacologically inactive,
although it has been suggested that glycosylation of
polyphenols is an important step in protecting them from
enzymatic oxidation, so extending their half-life and biologi-
cal properties[151].  However, it is possible that the glucu-
ronide may be converted back to resveratrol in vivo by the
action of beta-glucuronidases[152].  The aqueous solubility
of resveratrol is low, and it is thought that albumin is the
main carrier in plasma, with little free resveratrol[153].  The
presence of fatty acids increases binding to serum albumin,
which may have important consequences for the delivery of
resveratrol to cell membranes and thus signaling events.

Bioavailability of resveratrol in animals  Marier et al[154]

observed that resveratrol was absorbed within minutes fol-
lowing an oral dose of 50 mg/kg to rats.  Resveratrol agly-
cone (parent compound) plasma concentrations dropped from
10 µmol/L to levels at the limit of detection by 12 h.  The
glucuronide, however, was present at ~100 µmol/L, falling to
3 µmol/L after 12 h, again suggesting that resveratrol is ab-
sorbed from the intestine mainly in this form.  A lower dose
of 20 mg/kg gave a maximal resveratrol plasma content of 3
µmol/L, falling to <0.1 µmol/L after 1 h[140], with a 5 mg/kg
dose showing maximal plasma levels of 1.5 µmol/L [155].

The disposition of resveratrol revealed far higher levels
in tissues involved in absorption and excretion, such as the
intestine, liver, and kidney, than in plasma.  In mice, the high-
est accumulation was in intestinal mucosa[156], brain[157],
kidneys, and liver, reaching 25–30 µmol/L following a dose
of 5 mg/kg[155].  The major tissue metabolites were resveratrol-
3,4'-disulfate, -3,4',5-trisulfate and β-D-glucuronide[158].  Fol-
lowing a 20 mg/kg dose, the rat lung contained 0.8 nmol/g
resveratrol, the mouse liver 1.03 nmol/g, and the mouse kid-
ney 0.17 nmol/g[140].

Physiologically relevant concentrations of resveratrol

Animal and human studies consistently indicate resveratrol
levels of 1–2 µmol/L in plasma (Tables 11, 12).  Concentra-
tions 10–20 times higher than this have been achieved
through ig or iv dosing in animal studies.  An examination of
tissue distribution revealed that concentrations in some tis-
sues can be significantly higher than those in plasma.
Therefore, in considering the relevance of in vitro studies,
we have focused on those which have reported effects at
concentrations of 10 µmol/L or less.

In vitro mechanistic studies using low doses of
resveratrol  Cell culture studies with resveratrol indicate
anticancer potential over a range of doses and in a wide
variety of tissues, including breast, colon, pancreas, stomach,
prostate, head and neck, ovary, liver, lung, and cervix[137]

(Table 13).  At physiological concentrations of 10 µmol/L or
less, resveratrol exhibits a range of activities which modu-
late signal transduction.  These include the downregulation
of growth factors (EGF and VEGF), alterations to survival
signaling (ERK, JNK, AP-1, and NF-κB), cell cycle regulators
(cyclinD1, cdk4/6, p21, and p53) and apoptosis regulators
(PARP, ceramide, and caspases).  In U937 monocytes, con-
centrations as low as 0.1 µmol/L effectively inhibited the
production of ROS, with the inhibition of Akt phosphoryla-
tion at 10 µmol/L [159].

In vitro effects of resveratrol observed in vivo  Whether
or not the IC50 values in vitro are achievable in vivo depends
to some extent on the target tissue.  It is likely that the high-
est concentration of resveratrol and its metabolites follow-
ing ingestion would be achieved in colorectal mucosal tis-
sue and in the liver.  Several studies administering resveratrol
via ingestion of red wine have used the mean serum antioxi-
dant capacity as a marker of efficacy.  In healthy volunteers
consuming 300 mL red wine over a 30 min period, blood taken
up to 2 h post-dose showed significantly raised serum anti-
oxidant capacity[160].

MDA-MB231 xenografts in nude mice exhibited an in-
crease in the apoptotic index and decreased angiogenesis
when treated daily with 25 mg/kg resveratrol for 3 weeks,
while the same cell line in the culture did not undergo
apoptosis at concentrations less than 100 µmol/L[161].
Conversely, when B16M tumor cells were inoculated into
mice, 20 mg/kg resveratrol did not affect tumor growth (tumor
concentration of 0.04 nmol/g), even though in the culture
the cells underwent 60% apoptosis following a 5 µmol/L
treatment for 24 h[140].  The rats inoculated with the Yoshida
ascites hepatoma receiving daily ip injections (1 mg/kg) of
resveratrol exhibited decreased tumor growth due to the
induction of apoptosis and a G2/M cell cycle arrest.  This
effect was not seen in vitro using resveratrol in the range of
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15–30 µmol/L over 24 h[162].  Daily ip injections of 40 mg/kg
resveratrol (estimated serum level of 25 µmol/L) reduced neu-
roblastoma growth in rats and increased survival by 70%.  In
culture, resveratrol was also cytotoxic to neuroblastoma cells
in a range from 10 to 100 µmol/L [163].  Resveratrol at 100 mg/
kg per day prolonged the survival time for rats with
intracerebral tumors generated from RT-2 glioma cell
xenografts.  The IC50 for RT-2 cells in the culture equated to
12.8 µmol/L following a 48 h treatment, with 39% cells un-
dergoing apoptosis at the higher concentration of 25 µmol/L[164].

A number of reports have shown that resveratrol can
inhibit NF-κB activation in vitro.  Banerjee et al found that
in rats, 10 ppm produced striking reductions in DMBA-
induced breast tumor incidence and multiplicity, while
extending tumor latency[165].  They reported that resveratrol
suppressed DMBA-induced COX2 and matrix metallopro-
teinase (MMP)-9 expressions through the downregulation
of NF-κB activation.

Resveratrol treatment may also inhibit preneoplastic
conditions.  In both an experimentally induced model of coli-
tis[166] and the Min/+ mouse[167], resveratrol was able to
reduce damage/adenoma load and COX2 protein expression.
The spontaneous development of mammary tumors in HER2/
neu mice was delayed with the reduction in both size and
number of tumors following resveratrol treatment[168].  In rats,
azoxymethane treatment caused the formation of aberrant
crypt foci, the number of which was significantly reduced in
the presence of resveratrol (200 µg/kg per day for 100 d),
with decreased bax and increased p21 expression in the
crypts[169].  The treatment of dimethylhydrazine-induced
aberrant crypt foci with resveratrol (8 mg/kg per day)
resulted in a marked reduction in tumor incidence and
degree of histological lesions[170].  Similarly, rats fed a diet
containing 15% grape extract showed a decrease in the num-
ber and area of GST-P+ve foci[171].

Table 12.  Bioavailability of resveratrol in animals.

      Source                Model                 Dose               Cmax plasma (µmol/L)                    Tmax plasma       Clearance  Reference

Grape juice Rat 2 mg/kg resveratrol 1.2 270
 (ig)

Resveratrol Rat 20 mg/kg (po) 1.2 5 min 2 h 140
Mouse 2.6
Rabbit 1.1
Mouse 2.6 mg·kg-1·d-1 (po) 0.05–0.1
Rabbit 20 mg/kg (iv) 38.4–47.2

Resveratrol Mouse 1 mmol/kg (ig) 3 2 10 min 1 h 156

Resveratrol Rat 15 mg/kg (iv) ~20 0.08 h 8 h 154
50 mg/kg (po) ~7 12 h

Resveratrol (14C) Mouse 5 mg/kg (po) 1.5 1.5 h (earliest High urinary 155
measured) content by 6 h

Resveratrol Rat 2 mg/kg (po) 0.175 mg/L
(0.7 µmol/L)*                           271

Resveratrol Mouse 20 mg/kg (ip) Resveratrol <0.5 15 min Metabolites 147
Resveratrol  sulfate 13 (ip); 5 (ig) cleared by 2 h

20 mg/kg (ig) Resveratrol glucuronide 3 (ip); 1 (ig)

60 mg/kg (ig) Resveratrol <0.5 15 min
Resveratrol sulfate 300
Resveratrol glucuronide 175

*Figures in brackets are derived from the published data.
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Table 13.  Bioactivity of resveratrol in vitro .

    Model         Dose (µmol/L ) Biomarkers affected                                  Outcome                                Reference

LNCaP 2.5 ↓ pAkt; ↓ Bcl2:Bax ratio Growth inhibition; apoptosis; G0/G1 arrest. 272
1–5 Growth inhibition; apoptosis 273

A2780/CP70 12.5 ↓ HIF-1α; ↓ VEGF 274

Ishikawa 1 0 ↓ EGF Growth inhibition 275

MCF7 0.1–10 ↓ CYP1A1 mRNA and protein 276–278
1–10 ↑ adenylate cyclase Growth inhibition
1–15 ↓ progesterone receptor and pS2
1 0 Increased growth 279

T47D 0.1–10 ↓ CYP1A1 mRNA and protein 276, 278
1–15 ↓ Progesterone receptor; ↓ pS2 Growth inhibition

MDA-MB231 1 6 PARP cleavage; ↑ ceramide Apoptosis 280

184B5/HER 2.5–20 ↓ COX2 mRNA and activity 281

BHP2–7, 18-21 1, 10 ↑ activation of ERK1/2, ↑ p53 Apoptosis 282

JB6 5-20 ↑ p53 activation Growth inhibition; Apoptosis; G0/G1 arrest 283, 284
10–20 ↑ JNK activation; ↑ p53 phosphorylation

HCT-116 10–20 Bax-independent Apoptosis 163

CaSki 1 0 ↓ MMP-9 transcription; ↓ AP-1 activation 285

BAEC 6–20 ↓ migration, tube formation, ↓angiogenesis 286

A431 5–10 ↑ p21; ↓  cyclin D1; ↓ cdk4, 6 Growth inhibition, Apoptosis; G0/G1 arrest 287

HL60 4-8 ↓ caspase activation, ↑ DNA fragmentation Apoptosis 288

MEF (p53+,p53-) 1 0 ↑ p53 activation Apoptosis 289

  U937 0.1–20 ↓  ROS production 159, 290
5–10 ↓ AP-1 activation; ↓ NF-κB activation
1 0 ↓ p-Akt

HeLa; glioma 5–10 ↓ AP-1 activation; ↓ NF-κB activation 290
(H4); Jurkat

BEPD2; 1 0 ↓ B[a]P-induced adducts; 291
BEAS-2B ↓ CYP1A1/CYP1B1 mRNA

Melanoma 5 ↑ p53; ↑ quinone reductase 2 Growth inhibition; S- and G2/M arrest 292

SCC-9; HEPG2 5–10 ↓  hypoxia-induced HIF-1α; ↓ VEGF; 293
↓ pERK; ↓ pAkt
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Evidence for resveratrol acting synergistically/antago-
nistically  Resveratrol sensitized colon cancer cells to CD95
and the TRAIL-mediated induction of apoptosis, and at 10
µmol/L, sensitized HT29 cells to cisplatin-induced apopto-
sis[172].  Fulda and Debatin found that pretreatment with
resveratrol cooperatively enhanced doxorubicin, cytarabine,
actinomycin D, Taxol, and methotrexate-induced apoptosis
and cell cycle arrest in neuroblastoma cells[173], and enhanced
TRAIL-mediated apoptosis in neuroblastoma and Jurkat T
cells[174].  Resveratrol  (10 µmol/L) also enhanced the apoptotic
effects of paclitaxel in A549, EBC-1, and Lu65 lung cancer
cell lines[175], and of cisplatin and doxorubicin in OVCAR-3
and Ishikawa cells, respectively[176].

Resveratrol has been used in combination with other
phytochemicals, such as beta-siterol, resulting in enhanced
growth inhibition due to an arrest at both the G1 and G2/M
phases of the cell cycle in PC-3 cells[177].  The combination of
quercetin/ellagic acid with resveratrol resulted in a synergis-
tic effect on caspase-3 activation leading to apoptosis[178].
Lee et al[179] found individual concentrations of resveratrol
(0.5 µmol/L) or I3C (50 µmol/L) to induce the non-steroidal,
anti-inflammatory, drug-activated gene (NAG)-1, a TGF-β
superfamily gene associated with pro-apoptotic and anti-
tumorigenic activity.  However, when used in combination,
the doses could be reduced to 0.025 and 1 µmol/L, respec-
tively.

Conclusion
Plasma concentrations in humans, following normal

dietary intake or administration of supplements or formula-
tions, have been measured or can be estimated from animal
studies for each of the agents reviewed.  In general, achiev-
able plasma concentrations were in the low micromolar range,
although animal studies revealed the possibility of consid-
erably higher concentrations in some tissues.  In summariz-
ing data from many cell culture studies, which have been
carried out using the low concentrations achievable in vivo,
it is apparent that all the compounds still exhibit biological
activity.  However, the range of activities is more limited,
compared to that using a much wider dose range.  While this
may reflect genuine lack of activity at low doses, it is partly
due to the fact that many studies have chosen to use only
higher doses and shorter time points.  There may therefore
be many more useful preventive possibilities to be identified
using lower doses.

Two very encouraging themes emerge from the data
reviewed here.  First, while not all in vitro findings are
matched in vivo, many observations have been validated in
animals or humans, giving credibility to the value of cell

cultures for screening and more detailed mechanistic studies.
However, some caution is required in extrapolation, as in
many cases it is not known whether exactly the same signal-
ing mechanisms are operational in vivo.  There can also be
significant discrepancies in the effective doses, even to the
extent that where low levels are active in vivo, much higher
concentrations are required to achieve the same effect in
vitro.

Second, there is a growing body of evidence to suggest
that even if single agents are inactive at low concentrations,
combinations of 2 or more compounds might be much more
efficacious.  Combinations with chemotherapeutic drugs also
offer the possibility of lowering the dose of the latter, with a
consequent reduction of unwanted side-effects.

Thus, studies in cell culture have provided valuable
insights into chemopreventive mechanisms of action, and
there is now a need to pursue these at physiological doses
and in novel combinations.  One further aspect, which has
not been tackled in any detail here, is the need to address
more rigorously the question of tissue specificity and can-
cer subtype.
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