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Abstract
Aim: To develop an artificial neural network model for predicting the resistance
index (RI) of taxoids.  Methods: A dataset of 63 experimental data points were
compiled from published studies and randomly subdivided into training and exter-
nal test sets.  Electrotopological state (E-state) indices were calculated to charac-
terize molecular structure together with a principle component analysis to reduce
the variable space and analyze the relative importance of E-state indices.  Back
propagation neural network technique was used to build the models.  Five-fold
cross-validation was performed and 5 models with different compound composi-
tion in training and validation sets were built. The independent external test set
was used to evaluate the predictive ability of models.  Results: The final model
proved to be good with the cross-validation Q2

cv0.62, external testing R2 0.84, and
the slope of the regression line through the origin for the testing set at 0.9933.
Conclusion: The quantitative structure–activity relationship model can predict
the RI to a relative nicety, which will aid in the development of new anti-multidrug
resistance taxoids.
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Introduction
Paclitaxel (taxol, Bristol–Myers Squibb, New York, New

York, USA[1]) and docetaxel (taxotere, Sanofi–Aventis, Paris,
Paris, France[2]; Figure 1) are arguably two of the most effec-
tive and clinically successful anticancer agents widely used
for the administration of several solid tumors, such as breast
and ovarian cancers.  Both agents have a unique anticancer
mechanism known as microtubule-stabilizing activity.  They
act by accelerating the polymerization of tubulin and inhibit-
ing the depolymerization of microtubules, thus leading to
cell apoptosis[3–5].  Although both drugs possess strong an-
titumor activity, chemotherapy is usually limited by the pres-
ence of multidrug resistance (MDR).  MDR is the cross-re- Figure 1. Structure of paclitaxel and docetaxel.



386

 Acta Pharmacologica Sinica ISSN 1671-4083Dong PP et al

sistance of tumor cell lines to several structurally and func-
tionally unrelated chemotherapeutic agents after exposure
to a single cytotoxic drug[6,7].  Therefore, it is urgent to de-
velop a new generation of anti-MDR taxoids.

Extensive research has been conducted to better under-
stand the mechanism of MDR, and until now, several targets
have been recognized to be associated with MDR, such as
the overexpression of the ATP-binding cassette (ABC) trans-
porter proteins and the mutations on tubulin[8,9].  The ABC
transporter proteins include (but are not limited to) the P-
glycoprotein, the multidrug resistance protein (MRP) 1,
MRP2, and the breast cancer resistance protein[8].  For
tubulin, it has been proven that the point mutation at the β-
tubulin within or near the paclitaxel binding site and the ex-
pression of the β-tubulin isotypes, which are less sensitive
to taxoid inhibition, usually lead to MDR[10].  For the com-
plexity of the receptor targets relative to MDR, it is difficult
to make use of receptor-based methods in exploring MDR
problems.  Since the last decade, a lot of taxoids have been
synthesized, and their cytotoxicity activities to different cell
lines have been evaluated, so we can now explore the prob-
lem of MDR from the perspective of ligands, that is, explor-
ing the quantitative structure–activity relationship (QSAR)
of taxoids and their anti-MDR activities.  An important pa-
rameter in evaluating the anti-MDR activity of compounds
is the resistance index (RI), which is the ratio of IC50 of the
resistance cell lines to that of the sensitive ones.

Since the last decade, there has been a lot QSAR-based
research about taxoids[11-15].  Most of these studies made
use of 3-D methods, such as the comparative molecular field
analysis (COMFA) or the comparative molecular similarity
indices analysis (COMSIA); another character of these re-
searches is that the activity they adopted is IC50 of taxoids to
inhibit the disassembly of microtubule or growth of tumor
cell lines instead of the RI of anti-MDR properties.  MDR is
a common and serious problem that hinders the application
of taxoids; good IC50 activity alone can not satisfy the clini-
cal demand.  The next generation of taxoids should conquer
the problem of MDR.  Until now, we have found only 1 ar-
ticle that depicts the QSAR model of the RI.  In this study,
Monti et al adopted multilinear regression (MLR) to mimic
the relationship between the RI and the structure of cis-plati-
num complexes.  Four descriptors were adopted in their final
models, and there are 16 compounds in the whole dataset[16].
As for taxoids, until now, there is no such model to predict
the RI, so to obtain the RI, many cytotoxicity evaluation
experiments should be conducted.  Experimental methods
are usually time and money consuming and they are not
consistent with the basic drug development strategy of “fail

early, fail cheap”[17,18], especially to millions of candidate
molecules.  So it is necessary for us to build a QSAR model
to predict the RI for taxoids.

Molecular descriptors are one of the key factors to a
successful QSAR model, and they should encode the most
useful physicochemical information on structure features that
are relative to the activities to be modeled.  Electrotopological
state (E-state) indices are widely used in QSAR modeling,
including recent cancer-related research[19,20].  The large
amount of variables in E-state indices can fully represent the
structure characters of molecules, such as information about
non-covalent interactions, which may be important to the
occurrence of anti-MDR activity.  The artificial neural net-
work (ANN), used as a modeling technique, has recently
become a popular and powerful chemometric tool[21-23].  Com-
pared with classical statistical methods, ANN-based ap-
proaches do not require preliminary knowledge of the math-
ematical form of the relationship between the variables[24],
which makes the ANN suitable for extrapolating the complex
and unsure relationships between the biological phenom-
enon and the structure of the compounds.  Several success-
ful QSAR models in our previous studies have proven the
feasibility of the combination of the E-state index and the
ANN[20,25] to build models.

The purpose of this article was to build a QSAR model
combining the E-state indices and the ANN to predict the RI
for taxoids.  Structure and cytotoxicity data of 63 taxoids,
including paclitaxel and docetaxel, were collected from pub-
lished studies[26-30].  Compared with the RI model of cis-plati-
num complexes, we enlarged the chemical space of our mod-
els by collecting 63 compounds synthesized by different
laboratories at different times; moreover, more than 4 de-
scriptors were adopted, and the ANN was used as a model-
ing technique as it does not have to suppose a linear rela-
tionship between structure and activity as in MLR.  In order
to determine the optimal composition of compounds in the
training and validation sets, 5-fold cross-validation was
performed.  The robustness and generalization of our mod-
els were still evaluated by an external, independent testing
set.  The final model was statistically proven to be stable and
predictive.  This model will aid in filtering drug candidates
and accelerate the design and development of new genera-
tion anti-MDR taxoids.

Material and methods
Dataset  In order to build a reliable QSAR model, 63

taxoids with diverse structures were collected from published
studies[26-30], which represented most of the structure modi-
fications since the last decade to improve the clinical perfor-
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mance of paclitaxel and docetaxel.  According to the modifi-
cation positions, these compounds are categorized into 6
classes[31], as shown in Figure 2, and the substitution infor-
mation of the compounds in each class are listed in Table 1.
The data about the inhibitory effects (IC50) of these com-
pounds to drug-sensitive human breast carcinoma (MCF-
7S) and multidrug-resistant human breast carcinoma (MCF-
7R) cell lines were also collected to calculate the RI.  Cyto-
toxicity experiments were conducted following the same in
vitro assay protocol developed by Skehan et al[32].The rea-
son we chose MCF-7(S and R) cell lines was because they
are widely used in biological activity evaluations of taxoids,
which will aid in the collection of compounds.  All the MCF-
7R cell lines were induced by doxorubicin to ensure that
they had the same MDR mechanisms.  The anti-MDR activ-
ity of different taxoids was expressed as a relative value of
the RI (taxoid)/RI (paclitaxel), and the values of –log (RI
[taxoid]/RI [paclitaxel]) were used for analysis in the back
propagation neural network (BPNN) model, which covered a
large range, with nearly 3 orders of magnitude from –0.57 to
+2.28.

The most reliable way to validate the generalization abil-
ity of a model is by external validation[33], that is, to assess
the adequacy of the model by the dataset, which is not used
in model building.  So we randomly selected 14 compounds
as an independent external testing set.  Five-fold cross-vali-
dation was performed on the remaining 49 taxoids to evalu-

ate the internal stability of models and to optimize the com-
position of compounds in the training and validation sets,
so 49 compounds were randomly categorized into 5 groups.
One group was selected as the validation set each time, and
the remaining 4 groups as the training set; 5 different train-
ing and validation datasets could be used to construct dif-
ferent models[19].  The detailed grouping information of the
datasets for each model together with the activities for each
compound was given as supporting information.

Descriptor generation  We used the Molconn-z program
in the SYBYL software package (Tripos Associates, St Loius,
MO, USA) to calculate molecular structure descriptors known
as E-state indices, whose availability has been proven in a
lot of QSAR models[20,34].  In total, 248 standard descriptors
were calculated included in the molecular connectivity Chi
indices, Kappa shape indices, E-state indices, hydrogen E-
state indices, atom type and bond type E-state indices, to-
pological equivalence indices and total topological index,
counts of graph paths, atoms, atom types, bond types, and
so on (Molconn-Z manual), which can sufficiently represent
the structural characters of molecules.  The E-state indices
are shown to contain information reflecting the intermolecu-
lar accessibility of atoms and groups in a molecule, espe-
cially the electron accessibility, which is encoded into a nu-
merical value.  The advantage of these kinds of descriptors
is that they encode not only the topological environment of
an atom, but also the electronic interactions from other at-

Figure 2. Structure of 6 classes of taxoids.
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Table 1.   Substituent information for all 63 taxoids.

Namea R1 R2 R3

Paclitaxel Ph Ac
Docetaxel tBuO H

Class 1
IDN5109 Bz
MEO/IDN5109 m-MeOBz

Class 2
IDN5390 Bz H OH
MEO/IDN5390 m-MeOBz 1,14-carbonate

Class 3(1)
4a (CH3)2C=CH CH3CH2-CO Ph
4b (CH3)2C=CH Cyclopropane-CO Ph
4c (CH3)2C=CH (CH3)2N-CO Ph
4d (CH3)2C=CH CH3O-CO Ph
4e (CH3)2C=CH CH3 Ph
4f (CH3)2C=CH CH3(CH2)3-CO Ph
4g (CH3)2C=CH CH3(CH2)4-CO Ph
4h (CH3)2C=CH (CH3)2CHCH2-CO Ph
4i (CH3)2C=CH (CH3)3CCH2-CO Ph
4j (CH3)2C=CH Cyclohexane-CO Ph
4k (CH3)2C=CH CH3CH=CH-CO Ph
4l (CH3)2C=CH (CH3CH2)2N-CO Ph
4m (CH3)2C=CH Morpholine-4-CO Ph
4n (CH3)2C=CH CH3NH-CO Ph
4o (CH3)2C=CH CH3CH2NH-CO Ph
4p (CH3)2C=CH CH3CH2CH2NH-CO Ph
4q (CH3)2C=CH (CH3)2CHNH-CO Ph
4r (CH3)2C=CH CH2=CHCH2NH-CO Ph
4s (CH3)2C=CH Cyclohexyl-NH-CO Ph
5a (CH3)2CH-CH2 CH3CH2-CO Ph
5b (CH3)2CH-CH2 Cyclopropane-CO Ph
5c (CH3)2CH-CH2 (CH3)2N-CO Ph
5d (CH3)2CH-CH2 CH3O-CO Ph
5e (CH3)2CH-CH2 CH3 Ph
5s (CH3)2CH-CH2 Cyclohexyl-NH-CO Ph
sb-t-1102 (CH3)2CH-CH2 CH3CO Ph
sb-t-1212 (CH3)2C=CH CH3CO Ph

Class 3 (2)
7 Ph Ac Cyclohexyl
8 Cyclohexyl Ac (CH3)2C=CH
9 (CH3)2C=CH Ac Cyclohexyl
10 (CH3)2C=CH Ac (CH3)2C=CH
11 (CH3)2CH-CH2 Ac (CH3)2CH-CH2
13 (CH3)2C=CH Ac (CH3)2CH-CH2
14 (CH3)2CH-CH2 Ac Cyclohexyl
15 CH3CH=CH Ac Cyclohexyl
16 CH3CH=CH Ac Cyclohexyl

Class 4
7e MeO Et CH2CH(CH3)2
7f MeO Et CH2CH(CH3)2
7g MeO Et CF2H
7h MeO Et CH2CH2CH=CH2
7i MeO Et CH2CH=CH2
7j MeO Et (S)-2,2-Dimethyl-cyclopropyl
7l MeO Me CH=C(CH3)2
7n N3 Et CH2CH(CH3)2
7o N3 Et CH=C(CH3)2
7q Me Me CH=C(CH3)2

Class 5
8c H F H
8f F H F

Class 6
11a H
11b Ac
11c Me2N-CO
11d Cyclopropane-CO
11e MeO-CO
11f Morpholine-4-CO
11g Et-CO
11h CH3(CH2)3-CO
11i (CH3)3CCH2-CO

aName or number of compounds in References.
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oms in the molecules, as depicted in its formula[35]:
IIS iii δ+= (1),

where Si is the E-state of atom i, Ii is the intrinsic state,
and dIi is the perturbations due to the atoms around it.
Moreover, most of the descriptors have been proven to be
well associated with non-covalent interactions, which are
important for bioactivity[36].  Thus, E-state indices can repre-
sent the structure information, which may also be relative to
the anti-MDR properties for taxoids.

Feature reduction  Not all of the 248 descriptors contrib-
ute to the bioactivity; some measures were taken to elimi-
nate the noise (uninformative descriptors): eliminating the
descriptors with constant values and more than 90% zero
values because they offered little discriminating information
for the construction of model.  After this procedure, 84 de-
scriptors remained, as shown in Table 2.  In order to further
reduce the variable space and the chance of correlation be-
tween the descriptors, a principle component analysis (PCA)
was performed on the remaining 84 variables.  The 11 de-
rived principle component vectors (PC) were used for model
building.  The calculation of PCA was done by free data
mining software, Tanagra 1.1 (http://eric.univ-lyon2.fr/~ricco/
tanagra/en/tanagra.html).

ANN  In order to build reliable and predictive QSAR
models, we adopted the ANN technique, which has been
proven to have outstanding non-linear approximation abil-
ity[22,23,37].  A typical ANN consists of an input layer, a hidden
layer, and an output layer.  In the ANN, signals are propa-
gated from the input neurons through the hidden layer to
the output neuron, and then the error is calculated and back
propagated to iteratively adjust weights and biases in order
to minimize the error in prediction; this is the most distinct
character of typical back propagation (BP) algorithm.

The ANN program used was the neural network software
package of MATLAB 7.0.1 developed by Math Works
(Natick, MA, USA).  Some fully connected 3-layer BP neural
networks with sigmoid transfer function were constructed.
The number of neurons in the input layer equaled the num-
ber of PC.  Before the net training, all of the input and output
values were normalized to between –1 and 1, and the out-
puts were transferred back to the same units as the original
outputs for comparison purpose.  The Levenberg–Marquardt
algorithm was adopted to optimize weights and biases be-
cause it was significantly faster than other algorithms based
on gradient descent[38].  In each of the 5 different datasets,
the training sets were used to determine the architecture of
the ANN model; the validation sets were adopted to tune the
ANN parameters to prevent overtraining[39], and the inde-
pendent external testing set was used to evaluate the predic-

tive ability of the models.  In order to determine the optimal
number of neurons in the hidden layer, we adopted some
empirical rules.  For example, the number of neurons in the
hidden layer can be confirmed by the formula: m=log2 n+α,
where m is the number of neurons in hidden layer, n is the
number of input variables, and α is the integer between 0
and 10[40–42].  The early-stopping method was adopted to
help prevent overtraining.  For the 5 datasets with different
compounds in the training and validation sets, we trained
the models separately.

Model evaluation  The following parameters were calcu-
lated to evaluate the performance of the ANN and the pre-
dictive ability of the model: Q2

cv (cross-validation correla-
tion coefficient), RMSE (residual mean square error), R2

(square correlation coefficients for the regression line for
calculated and experimentally-derived activity of the exter-
nal testing set), R0

2 (square correlation coefficients for the
regression line through the origin for calculated and experi-
mentally-derived activity of the external testing set), and K
(the slope of regression line through the origin for testing
sets).  The residuals between the predicted and experimen-
tally-derived activities were also calculated for the best model.
The definitions of Q2

cv
[43] and RMSE[33] are listed below:
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−= 1
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                   (3),

where PRESS is the sum of squared deviations between
the predicted and measured biological activity values for
each compound in the validation set, and SD is the sum of
the squared deviations between the measured activities of
the compounds in the validation set and the mean activity of
the training set compounds. yi

~ and yi are the predicted and
actual activities, respectively, and yr

i corresponds to the
equation of regression ba yy i

r
i += ~ .  The propositional cri-

teria necessary for the high predictive ability of a model are
high Q2

cv (at least >0.5), high R2 for the external testing set (at
least >0.6), (R2-R0

2)/R2<0.1, and 0.85 ≤K  ≤1.15[33, 47].

Results
Molecular descriptors  The remaining 84 molecular de-

scriptors after the feature reduction were compressed and
analyzed by PCA, resulting in 11 PC for network building.
The number of components was determined by the maximum
variance described by the PC and the eigenvalues.  Eleven
PC were sufficient to explain nearly 95% of the variance, and
all of their eigenvalues were greater than 1.  The coefficients
of variables to each PC are described in Table 3.  PC1 and
PC2 explained 23% and 19% of the total variance,
respectively.  In each, the molecular connectivity and mo-
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Table 2.   Electrotopological state indices used in this work.

Variable Definition Variable Definition

Xv0, Xv1, Xv2, Valence Chi indices: nsCH3 Number of group atom: -CH3

Xvp3, Xvp4, Xvp5, Based on δv, connection matrix, nssCH2 -CH2-
Xvp6, Xvp7, Xvp8, atom type, and count of Hs bonded ndsCH =CH-
Xvp9,Xvp10, to each atom naaCH :CH:
Xvc3, Xvc4 Connectivity valence cluster indices nsssCH >CH
Xvpc4 simple path/cluster index ndssC -=C<
Xvch6 Valence chain indices naasC :C:-
ka1,ka2,ka3 Kappa alpha shape indices nssssC >C<
phia Flexibility index nssNH -NH-
sumdelI Sum of delta-I values ndO =O
sumI Sum of intrinsic state values nssO -O-
Q v General polarity descriptor. naOm :O-0.5

Extreme atom level E-state value nsF -F
in molecule: nHssNH Number of Hs on: -NH-

Hmax Maximum H E-state nHdsCH =CH-
Gmax Maximum E-state nHaaCH :CH:
Hmin Minimum H E-state nHCsats CHn (saturated)
Gmin Minimum E-state nHCsatu CHn (unsaturated)
nvx Number of non hydrogen atoms ntrifluoromethyl Number of group:CF3

nedges Number of edges(bonds) ncarbamate C(=O)OR
nrings Number of rings in molecule ncarboxylate COO
nHBd, Number of strong H-bond donors, Sum of E-states for this
nHBa Number of strong H-bond acceptors Strifluoromethyl type of group: CF3

nwHBa Number of weak H-bond acceptors Sketone RC(=O)R
Sum of E-states value for Scarbamate NC(=O)OR

SHBd, H-bond donors, Scarboxylate COO
SHBa, H-bond acceptors
SwHBa weak H-bond acceptors Sum of atom type E-states
SHBint3 Sum of E-state descriptors of strength SsCH3, SssCH2, -CH3, -CH2-,
SHBint4 for potential Internal H bonds. Internal SdsCH, SaaCH, =CH-, :CH:,
SHBint5 hydrogen bond descriptor is the product SsssCH, SdssC, >CH-, =C<
SHBint6 of H E-state value and E-state value. SaasC, SssssC, :C:-, >C<,

Sum of H E-states for atom type: SssNH,SsOH,SdO -NH-, -OH, =O,
SHsOH, SHssNH, Hs on –OH, -NH-, SssO SaOm SsF -O-, :O-0.5, -F
SHdsCH, SHaaCH =CH-, :CH:
SHCsats Sum of H E-states for Hs on SHCsatu Sum of H E-states for

C sp3 bonded to saturated C Hs on CHn(unsaturated)

lecular shape indices played important parts.  The PC2 mainly
consists of the E-state descriptors, which encode the topo-
logical and the electronic information about each atom and
the interaction deriving from the environment.  PC3, with
10% of the variances explained, represents the information
of the H-bond interaction derived from the information about
the H-bond donor and acceptors.  PC4 was dominated by
the information about the atom type aaCH:, that is, :CH:,
including the number of atoms of this kind, number of H on
these atoms, and the total E-state values and HE-state values,
and it encodes 9.23% of the variance.  The most important

descriptor in PC5 is the ndssC, which counts the number of
atoms of this kind =C<.  Interestingly, the atom O descriptor
also accounts for a large part in PC5, which totally depicted
8.4% of the total variance.  Although only 6.6% of the vari-
ance was explained, PC6 contained important descriptors,
mainly about the atom N, such as NH– and the group NC
(=O) OR.  The remaining 5 PC can contribute to 16.6% of the
total variance and each one was dominated by important
descriptors.

QSAR modeling  As for the 5 different training and vali-
dation sets, 5 QSAR models were built separately.  Eleven
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Table 3.   Component score coefficient matrix of 84 descriptors to 11 PCa.

  Descriptor            PC1          PC2              PC3          PC4            PC5        PC6      PC7       PC8    PC9   PC10  PC11

Xv0 0.040 0.029 0.015 0.004 0.042 -0 .013 -0 .035 0.055 0.052 0.021 0.026
Xv1 0.039 0.034 0.011 0.015 0.000 0.005 -0 .032 0.013 0.086 0.039 0.059
Xv2 0.039 0.032 -0 .008 -0 .013 -0 .002 0.009 -0 .004 0.085 0.038 -0 .004 0.178
Xvp3 0.030 0.042 0.005 0.022 -0 .051 0.002 -0 .001 -0 .019 0.054 0.011 0.049
Xvp4 0.034 0.036 -0 .011 0.027 -0 .049 0.004 -0 .001 -0 .047 0.016 -0 .013 0.114
Xvp5 0.032 0.036 -0 .006 0.022 -0 .060 -0 .005 0.018 -0 .055 -0 .006 -0 .035 0.038
Xvp6 0.031 0.037 -0 .010 0.017 -0 .032 -0 .040 0.045 -0 .021 -0 .100 -0 .064 -0 .065
Xvp7 0.023 0.045 -0 .002 0.006 -0 .035 -0 .034 0.060 -0 .016 -0 .090 -0 .014 -0 .094
Xvp8 0.032 0.039 -0 .007 0.003 -0 .024 -0 .023 0.059 0.004 -0 .095 0.004 -0 .022
Xvp9 0.028 0.042 -0 .001 0.000 -0 .034 -0 .026 0.067 -0 .022 -0 .069 0.002 -0 .072
Xvp10 0.026 0.043 0.000 -0 .004 -0 .035 -0 .027 0.070 -0 .027 -0 .061 -0 .006 -0 .092
Xvc3 0.016 0.014 -0 .019 -0 .055 0.032 -0 .008 0.028 0.196 -0 .053 -0 .048 0.260
Xvc4 0.002 0.020 -0 .003 -0 .053 0.022 -0 .011 0.048 0.180 -0 .014 -0 .005 0.356
Xvpc4 0.017 0.038 0.001 -0 .016 -0 .032 -0 .028 0.056 0.122 -0 .107 -0 .051 -0 .003
Xvch6 0.019 0.028 0.005 0.012 -0.078 0.037 0.022 -0 .113 0.099 0.002 0.137
ka1 0.023 0.036 0.025 -0 .026 0.068 -0 .019 -0 .051 0.036 0.076 0.016 -0 .023
ka2 0.032 0.019 0.034 -0 .004 0.046 -0 .006 -0 .077 -0 .014 0.127 0.056 -0 .067
ka3 0.027 0.015 0.028 -0 .045 0.062 0.007 -0 .054 0.042 0.146 0.026 0.027
phia 0.032 0.010 0.025 -0 .036 0.055 -0 .004 -0 .072 0.000 0.130 0.052 -0 .098
nvx 0.018 0.046 0.031 0.028 0.044 -0 .022 -0 .044 0.014 0.047 0.011 0.038
nedges 0.017 0.048 0.030 0.041 0.027 -0 .019 -0 .038 0.005 0.037 0.010 0.063
nrings 0.005 0.038 0.013 0.078 -0 .047 -0 .004 -0 .002 -0 .032 -0 .018 0.003 0.136
sumdelI -0 .026 0.049 0.003 -0 .014 0.042 -0 .012 0.001 -0 .020 0.010 -0 .056 -0 .009
sumI -0 .024 0.047 0.019 -0 .002 0.053 -0 .021 -0 .019 -0 .017 0.022 -0 .046 0.007
Q v 0.044 -0 .029 -0 .008 -0 .007 -0 .011 0.007 -0 .002 0.064 0.001 0.041 -0 .006
nHBd 0.003 -0 .003 0.077 -0 .044 -0 .032 0.061 -0 .019 -0 .020 -0 .086 -0 .056 0.070
nHBa -0.027 0.041 -0 .002 -0 .022 0.059 -0 .003 -0 .034 -0 .048 -0 .036 -0 .029 -0 .076
nwHBa -0.006 0.000 0.061 0.092 0.031 -0 .027 -0 .007 0.032 0.009 -0 .006 0.031
SHBd -0.006 0.003 0.078 -0 .048 -0 .039 0.048 0.001 -0 .010 -0 .062 -0 .048 0.052
SHBa -0.033 0.043 -0 .003 -0 .018 0.039 -0 .005 0.002 -0 .034 0.015 -0 .064 -0 .011
SwHBa 0.005 -0 .014 0.064 0.064 -0 .019 -0 .014 0.004 0.040 -0 .042 0.218 -0 .003
Hmax -0.019 0.027 0.066 -0 .036 0.005 -0 .019 0.019 0.034 0.067 -0 .035 -0.180
Gmax 0.030 0.041 0.026 -0 .003 0.026 -0 .018 0.035 0.033 -0 .033 0.072 -0 .157
Hmin -0 .029 0.005 0.033 0.037 0.003 -0 .044 0.030 -0 .043 -0 .105 0.001 -0 .073
Gmin 0.040 -0 .029 0.003 0.036 -0 .014 -0 .021 -0 .027 0.019 -0 .013 -0 .117 -0 .031
SHBint3 -0 .016 0.047 0.018 0.042 0.029 -0 .024 0.003 -0 .039 -0 .004 -0 .018 0.166
SHBint4 -0 .040 0.031 -0 .001 -0 .029 0.014 0.015 0.027 -0 .027 0.011 0.099 0.020
SHBint5 0.000 0.018 0.067 -0 .040 -0 .034 -0 .011 0.033 0.053 0.116 -0 .018 -0.210
SHBint6 0.001 0.000 0.060 -0 .047 –0.051 0.009 0.062 0.064 0.115 -0 .054 -0.198
nHssNH 0.016 0.004 0.045 -0 .006 0.028 0.123 -0 .029 -0 .049 -0.125 -0 .052 0.066
nHdsCH 0.022 -0 .024 0.034 -0 .015 0.053 -0 .011 0.098 -0 .072 0.018 0.043 -0 .004
nHaaCH -0.016 0.008 0.043 0.099 -0 .008 0.020 0.003 0.079 0.011 0.058 0.020
nHCsats 0.023 0.023 -0 .051 -0 .037 -0 .045 0.047 -0 .066 0.033 0.042 0.042 -0 .059
nHCsatu 0.026 -0 .024 0.026 -0 .014 0.036 -0 .054 0.089 -0 .074 0.029 -0 .044 0.125
nsCH3 0.027 -0 .021 -0 .025 -0 .042 0.061 -0 .018 0.005 0.122 -0 .071 -0 .042 -0 .047
nssCH2 0.025 0.022 -0 .016 -0 .033 -0 .061 0.030 -0 .022 -0 .095 0.174 0.066 0.058
ndsCH 0.022 -0 .024 0.034 -0 .015 0.053 -0 .011 0.098 -0 .072 0.018 0.043 -0 .004
naaCH -0.016 0.008 0.043 0.099 -0 .008 0.020 0.003 0.079 0.011 0.058 0.020
nsssCH 0.023 0.020 -0 .054 -0 .004 -0 .050 0.021 -0 .016 -0 .004 -0 .121 -0 .039 -0 .065
ndssC 0.022 -0 .018 -0 .003 0.017 0.100 0.003 0.027 -0 .055 0.045 0.033 0.118
naasC -0.012 0.012 0.025 0.078 0.018 -0 .038 -0 .028 0.056 0.052 -0.264 -0 .029
nssssC -0.022 0.036 -0 .002 -0 .060 0.011 0.005 0.067 0.086 -0 .045 0.063 0.154

Continue
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Descriptor PC1 PC2 PC3  PC4 PC5   PC6 PC7 PC8   PC9  PC10  PC11

nssNH 0.016 0.004 0.045 -0 .006 0.028 0.123 -0 .029 -0 .049 -0.125 -0 .052 0.066
ndO 0.019 0.031 -0 .029 0.022 0.069 -0 .038 0.010 -0 .060 -0 .102 0.000 -0 .119
nssO 0.001 0.001 0.029 -0 .035 -0 .003 -0 .118 -0.109 -0 .040 -0 .080 0.035 0.024
naOm 0.003 0.006 -0 .060 0.048 0.051 0.086 0.051 0.020 0.049 -0 .006 -0 .065
nsF -0.041 0.032 -0 .001 -0 .022 0.015 0.013 0.025 -0 .018 0.045 -0 .069 0.018
SHsOH -0.017 -0 .003 0.054 -0 .039 -0.071 0.025 0.064 0.056 0.049 -0 .039 -0 .031
SHssNH 0.010 0.008 0.047 -0 .008 0.031 0.125 -0 .024 -0 .055 -0 .122 -0 .045 0.078
SHdsCH 0.023 -0 .024 0.034 -0 .015 0.054 -0 .012 0.099 -0 .070 0.016 0.042 0.007
SHaaCH -0.017 0.009 0.043 0.099 -0 .004 0.014 -0 .001 0.079 0.016 0.021 0.016
SHCsats 0.013 0.035 -0 .049 -0 .037 -0 .035 0.038 -0 .069 0.028 0.003 0.069 -0 .114
SHCsatu 0.023 -0 .017 0.030 -0 .007 0.040 -0 .062 0.090 -0 .089 0.036 -0 .063 0.156
SsCH3 0.034 -0 .024 -0 .020 -0 .034 0.046 -0 .011 -0 .003 0.127 -0 .051 -0 .017 -0 .017
SssCH2 0.030 0.015 -0 .022 -0 .009 -0 .066 0.044 0.007 -0 .121 0.103 0.010 0.167
SdsCH 0.023 -0 .024 0.035 -0 .016 0.053 -0 .010 0.097 -0 .072 0.020 0.043 -0 .006
SaaCH -0.013 0.004 0.042 0.096 -0 .014 0.026 0.006 0.079 -0 .006 0.155 0.023
SsssCH 0.030 -0 .041 0.007 0.019 -0 .021 0.003 -0 .036 0.041 0.072 -0 .028 0.043
SdssC 0.035 -0 .033 0.025 -0 .005 -0 .048 -0 .016 0.029 0.035 0.005 -0 .002 0.008
SaasC 0.009 -0 .015 -0 .006 -0 .006 -0 .016 0.010 0.003 0.009 -0 .083 0.458 -0 .005
SssssC 0.036 -0 .034 0.000 0.040 -0 .016 -0 .016 -0 .041 0.004 0.011 -0 .098 -0 .040
SssNH 0.031 -0 .006 0.039 0.012 0.013 0.100 -0 .040 -0 .031 -0 .106 -0 .079 0.058
SsOH -0.007 -0 .005 0.056 -0 .036 -0.078 0.023 0.068 0.066 0.049 -0 .048 -0 .053
SdO 0.024 0.033 -0 .023 0.027 0.066 -0 .036 0.002 -0 .046 -0 .089 0.018 -0 .097
SssO 0.001 0.000 0.030 -0 .036 -0 .005 -0 .118 -0.109 -0 .041 -0 .083 0.035 0.032
SaOm 0.005 0.001 -0 .061 0.053 0.053 0.085 0.028 0.016 0.071 0.004 -0 .016
SsF -0.041 0.032 -0 .001 -0 .022 0.015 0.013 0.025 -0 .018 0.045 -0 .068 0.018
ntrifluoromethyl -0 .039 0.028 -0 .005 -0 .036 0.011 0.025 0.030 -0 .019 0.012 0.136 0.062
ncarbamate 0.010 0.010 0.015 -0 .014 0.043 0.137 0.006 0.020 -0 .016 0.003 -0 .160
ncarboxylate 0.002 0.007 -0 .064 0.051 0.018 0.025 0.099 0.032 0.066 -0 .033 -0 .047
Strifluoromethyl -0 .039 0.028 -0 .005 -0 .036 0.011 0.025 0.030 -0 .018 0.013 0.137 0.062
Sketone 0.037 0.031 0.022 -0 .001 0.008 -0 .020 0.038 0.042 -0 .036 0.079 -0 .150
Scarbamate 0.015 0.008 0.017 -0 .010 0.040 0.136 0.000 0.020 -0 .019 -0 .008 -0 .149
Scarboxylate 0.005 0.006 -0 .063 0.053 0.017 0.025 0.097 0.036 0.069 -0 .026 -0 .039
Eigenvalue 19.318 15.936 10.073 7.752 7.022 5.516 5.101 3.228 2.488 1.828 1.261
%VEb 22.998 18.971 11.992 9.228 8.359 6.566 6.073 3.843 2.962 2.176 1.502
TVEc 22.998 41.969 53.961 63.190 71.549 78.115 84.188 88.031 90.993 93.169 94.670

aImportant descriptors in each PC are in bold with the most important ones in italics. bPercentage of variance explained. cTotal percentage of
variance explained.

PC served as input variables for each model.  There are no
rigorous theoretical principles for determining the structure
for ANN, so different numbers of neurons in the hidden layer
and various numbers of epochs were tried in order to pre-
vent overfitting and overtraining.  As weights and biases are
optimized by the back propagation iterative procedure, train-
ing errors typically decrease, but validation errors first de-
crease and subsequently begin to rise, revealing a progres-
sive worsening of the generalization ability of the network.
Thus, when RMSE (transferred back) for training and valida-
tion sets both reached comparatively small values, the opti-
mized number of neurons and epochs was confirmed.  After

the structure of the ANN was chosen, repeated training was
done to optimize the weights and biases to find the best
predictive models.  The architecture of each model and the
results of the cross-validation Q2

cv and RMSE (T, V) are sum-
marized in Table 4.

Model evaluation  The external independent testing set
composing of 14 compounds was used to evaluate the pre-
dictive ability of the 5 models with the results shown in Table
5. Although the Q2

cv values of model 3 was >0.5, and both
the values of RMSET and RMSEV were less (0.003), the gen-
eralization ability of this model is poor, as demonstrated by
the results of R0

2 and the values of (R2–R0
2)/R2.  The statisti-
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cal results of model 4 also did not satisfy the criteria for a
good model.  Although the evaluation results of models 1, 2,
and 5 all satisfied the referred criteria necessary for predic-
tive models, we selected model 2 as our final model as it had
the highest value of Q2

cv and R2, allowing us to determine the
most stable and predictive model for the RI.

The residuals between the predicted and experimentally-
derived activities for compounds in the training, validation,
and prediction sets by model 2 are shown in Table 1.  We can
see that the activities of all 63 taxoids were predicted within
1.007 log units of their experimentally-derived activities with
an average absolute error of 0.213 log units.  The predictive
results of all 63 compounds are plotted in Figure 3.  The
statistical results of the testing set found that the greatest
deviation was 0.54 log units with an average absolute error
of 0.226 log units.  The predicted results are also plotted in
Figure 4.

Discussion
A successful descriptor should represent the key structure

information of molecules, influences activity, and then can be
useful in the prediction of activity for unknown compounds.
According to some structure activity studies[26–30], substitu-
tion by definite atoms or groups can influence anti-MDR
activity; for example, F-substituted taxoids at different posi-

tions usually alter the anti-MDR activity differently, and the
–OH and groups including N atoms also play an important
part in the change of activity.  As discussed earlier, the E-
state indices had fully encoded these kinds of structure
information; for example, F, N, =C< and :CH: descriptors were
all embodied in different PC.  Moreover, the reported mecha-
nisms about MDR of taxoids are relative to ABC transporter
proteins and tubulin[10].  As for ABC transporter proteins,
intermolecular H bonds are key factors for the recognition of
taxoids by those proteins[25].  For tubulin, it has been proven
that specific conformation, such as the T- taxol for taxoids,
should be maintained, and taxoids can act on some definite
isotypes of tubulin, which are also relative to the non-cova-
lent interaction intra or inter molecules[44–46].  So maybe the
anti-MDR activities of taxoids have some relationship to non-
covalent interactions.  Topological-based E-state indices
comprised H-bond descriptors for inter and intra molecules,

Table 5.   Results for external testing set of each model.

Model     R2      R0
2 (R2–R0

2)/R2 RMSEP
b       K

1 0.832 0.817 0.018 0.007 0.9746
2a 0.840 0.810 0.036 0.0135 0.9933
3 0.695 0.410 0.410 0.144 0.604
4 0.700 0.425 0.393 0.124 0.9613
5 0.795 0.794 0.001 0.001 0.9677

aStatistical results of the best model are in bold. bP, prediction set.

Table 4.   Statistical results of 5-fold cross-validation.

   Model Neuron  Q2
cv RMSET

a RMSEV

1 7 0.57 0.018 0.064
2 7 0.620 0.002 0.022
3 4 0.514 0.003 0.003
4 8 0.553 0.0002 0.049
5 5 0.562 0.007 0.051

a T, training sets; V, validation sets.

Figure 3. Plot of predicted –log (activity) values versus experimen-
tally-derived ones for all 63 taxoids. (□) training set; (×) validation
set; (△) testing set.

Figure 4 . Plot of predicted versus experimentally-derived – log
(activity) for testing set.
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which represented the non-covalent interactions.  Accord-
ing to the above analysis, we can see that E-state indices
can represent important attributes of molecular structure,
especially those associated with the interaction between
taxoids and receptors.  So it seems reasonable for us to
choose E-state indices as our descriptors for exploring the
relationship between the RI and the structure.

As for the statistical results of the 5 ANN models, al-
though each model was with the good internal cross-valida-
tion results( Q2

cv>0.5), we can’t conclude that all of them
have good generalization abilities.  The results of model 3
indirectly indicated that only the independent external test-
ing rather than the internal validation could evaluate the
predictive ability of a model.  The results of 5-fold cross-
validation and external testing also ensured that the com-
pound composition of the training and validation sets had
important influence on the architecture and performance of
models, especially on the predictive ability for the external
testing sets.  Five-fold cross-validation could help us to find
out the optimal combination of compounds that may be use-
ful for obtaining the most predictive model.

According to the results of model 2, in Figure 3, all of the
samples distributed closely around the line, and the value of
R0

2 was 0.8936, together with the K (the slope of regression
line through the origin)  was 1.0137, which further proved

Table 6.   Predicted activities and residual information of taxoidsa.

   Nameb BPNN    Exp Residualse

(activity)c (activity)d

       Training set
Paclitaxel 0.141 0.000 –0.141
IDN5390 1.088 1.021 –0.068
MEO/IDN5109 1.790 1.759 –0.032
MEO/IDN5390 0.702 0.609 –0.093
4b1214 0.984 1.224 0.240
4d 0.698 0.667 –0.031
4 f 0.554 0.467 –0.087
4g 0.348 0.609 0.261
4 h 1.488 0.918 –0.570
4i 0.965 0.826 –0.139
4 m 0.410 0.103 –0.307
4 n 0.217 0.546 0.329
4 p 0.037 –0.138 –0.175
4q 0.246 0.095 –0.151
4s –0.045 0.082 0.128
5a 1.179 1.342 0.163
5b 1.184 1.319 0.135
5c 0.908 1.038 0.130
5e –0.142 –0.567 –0.424
sb-t-1102 0.918 1.291 0.373
7 –0.013 –0.114 –0.102
1 0 0.239 0.364 0.126
1 1 0.591 0.516 –0.074
1 3 1.054 0.845 –0.209
1 5 0.601 0.745 0.143
1 6 0.216 0.101 –0.115
7 f 1.919 2.284 0.365
7g 1.209 1.215 0.006
7i 1.551 1.210 –0.340
7l 1.525 1.788 0.263
7 n 1.828 1.924 0.097
7 o 2.099 2.160 0.060
8c 0.211 0.099 –0.112
8 f 0.243 0.187 –0.056
11a –0.299 –0.346 –0.047
11d 0.702 0.740 0.038
11e 0.635 0.525 –0.110
11f 0.532 0.166 –0.366
11h 0.619 0.675 0.056
11i 0.498 0.865 0.367

       Validation set
4c 0.655 0.669 0.014
4j 0.406 0.560 0.154
4 k 0.794 1.129 0.334
4 o 0.140 –0.473 –0.613
5s –0.076 0.931 1.007
8 0.653 0.140 –0.513
7e 2.461 2.170 –0.291
7 h 1.428 1.661 0.233
11c 0.353 0.400 0.047

Continue

   Nameb BPNN     Exp Residualse

 (activity)c (activity)d

           Test set
Docetaxel –0.484 –0.126 0.358
IDN5109 1.206 1.688 0.482
4a1213 0.943 1.158 0.215
4e –0.004 –0.276 –0.273
4l 0.548 0.587 0.039
4r 0.137 0.008 –0.129
5d 0.852 0.886 0.034
sb-t-1212 0.780 0.906 0.126
9 0.623 0.474 –0.149
1 4 0.372 0.529 0.157
7j 2.393 1.849 –0.545
7q 1.185 1.451 0.266
11b 0.534 0.793 0.259
11g 0.446 0.576 0.130

aStatistical results and the compound subset information are only
about model 2 . bName or number of compounds in References.
cActivities predicted by BPNN model 2, which were expressed as –log
(RI[taxoids]/RI[paclitaxel]). dActivities derived from experimental
data. eResiduals which equal to Exp(activity)–BPNN (activity).
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the closeness of the predicted and experimentally-derived
activity.  The results also indicated that the E-state indices
did correlate well with the –log (RI/P).  The statistical results
of the testing set further confirmed the predictive ability of
this model.

As for the complexity of the receptor proteins associated
with MDR, we derived a ligand-based QSAR model to pre-
dict the values of the RI for different taxoids.  E-state indices
were used to represent the structure of molecules; BPNN
was used to explore the relationship between descriptors
and RI activity.  During the construction of the models, 5-
fold cross-validation was performed to determine the best
composition of compounds in the training and validation
sets.  The predictive ability of the models was also evaluated
by an independent testing set.  The best model had the statis-
tical results of R2=0.84, R0

2=0.835, K=0.9933, and RMSEP=0.014,
indicating the excellent robustness and generalization of our
model.  The results also proved that E-state indices have
some relationship to anti-MDR activity, and the BPNN mod-
eling technique can fully emulate this kind of non-linear
relationship.  Our model can predict the values of the RI for
taxoids just from its structure even before it was synthesized,
so it will aid in the filter of anti-MDR drug candidates and
accelerate the design and development of taxoids with good
clinical performance to drug resistance cell lines.
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