Effects of 3.4-diaminopyridine on myoplasmic calcium and phosphoinositide hydrolysis in frog sartorius muscle fibers¹

XU Ze-Min, DONG Zheng, ZHU Pei-Hong

(Shanghai Institute of Physiology, Chinese Academy of Sciences, Shanghai 200031, China)

Using Ca²⁺-selective microelec-ABSTRACT trodes, the effects of 3, 4-diaminopyridine (DAP) on myoplasmic calcium ($[Ca^{2+}]$) were studied in frog satorius muscle fibers. DAP induced an increase of [Ca²⁺], in a concentration-dependent manner. DAP 1 mmol • L⁻¹ increased the $[Ca^{2+}]$ from control 166 ± 41 nmol •L⁻¹ to $416 \pm 69 \text{ nmol} \cdot L^{-1}$ (n = 10). In the absence of external calcium, DAP still enbanced $[Ca^{2+}]_{i}$, $[Ca^{2+}]_{i}$ of the fibers bathed in Ca²⁺-free Ringer's solution containing DAP 1 mmol·L⁻¹ was 152 ± 43 nmol·L⁻¹, which was significantly higher than 77 ± 35 nmol·L⁻¹ of $[Ca^{2+}]$, of the fibers in Ca²⁺-free Ringer's solution. In addition, DAP promoted the hydrolysis of phosphoinositides , and DAP induced hydrolysis was more in the presence of external calcium. It is suggested that, through enhancing the hydrolysis of phosphoinositides, DAP released Ca2+ from intracellular Ca²⁺ store in frog sartorius muscle fibers.

KEY WORDS aminopyridines; cytosol; calcium; phosphoinositides; muscles

3.4-Diaminopyridine (DAP), known as a K⁺ channel blocker, produced asynchronous oscillations of myoplasmic calcium ($[Ca^{2+}]$,) and contractures of frog twitch muscle fibers⁽¹⁾. These effects of DAP appeared also in Ca²⁺-free medium, suggesting that DAP released Ca²⁺ from intracellular Ca²⁺ store by an unclear mechanism⁽¹⁾. Inositol 1.4.5-trisphosphate, a product of phosphatidylinositol 4.5-bisphosphate hydrolysis, has such a function

in various cells¹⁰⁻⁴. The present study aims at exploring whether or not DAP, aside from blocking some types of K⁺ channels, can release Ca^{2+} from intracellular Ca^{2+} store through enhancing the hydrolysis of phosphoinositides.

MATERIALS AND METHODS

Chemicals and preparations DAP was purchased from Aldrich, and Calcium-cocktail for making Ca^{2+} selective microelectrodes was obtained from Fluka. [³H]Myo-inositol (specific activity 518 TBq • mol⁻¹) was provided by Shanghai Institute of Nuclear Research, Chinese Academy of Sciences. Dowex AGI-X8 (anton exchange resin) was purchased from Bio-Rad. The composition of Ringer's solution was NaCl 120, KCl 2, CaCl₂ I. 8, and HEPES 10 mmol • L⁻¹, while Ca^{2+} -free Ringer's solution consisted of NaCl 120, KCl 2, MgCl₂ 5, egtazic acid (EGTA) 1, and HEPES 10 mmol • L⁻¹.

The solutions were titrated to pH 7.2. The experiments were performed on the isolated sartorus muscles of *Rana nigromaculata* at 15 ± 1 C.

 $[\mathbf{Ca}^{2+}]_i$ measurement Under a light microscope (Opton, X100), a reference microelectrode filled with KCl 3 mol·L⁻¹ and a calibrated Ca²⁺-selective microelectrode were impaled into one fiber, and the potentials of the microelectrodes were monitored by an electrometer FD-223 (World Precision Instruments). After each insertion, the Ca²⁺-selective microelectrode was calibrated again, and the value of $[Ca^{2+}]_i$ was read from the calibration curve⁽⁵⁾.

Measurement of phosphoinositides hydrotysis⁽⁴⁾ A pair of muscles was incubated in Ringer's solution containing [³H]Myo-inositol 0.7 μ mol·L⁻¹ for 12 h, and LiCl 20 mmol·L⁻¹ was supplemented to the medium in the last hour. After labeling, one preparation was treated with Ringer's solution containing DAP I mmol·L⁻¹ for 30 min, and the other was bathed in Ringer's solution as control. Then, the preparation was immediately put onto a liquid N₂-cooled copper

Received 1993-03-15 Accepted 1993-11-11

¹ Project supported by the National Natural Science Foundation of China, Nº 39070329.

plate, smashed and ground into fine powder in liquid N_2 . Inositol phosphates were extracted with trichloroacetic acid 0.92 mol $\cdot 1.^{-1}$ and fractionalized by anion exchange chromatograghy. The column was eluted with ammonium formate 1 mol $\cdot 1.^{-1}$ -formic acid 0.1 mol $\cdot 1.^{-1}$ to obtain the total inositol phosphates (IP), which was counted by a liquid scintillator.

RESULTS

Effect of DAP on $[Ca^{2+}]_i$ $[Ca^{2+}]_i$ of the fibers in Ringer's solution was first measured as control, and then the effect of DAP on $[Ca^{2+}]_i$, was examined 15 min after adding DAP into the medium. The measurement usually took 4-5 h. and no change of $[Ca^{2+}]_i$, was noticed within the bathing time. $[Ca^{2+}]_i$, increased with raising DAP concentration, and reached a peak at DAP 1 mmol·L⁻¹. $[Ca^{2+}]_i$, declined with the further increase of DAP concentration (Fig 1).

Fig 1. Effect of DAP on myoplasmic calcium of frog sartorius muscle fibers n = 9 - 1.4 fibres $\bar{x} \pm s$, "P > 0.05, "P < 0.05, "P < 0.01, and "P < 0.01 ws [Ca²⁺], at DAP 0 mmol • L⁻¹ in either [Ca²⁺], 0 mmol • L⁻¹(()) or 1.8 mmol • L⁻¹(\bigoplus), respectively.

To analyze the source of Ca^{2+} in DAP induced increase of $[Ca^{2+}]$, the effects of DAP 1 mmol·L⁻¹ on the $[Ca^{2+}]$, in the presence and absence of external calcium were compared. In its presence, the $[Ca^{2+}]$, increased from 166 ± 41 nmol·L⁻¹ to 416 ± 69 nmol·L⁻¹. Bathing the fibers in Ca^{2+} free Ringer's solution itself reduced the $[Ca^{2+}]$, to $77 \pm 35 \text{ nmol} \cdot L^{-1}$. DAP resulted all crease of the [Ca²⁺], in Ca²⁺-free m the extent of the increase was obtain that in the presence of exter (Fig 1).

A hyperpolarization of the rebrane potentials was noted in the fi in DAP containing Ringer's solut did not produce such a hyperpola Ca^{2+} -free medium (Tab 1).

Tab 1. Effects of DAP on the resting a tential (Em) in the presence and absence calcium. $\tilde{x} \pm s$, "P>0.05 vs Em at DAP in the absence of external calcium. "P<0 DAP 0 mmol·L⁻¹ in the presence of exter

$[Ca^{2+}]_{\epsilon}/mmol \cdot L^{-1}$	DAP/ mmol·L ⁻¹	Fiber number]
	0	10	_
U	1	10	_
1.8	0	10	
	0.5	9	- 1
	1	10	1
	5	14	1

Effects of DAP on hydrolysis inositides In the presence of exum, exposing the preparation to D \cdot L⁻¹ for 3 0 min increased the 3 g·muscle)from13692±1887to17 (4 pairs of preparations), indicate bydrolysis of phosphoinositides, w by DAP. In Ca²⁺ - free medium g·muscle)increased from 13788 16 443±1 951 (4 pairs of prepasuch a treatment (Tab 2).

DISCUSSION

Our results clearly indicated could increase the $[Ca^{2+}]$, and enh drolysis of phosphoinositides in f muscle. Since DAP - induced o myoplasmic Ca^{2+} was monitored

Tab 2. Effect of DAP (1 mmol·L⁻¹, 30 min) on total inositol phosphates (1P) in frog sartorius muscle in the presence and absence of external calcium . n = 4, $\overline{x} \pm s$. ⁵P < 0.01 vs control (100 %) in [Ca²⁴], 0 mmol·L⁻¹. ⁵P < 0.05 vs control (100 %) in [Ca²⁺], 1.8 mmol·L⁻¹.

[Ca²+]",	1P, dpm/g muscle		Ratios
mmol • L ⁻¹	Control	DAP	%
0 1.8	13 788±1 855 13 692±1 887	$16 443 \pm 1951$ $17 595 \pm 1280$	120±3 130±5

III¹¹, it is impossible to know the exact value of $[Ca^{2+}]$, prior to this study. This is also the first report on the effect of DAP on the hydrolysis of phosphoinositides in skeletal muscle.

Because the effects of DAP on the $\lceil Ca^{2+} \rceil$ were still present in Ca2+-free medium, it is implied that DAP could release Ca2+ from intracellular Ca²⁺ store. At present, it can not be excluded that DAP might have a direct effect on intracellular Ca2+ store. But, according to our results just mentioned and the well known function of inositol 1, 4, 5-trisphophate¹⁴, we prefer that DAP might release Ca²⁺ from the intracellular Ca²⁺ store through enhancing the hydrolysis of phosphoinositides. This proposal is also supported by the fact $i3^{\circ} - 141$ that the removal of external calcium caused parallel changes of phosphoinositide hydrolysis and [Ca²⁺], We have not investigated how the effect on phosphoinositide hydrolysis depends on the DAP concentration in skeletal muscle, but the dose dependence has been ob- Aserved on the cultured neurons of embryo chicken fore-brain. It was found that a maximum effect on the hydrolysis of phosphoinositides was also seen at DAP 1 mmol $\cdot L^{-1}$ (unpublished data). On the whole, it is suggested that there exists a causal relationship between the hydrolysis of phosphoinositides and the increase of $[Ca^{2+}]$, brought by DAP.

As the Ca^{2+} -dependent K⁺ channels are present on the membrane of skeletal muscle fibers'⁷. a hyperpolarization can be expected if $[Ca^{2+}]$, would be enhanced to a certain level. In Ca^{2-} -free medium DAP caused an increase of $[Ca^{2+}]$, but $[Ca^{2+}]$, in this case was still slightly lower than $[Ca^{2+}]$, of the fibers in Ringer's solution. This may account for that the DAP-induced hyperpolarization was only noticeable in the presence of external calcium.

REFERENCES

- Miledi R. Parker I. Zhu PH. 'Extracellular ions and exetation-contraction coupling in frog twitch muscle fibres. J Physiol (Lond) 1984; 351: 687-710.
- 2 Berridge MJ. Irvine RF. Inositol phosphates and cell signalling. Nature 1989; 341: 197-205.
- Hidalgo C. Januovich E. Inositol trisphosphate and excitation-contraction coupling in skeletal nuscle.
 J Bioenerg Biomembr 1989; 21: 267-87.
- 4 Irvine RF. Inositol 1.4.5-trisphosphate and mositol 1.3. 4.5-tetrakisphosphate: two second messengers in a duct of calcium regulation. In: Vanderhock JY. editor. Biology of cellular transducing signals. New York: Plenum Press. 1990; 213-25.
- 5 Zhu PH, Sun YB. Measurement of the myoplasmic free Ca²⁺ concentration of frog twitch muscle fibres in high K solution. Chin J Physiol Sci 1987, 3: 384-89.
- 6 Dong Z, Chen KY, Zhu PH. Effects of high K⁺ exposure on phosphoinositide metabolism in frog skeletal muscle. Biochem Biophys Res Commun 1992; 182: 767-72.

11

7 Blatz, AL, Magleby, KL, Calcium activated potassium channels. Trends Neurosci 1987; 10: 463-67.

3.4-二氨基吡啶对蛙缝匠肌纤维肌浆钙离子和 肌醇磷脂水解的影响

<u>徐泽敏,董政</u>,朱培闳 *R965.2* (中国科学院上海生理研究所、上海200031、中国)

摘要 3,4-二氨基吡啶(DAP)可以浓度依赖性 地增加[Ca²⁺], DAP 1 mmol·L⁻¹使[Ca²⁺], 由对照的166±41 nmol·L⁻¹升高到416±69 nmol·L⁻¹(n=10). 在胞外无钙时, DAP 仍使 [Ca²⁺], 升高. DAP 还促进肌醇磷脂水解. 在有钙溶液中、DAP 引起的肌醇磷脂水解更 多. 结果提示, DAP 可能通过促进蛙骨骼肌 纤维的肌醇磷脂水解, 使细胞内钙库释放钙.

关键词 氨基吡啶类; 胞浆; 钙; 肌醇磷脂; 肌肉