Effects of *i*-stepholidine on synaptosomal Ca²⁺-ATPase and subcellular calmodulin in rat striatum¹

HU Gang, HU Ying, JIN Guo-Zhang² (Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China)

ABSTRACT Our results showed that I-stepholidine (1-SPD) inhibited basal Ca²⁺-ATPase activity in rat striatal synaptosomes with an IC₅₀ of 31.5 μ mol · L⁻¹, suggesting its interaction with Ca²⁺ transport. I-SPD inhibited also calmodulin (CaM)-activated basal Ca²⁺-ATPase in a concentration-dependent manner. A complete reversal of CaM activation of Ca²⁻-ATPase was observed with I-SPD 10 μ mol · L⁻¹. The activity of synaptosomal Ca²⁺-ATPase and membrane-bound CaM level were decreased in haloperidol (1 mg \cdot kg⁻¹ \cdot d⁻¹, ip) and *I*-SPD (5, 10, and 30 mg \cdot kg⁻¹ \cdot d⁻¹, ip) treated rats for 7 and 14 d, respectively. But the activity of Ca2+-ATPase and membrane CaM level were increased after treatment with the same of doses haloperidol and I-SPD for 21 d. During the treatments with haloperidol and I-SPD cytosolic and nuclear CaM levels were not altered. These results suggest that I-SPD may modulate the release and synthesis of dopamine (DA) and the negative feedback regulation of presynaptic DA receptors by altering Ca²⁺ and CaM regulating processes in the central dopaminergic nervous system.

KEY WORDS berbines; *l*-stepholidine; corpus striatum; synaptosomes; calcium adenosine triphosphatase; calmodulin

l-Stepholidine (*l*-SPD), a novel dopamine (DA) receptor antagonist, inhibits the feedback regulation of presynaptic DA receptors and increases the activity of tyrosine hydroxylase (TH), resulting in the increase of the DA biosynthesis⁽¹⁾. We have carried out a series of studies of the pharmacological effects of *l*-SPD on the central dopaminergic nervous system $^{(1,2)}$. However, there are no studies available to show the mechanism of *l*-SPD regulating the presynaptic receptor functions. the important role of Owing to Ca^{2+} / calmodulin (CaM) in the synaptic function⁽³⁻⁵⁾, studies were initiated to investigate the effect of I-SPD on the activity of synaptosomal Ca²⁺-ATPase and subcellular CaM levels in rat striatum. CaM activates Ca²⁺-ATPase activity in a concentration-dependent manner⁽⁴⁾. TFP is known as an antagonist of CaM and has no effect on the basal Ca^{2+} -ATPase activity⁽⁶⁾. We also investigated the effect of TFP on the basal Ca²⁺-ATPase activity so as to assay the degree of depleting endogenous CaM in synaptosomes.

MATERIALS AND METHODS

Drugs and reagents I-SPD was isolated from Stephania intermedia Lo, $[\alpha]_D = -440^\circ$ in pyridine; haloperidol (Hal, Shanghai First Pharmaceutical Factory, China); trifluoperazine (TFP) and Na₂ATP (Sigma Chemical Co, USA); dithiothreitol (DTT, Serva Feinbio- chemical, Heidelberg). The sample of CaM (isolated from bovine brain) and CaM assay kit were purchased from the Department of Biochemistry, Xuzhou Medical College. All chemicals-were AR.

Rats Sprague-Dawley \neq rats weighing 227 $\pm s$ 18 g were used.

Preparation of synaptosomes The striatum were immediately taken into ice-cold homogenizing medium (sucrose $0.32 \text{ mol} \cdot L^{-1}$ and imidazole-HCl 10 mmol $\cdot L^{-1}$, pH 7.45) after decapitation of rat, each preparation was pooled from 10 rats. Synaptosomes were prepared using a slightly modified procedure of Gordon-Weeks⁽⁷⁾. The tissue was homogenized in a 9 volumes of homogenizing medium. The homogenate was centrifuged at 750 × g at 4°C for 10 min. The supernatant was centrifuged at 17 000 × g at 4°C for 20 min and the pellet was suspended in homogenizing

Received 1991 Nov 28 Accepted 1992 Apr 7 ¹ Supported by the National Natural Science Foundation of China, No 38970826.

² To whom correspondence should be addressed.

medium and again centrifuged at 17 000 × g at 4°C for 20 min. The pellet was then resuspended in 10 ml of sucrose 0.32 mol L^{-1} and carefully layered on a two-step discontinuous Ficoll-sucrose gradient, consisting of 13 and 7.5% (wt / vol) Ficoll in sucrose 0.32 mol L^{-1} . After centrifugation at 65 000 × g at 4°C for 45 min, the synaptosomal fractions were obtained at the interface of the 7.5-13% Ficoll-sucrose layer. The synaptosome band was carefully removed, diluted with 9 volumes of sucrose solution and centrifuged at $17\,000 \times g$ at 4°C for 30 min. The synaptosomal pellet was suspended in Tris-HCl 10 mmol L^{-1} (pH 7.45) buffer containing EGTA 1 mmol L^{-1} and centrifuged at 105 $000 \times g$ for 60 min to deplete the endogenous CaM⁽⁸⁾. The process was repeated once again with Tris-HCl 10 mmol L^{-1} (pH 7.45) buffer 0.1 mmol $\sim L^{-1}$. containing EGTA After centrifugation the synaptosomal fraction was suspended in Tris-HCl 10 mmol $\cdot L^{-1}$ (pH 7.45), rapidly divided into small aliquots and stored at -25°C.

For *in vivo* studies, rats were divided into 3 groups and treated with saline, *l*-SPD, and Hal, respectively. After the rats were killed, the striatum were used for the preparations of the synaptosome and the subcellular fractions⁽⁹⁾, which were used for the estimations of Ca^{2+} -ATPase activity and CaM levels, respectively.

Ca²⁺-ATPase assay Ca²⁺-Mg²⁺-ATPase activity was determined by measuring the inorganic phosphate (P_i) liberated during the hydrolysis of ATP(10). The reaction medium contained imidazole-HCl buffer 135 mmol · L⁻¹ (pH 7.45), MgCl₂ 5 mmol \cdot L⁻¹, CaCl₂ 0.05 mmol \cdot L⁻¹, ATP 4 mmol \cdot L⁻¹, and synaptosomal protein 50–100 µg. The mixture was incubated at 37°C for 30 min and stopped by the addition of 0.1 ml of 50% trichloreacetic acid (TCA). The P₁ liberated was estimated by the colorimetric method⁽¹⁰⁾. Mg²⁻-ATPase activity was measured in the presence of EGTA 0.5 mmol \cdot L⁻¹ and this value was subtracted from total ATPase activity to get Ca²⁻-ATPase activity. Enzyme activity was expressed as $P_1 \mu mol$ $\cdot mg^{-1} \cdot h^{-1}$.

For assessing the effect of l-SPD on basal Ca²⁺-ATPase activity, the synaptosomes were preincubated with l-SPD for 2 min prior to the reaction with ATP. For assessing the effect of l-SPD on CaM-activated Ca²⁺-ATPase, the synaptosomes were

preincubated for 2 min with CaM, and then -SPD was added.

Calmodulin assay The total homogenate and subcellular fractions were suspended in imidazole-HCl buffer (pH 7.45) 10 mmol \cdot L⁻¹ containing DTT 3 mmol \cdot L⁻¹, MgCl₂ 10 mmol \cdot L⁻¹, and NaCl 0.15 mmol \cdot L⁻¹. The protein concentrations of all fractions were diluted into 0.5–1.0 mg \cdot ml⁻¹. Each fraction was heated at 95–100°C for 5 min and centrifuged at 5000 × g for 15 min. The clear supernatant was used for the determination of CaM using the enzyme-linked immunoassay method⁽¹²⁾.

Protein assay Proteins of total homogenate, synaptosome and subcellular fraction were determined with Folin phenol reagent^(1,3). Bovine serum allumin was used as standard,

RESULTS

Effect of *l*-SPD on basal Ca²⁺-ATPase activity *l*-SPD inhibited the basal Ca²⁺-ATPase activity with IC₅₀ of 31.5 μ mol \cdot L⁻¹. The inhibition was concentration- dependent and was significant at 10 μ mol \cdot L⁻¹ or higher (Fig 1). TFP failed to inhibit the

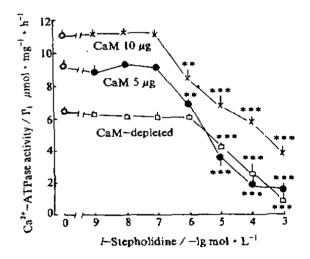


Fig 1. Effects of *I*-SPD on calmodulin-depleted or -activated Ca²⁺-ATPase activities from rat striatal synaptosomes. (()) control. n=3 homogenates (each was pooled from 10 rats and assayed in triplicate). $\bar{x} \pm s_s \quad {}^*P < 0.05, \quad {}^{***}P < 0.01 vs$ corresponding control.

basal Ca²⁺-ATPase activity (6.50 \pm 0.23 P, μ mol mg⁻¹ h⁻¹) at the concentrations of 12.5 (5.95 \pm 0.43 P, μ mol mg⁻¹ h⁻¹) and 25 μ mol L⁻¹ (5.95 \pm 0.35 P, μ mol mg⁻¹ h⁻¹), suggesting the endogenous CaM in synaptosomes was well depleted.

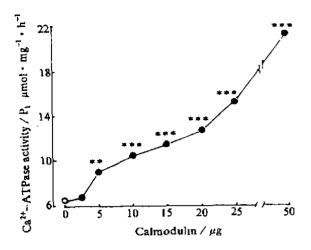


Fig 2. Activation of calmodulin on CaM-depleted Ca²⁺-ATPase from rat striatal synaptosomes. (C) control. n=3 homogenates (each was pooled from 10 rats and assayed in triplicate). $\bar{x} \doteq s$, "P<0.05, ""P<0.01 vs control.

Effect of *I*-SPD on CaM-activated basal Ca^{2+} -ATPase activity The Ca^{2+} -ATPase activity was assayed by incubating the synaptosomes with CaM 2.5-50 µg. CaM activated the synaptosomal Ca²⁺-ATPase in a concentration-dependent manner and an elevation of 100% was seen with CaM15 ug (Fig. 2). *l*-SPD decreased the CaM-activated Ca²⁺-ATPase in a concentration-dependent manner. A complete reversal of CaMactivation was observed with I-SPD 10 μ mol · L⁻¹. *I*-SPD 1 μ mol · L⁻¹, having no significant effect on basal Ca²⁺-ATPase. decreased the Ca²⁺-ATPase activities activated by CaM 5, and 10 μ g by 75% and 44%. respectively. (Fig 1). TFP 12.5 and 25 μ mol · L⁻¹ inhibited the activation of CaM on basal Ca²⁺--ATPase (Tab 1).

Tab 1. Effect of trifluoperazine on CaM-activated Ca²⁻-ATPase from rat striatal synaptosomes. n=3 homogenates (each was pooled from 10 rats and assayed in triplicate). $\bar{x} \pm s$, mP < 0.01 vs control. P < 0.01 vs corresponding CaM.

TFP / μmot · L ⁻¹	CaM ∕ μg	$Ca^{2+} - ATPase$ activity / P, $\mu mol \cdot mg^{-1} \cdot h^{-1}$	
0	0	6.25±0.21	
0	5	9.05±0.18***	
12.5	5	$6.83 \pm 0.10^{+++}$	
25.0	5	$6.36 \pm 0.11^{+++}$	
0	10	$11.40 \pm 0.30^{***}$	
12.5	10	8.85 ± 0.10 ⁺⁺⁺	
25.0	10	8.05 ± 0.31 ⁺⁺⁻	

Effects of 1-SPD and Hal on subcellular CaM and Ca²⁻-ATPase in rats The subcellular CaM levels and synaptosomal Ca²⁺-ATPase activity in the rats treated with I-SPD and Hal for 1, 24, and 72 h had no changes. Ca²⁴-ATPase activity in synaptosomes were inhibited after the rats were treated with *l*-SPD (5, 10, and 30 mg \cdot kg⁻¹ \cdot d⁻¹, ip) and Hal (1 mg \cdot kg⁻¹ \cdot d⁻¹, ip) for 7 and 14 d (Tab 2). Meanwhile, all the CaM levels of the total and membrane fractions in rats treated with l-SPD and Hal were decreased (Tab 3). On the contrary, when the rats were treated with the same doses of -SPD and Hal for 21 d, the synaptosomal Ca²⁺-ATPase activities and CaM levels of membrane fractions were

Tab 2. Effects of *l*-SPD and haloperidol (Hal) on activity (P₁ μ mol · mg⁻¹ · h⁻¹) of synaptosomal Ca²⁺-ATPase in striatum in rats 4 d after withdrawal. n=5, $\bar{x\pm s}$, "P<0.05, ""P<0.01 vs control.

Drugs mg k d	g ⁻¹	7	Days 14	21
⊢SPD	0	8.84±0.31	9.03±0.21	8.44 ± 0.45
	5	6.03 ± 0.72**	6.92 ± 0.51***	9.59 ± 0.66**
	10	5.91 ± 0.19"**	5.91 ± 0.3***	10.0±0.7***
	30	4.66±0.17***	5.24 ± 0.42***	10.6±0.7***
Hal	1	6.63±0.79**	6.22±0.46***	11.3 ± 0.4***

Days 7	$\mathbf{Drug} / \mathbf{mg} \cdot \mathbf{kg}^{-1}$		Total	Membrane-bound	Cytosol	Nucleus
	Control		5.5 ± 0.8	8.3±0.6	9.2±1.1	3.3±0.3
	I-SPD	5	3.7 ± 0.7 *	4.4±0.4***	10.8 ± 1.1	3.5 ± 0.8
		10	2.6 ± 0.4 ***	4.1±0.4***	10.4 ± 0.6	3.3 ± 0.5
		30	$2.6 \pm 0.5^{***}$	3.8 ± 0.3***	10.1 ± 2.1	3.5 ± 0.8
	Hal	1	$2.2 \pm 0.5^{***}$	$2.70 \pm 0.24^{***}$	10.2 ± 1.5	$\textbf{3.8} \pm \textbf{0.6}$
14	Control		4.8 ± 0.4	8.96 ± 0.22	8.8 ± 0.8	3.7 ± 0.3
•	I-SPD	5	3.15 ± 0.23 **	2.49 ± 0.17 **	8.8 ± 1.9	3.9 ± 0.4
-		10	2.18 ± 0.16 **	1.38 ± 0.22 **	8.9 ± 1.3	3.8 ± 0.6
	30	$2.18 \pm 0.16^{***}$	1.19±0.07***	$\textbf{8.8} \pm \textbf{1.0}$	3.5 ± 0.3	
	Hal	1	$3.1 \pm 0.4^{**}$	3.03 ± 0.18 ***	9.1 ± 1.8	3.9 ± 0.4
21	Control		6.0 ± 0.6	7.7 ± 0.4	9.2 ± 0.5	4.1 ± 0.5
	H-SPD	5	6.5 ± 0.8	$9.7 \pm 0.6^{**}$	9.4 ± 1.6	4.05 ± 0.24
		10	6.0 ± 0.8	10.1 ± 0.9* *	9.6 ± 0.5	3.9 ± 0.8
		30	6.4±1.4	10.1 ± 0.7 **	9.4 ± 1.4	4.2 ± 1.0
	Hal	1	6.4 ± 0.6	11.6 ± 0.7 **	9.6 ± 1.9	3.9 ± 0.4

Tab 3. Effect of chronic treatment with *l*-SPD and haloperidol (Hal) on striatal subcellular calmodulin contents $(\mu g \cdot mg^{-1})$ in rat 4 d after withdrawal. n = 3 homogenates (each was pooled from 10 rats and assayed in triplicate). $\bar{x} \pm s$, ${}^{**}P < 0.05$, ${}^{***}P < 0.01 vs$ corresponding control.

increased dramatically. CaM levels of the total homogenate were restored to normal levels (Tab 3). During all the treatments with \vdash SPD and Hal, cytosolic and nuclear CaM levels were not altered.

DISCUSSION

Synaptic membrane Ca²⁺-ATPase is involved in the translocation of Ca²⁺ from intracellular to extracellular media. The results presented in this paper show that *l*-SPD is an inhibitor of synaptosomal Ca²⁺-ATPase from rat striatum. The inhibition of Ca²⁺-ATPase activity by I-SPD observed in the present study suggested its interaction with the calcium transport, which might affect other calcium dependent processes involved in neuronal functions. Ca²⁺-ATPase is a trigger enzyme of CaM, which represents the activity of CaM⁽⁶⁾. Our results show that the inhibition of *l*-SPD on CaM-Ca²⁺-ATPase activity was much more sensitive than on basal Ca^{2+} -ATPase. It was also noted that the inhibition of *I*-SPD on Ca²⁺-ATPase was different from TFP which is known as a CaM antagonist and has no effect on basal Ca^{2+} -ATPase⁽⁶⁾.

In brain two forms of CaM appear to be present⁽⁴⁾: a membrane-bound form and the other soluble form. The former functions with AC whereas the latter is required for phosphodiesterase (PDE)^(4,14). In vivo studies revealed that CaM levels in the membrane fractions were reduced in the striatum of the rats treated with *l*-SPD for 7 and 14 d, while nuclear and cytosolic CaM levels were not altered. This suggests that *l*-SPD may be altering the level of membrane-bound CaM. These results indicate that the *l*-SPD may regulate dopaminergic function by acting on AC rather than on PDE. It is supposed that *l*-SPD decrease membrane-bound CaM levels and subsequently attenuates the activation of DA on AC, resulting in the reduction of cAMP formation and affecting the physiological and biochemical responses mediated by cAMP-dependent protein kinase. The inhibition of *l*-SPD on the feedback regulation of presynaptic DA receptors may be also related to the above results. Because of the attenuation of AC activation resulted from the reduction of membrane-bound CaM levels, l-SPD might in turn affect the phosphorylation of TH mediated by both cAMP-dependent protein kinase and Ca²⁺ / CaM-dependent protein kinase, altering the activity of TH and therefore affecting the biosynthis of DA. In addition, *l*-SPD may regulate the release of DA by altering the phosphorylation of the protein of synaptic membrane and vesicle.

The subcellular membrane-bound CaM levels of striatum in the rats treated with Hal (1 mg \cdot kg⁻¹ \cdot d⁻¹, ip) for 21 d were increased significantly, which is considered as a biochemical index of supersensitivity of DA receptors^(4,14). The increase of membranebound CaM levels in the rats treated with *l*-SPD for 21 d may result from the supersensitivity of DA receptors induced by chronic treatment with *l*-SPD. This was further strengthened by the fact that the Ca²⁺-ATPase activity was increased by chronic *l*-SPD treatment.

REFERENCES

- 1 Jin GZ, Han YR, Gonon FG, Yu LP. Xie Y, Xia Y Inhibition of (-)-stepholidine on feedback regulation of 307-31 striatal presynaptic DA receptors. Chin J Physiol Sci 1991; 7: 195-203.
- 2 Xu SX, Yu LP, Han YR, Chen Y, Jin GZ. Effects of tetrahydroprotoberberines on dopamine receptor subtypes in brain. Acta Pharmacol Sin 1989: 10: 104-10.
- 3 El Mestikaway S, Thibanlt J, Hamon M. Regulation of tyrosine hydroxylase by calcium- and cyclic AMP-dependent protein kinases in striatal dopaminergic terminals. In. Dahlstrom A, editor. Progress in catecholamine research, part A, basic aspects and pertpheral mechanisms. New York: Alan R Liss, 1988. 61-6.
- 4 Gnegy ME. Relationship of calmodulin and dopaminergic activity in the striatum. Fed Proc 1982;
 41 : 2273-7.
- 5 DeLorenzo RJ. Calmodulin in neurotransmitter release and synaptic function Fed Proc 1982; 41 : 2265-72.
- 6 Harrison JK, Mickevicius CK, Gnegy ME. Differential regulation by calmodulin of basal, GTP-, and dopamine-

stimulated adenylate cyclase activities in bovine striatum J Neurochem 1988; 51 : 345-52.

- 7 Gordon-Weeks PR. Isolation of synaptosomes, growth cones and their subcellular components. In: Turner AJ, Bachelard HS, editors. Neurochemistry: a practical approach. Oxford: IRL press, 1987; 1-26.
- 8 Sobue K, Ichida S, Yoshida H, Yamazaki R, Kikiuchi S. Occurrence of a Ca²⁺ and modulator protein acuvable ATPase in the synapuc plasma membranes of brain. *FEBS Lett* 1979; 99 : 199-202.
- 9 Gnegy M, Uzunov P, Costa E. Participation of an endogenous Ca⁺⁺-binding protein activator in the development of drug-induced supersensitivity of striatal dopamine receptors. J Pharmacol Exp Ther 1977; 202. 558-64
- 10 Parasadarao KS, Chetty CS, Trottman CH, Uzodinma JE, Desaiah D. Effect of tricyclohexylhydroxytin on synaptosomal Ca²⁺-dependent ATP hydrolysis and rat brain subcellular calmodulin. *Cell Biochem Funct* 1985; 3, 267-72.
- 11 Lowry OH, Lopez LA. The determination of inorganic phosphate in the presence of labile phosphate esters. J Biol Chem. 1946; 162: 421-4.
- 12 Zhao SH, Yu HL, Zhang MZ. Calmodulin enzyme-linked immunosorbent assay Acta 4cad Med Nuchow 1988; 8, 54-8.
- 13 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951: 193 : 265-75.
- Hanbauer I, Pradhan S, Yang H-YT. Role of calmodulin in dopaminergic transmission. Ann NY Acad Sci 1980; 356 : 292-303.

左旋千金藤立定对大鼠纹状体突触体 Ca²⁺-ATP 酶和亚细胞钙调素的影响

胡<u>刚、胡</u>瓶、金国章 **又**963 (中国科学院上海药物研究所,上海 200031,中国)

提要 lambda SPD 以浓度依赖的方式抑制大鼠纹状体 Ca²⁺-ATP 酶活性和 CaM 对 Ca²⁺-ATP 酶的激活. lambda SPD (5, 10 和 30 mg $kg^{-1} \cdot d^{-1}$)和 Hal (1 mg $kg^{-1} \cdot d^{-1}$) ip 7 和 14 d, 显著抑制 Ca²⁺-ATP 酶活性、降低膜结合型 CaM 的含量; 而相同剂量的 l-SPD 和 Hal ip 21 d. 却显著增加 Ca²⁺-ATP 酶活性和膜结合 CaM 含量. 提示 lambda SPD 可能通过对 Ca²⁺-ATP 酶和 CaM 的影响而调节突触前 DA 受体的功能.

关键词 小檗因类; 左旋千金藤立定; 纹状体; 突触体; 钙腺苷三磷酸酶; 钙调素 タヤワ