Effects of tetrandrine on cytosolic free calcium in cultured rat myocardial cells

LI Xin-Tian, WANG You-Ling (Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China) WANG Jin-Xi, YANG Si-Jun (The State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China)

KEY WORDS tetrandrine; myocardium; Fura-2; calcium; calcium channel blockers; berbines; cultured cells

AIM: To study the effects of tetrandrine (Tet) on myocardium. METHODS: Using Fura 2-AM and AR-CM-MIC cation measurement system, cytosolic free calcium ([Ca²⁺]) was examined in cultured rat single myocardial cells. **RESULTS**: The resting [Ca²⁺] was 90 ± 12 nmol·L⁻¹ in the presence of Ca^{2+} 1.3 mmol $\cdot L^{-1}$ in Hanks' solution. Tet $1-100 \ \mu \text{mol} \cdot \text{L}^{-1}$ had no effect on the resting $[Ca^{2+}]_{i}$, but 10-100 μ mol·L⁻¹ depressed the $[Ca^{2+}]_i$ elevation when extracellular Ca^{2+} was 5 mmol $\cdot L^{-1}$. Tet 1 – 100 μ mol $\cdot L^{-1}$ inhibited KCl (30 and 60 mmol $\cdot L^{-1}$) induced [Ca²⁺], elevation in a concentration-dependent manner, the IC₅₀ value was 8.8 μ mol · L⁻¹ (95 % confidence limits: 3. $3-23.7 \ \mu mol \cdot L^{-1}$) and 6. 9 $\mu mol \cdot L^{-1}$ (95 % confidence limits: 2.8-17.4 μ mol·L⁻¹), respectively. Norepinephrine (NE) 10 µmol·L⁻¹ caused a rapid increase in $[Ca^{2+}]$, in the presence or abscence of extracellular Ca²⁺, Tet 30-100 μ mol·L⁻¹ only decreased the former. Tet 10-100 µmol ·L⁻¹ also decreased ouabain (Oua)-induced elevation in [Ca²⁺], CONCLUSION, Tet had inhibitory effects on Ca²⁺ transmembrane movement, but it is not a selective calcium channel blocker in rat myocardial cells.

Tetrandrine (Tet), an alkaloid extracted from the roots of *Stephania tetrandra* S Moore, has been used for the treatment of hypertension. Tet exerted a negative inotropic action on the cardiac muscle⁽¹⁾, depressed V_{mex} in K⁺-depolarized papillary muscle in a frequency-dependent manner⁽²⁾, blocked the slow inward Ca²⁺ currents in canine cardiac Purkinje fibers⁽³⁾, inversed positive staircase phenomena, and depressed post-rest potentiation of contraction⁽⁴⁾. Its pharmacological

Received 1994-09-2I Accepted 1995-0I-23

characterizations in cardiovascular tissues have been specially focused on its Ca^{2+} antagonistic action at the voltage-dependent channels (VOC)⁽⁵⁾. This suggested that Ca^{2+} channels blocked by Tet play an important role in its effects on cardiovascular tissues. In this paper. cytosolic free calcium ([Ca^{2+}],) was examined in cultured rat single myocardial cells loaded with Fura 2-AM to test the effects of Tet on heart cells.

MATERIALS AND METHODS

Myocardial cells were cultured⁽⁶⁾ with some modifications. Sprague-Dawley newborn (2-4 d) rat (Jiangsu Laboratory Animal Center) hearts were rinsed with icecold Ca²⁺- and Mg²⁺-free Hanks' solution, (NaCl 137, KCl 5, glucose 5.6, Na₂HPO₄ 1.1, KH₂PO₄ 6.1 mmol • L^{-1} , pH 7.2-7.4). Vessels and atria were carefully pruned off. The ventricles were minced into $1-3 \text{ mm}^{3}$ pieces, and disaggregated at 37 C in Ca2-free modified Hanks' solution containing 0.06 % trypsin. The proportion of myocytes in culture was enriched by a preplating method that made preferential attachment of non-muscle cells¹⁷¹. After 1-h incubation, viable myocytes were seeded $1 > 10^5$ per 35-mm dish with a glass cover-slip on its bottom. Cells were incubated at 37 °C in a medium containing 90 % RPMI-1640, 10 % fetal bovine serum in humidified 95 % air +5 % CO₂ for 36-48 h. Attaching to glass cover-slip, the cells were loaded with fluorescent probes, which was started by adding fura 2-AM dissolved in Me₂SO to Hanks' solution (NaCl 137, KCl 5, MgCl₂ 0.5, CaCl 1.3, glucose 5.6, HEPES-NaOH 10 mmol •L⁻¹, pH 7. 2–7. 4), with a final concentration of Fura 2-AM of 3 μ mol·L⁻¹. Having been incubated at 37 °C in the dark 40 min and rinsed with fresh Hanks' solution for 3 times, the cells were available for Ca2+ measurement m 2 h at 20 - 25 C.

Loaded cells attaching to cover-slip were studied on AR-CM-MIC cation measurement system with DM3000 software (Spex Industries Inc, USA) $\lambda_{ex}340$ nm and 380 nm, $\lambda_{em}505$ nm; time increment 2 s. Put the cover-slip in a special-made chamber with Hanks' solution (37 °C, pH 7.2 - 7.4). Chose one myocardial cell each time under the phase-contrast microscope, before and after Tet-treatment, monitored fluorescence at 340 and 380 nm under protection from light. Autofluorescence was measured with unloaded cells. $[Ca^{2+}]$, was calculated by the following equation ³: $[Ca^{2+}] = K_0 \cdot (sb_1/sb_2) \cdot (R - R_{max})/(R$

 R_{max}) nmol·L⁻¹. The R_{max} and R_{max} were determined by ionomycin and egtazic acid. respectively.

Fura 2-AM, ouabain, RPMI Medium 1640, and jonomycin were purchased from Sigma. Tet (>98 % pure) was made by Jinbua Pharmaceutical Co. Trypsin and all other chemicals were AR. High K solution was made by substituting NaCl with equimolar KCl, so did high Ca¹⁺ solution, Ca²⁺-free solution was made by removing CaCl₂ from Hanks' solution. All solutions were prepared with distilled and deionized water. Treated groups were added Tet and agonist sequentialy, while control groups were added agonist only. Tet (1 - 100 μ mol · L⁻¹) had no effect on the fluorescent intensity at 340 and 380 nm.

Data were expressed as $\bar{x} \pm s$. Statistical difference was evaluated by *i*-test.

RESULTS

Resting $[Ca^{2+}]_{i}$ The resting $[Ca^{2+}]_{i}$ was 90 \pm 12 nmol·L⁻¹(n = 8) in Hanks' solution containing Ca²⁺1.3 mmol·L⁻¹. Preincubation with Tet 1, 10, 30, and 100 μ mol·L⁻¹ for 5 min, did not induce any significant change in $[Ca^{2+}]_{i}$. Tet had no effects on the passive diffusible flux of Ca²⁺ through the cytoplasmic membrane of myocardial cells.

Tet on KCl-induced $[Ca^{2-}]_i$ elevation When the cells were exposed to high K⁺ in Hanks' solution containing Ca²⁺ 1.3 mmol·L⁻¹, the $[Ca^{2+}]_i$ increased rapidly. KCl 30 and 60 mmol·L⁻¹ increased the $[Ca^{2+}]_i$ by 291 ½ and 450 %, respectively. Preincubation with Tet 1. 10. 30, 100 μ mol·L⁻¹ for 5 min inhibited the KCl (30 and 60 mmol·L⁻¹)-induced $[Ca^{2+}]_i$ elevation by 37 %, 48 %, 61 %, 65 %; and 32 %, 55 %, 66 %, 70 %, respectively. The IC₅₀ were 8.8 (95 % confidence limits; 3.3-23.7) μ mol·L⁻¹ and 6.9 (95 % confidence limits; 2.8-17.4) μ mol·L⁻¹. respectively (Tab. 1).

Tab 1. Effects of Tet on KCl (30, 60 mmol $\cdot L^{-1}$)induced [Ca²⁺] in cultured rat myocardial cells. n=8, $\bar{x}\pm s$, $\cdot P < 0$, 01 vs control.

KCl/	[Ca ²⁺].	/	Tet / μ mul·L ⁻¹				
mmol • L	-¹ nmol∙L ⁻	-1 1	10	30	100		
30	352±9	$255 \pm 12^{\circ}$	$226 \pm 11^{\circ}$	$192 \pm 8^{\circ}$	$147 \pm 14^{\circ}$		
6U	495 ± 16	365±9°	272±8°	$227\pm13^\circ$	$211\pm9^{\circ}$		

Norepinephrine-induced $[Ca^{2+}]_i$ elevation

Norepinephrine (NE) 10 μ mol·L⁻¹ increased the [Ca²⁺], by 140 % in the [Ca²⁺],-free Hanks' solution containing egtazic acid 0. 05 mmol·L⁻¹, and by 191 % in the presence of [Ca²⁺], 1.3 mmol·L⁻¹, respectively. Tet (1-100 μ mol·L⁻¹) had no significant effect on the NE-induced [Ca²⁺], elevation with extracellular Ca²⁺ free, while Tet 30 and 100 μ mol·L⁻¹ inhibited the NE-induced [Ca²⁺], elevation with extracellular Ca²⁺ by 29 % and 43 %, respectively (Tab 2).

Tab 2. Effects of Tet on norepinephrine (10 µmol $\cdot L^{-1}$)-, CaCl₂(5 mmol $\cdot L^{-1}$)-, Ouabain (1 µmol $\cdot L^{-1}$)induced [Ca²⁺], elevation in cultured rat myocardial cells. n=8, $\dot{x}\pm s$. ^bP ≤ 0.05 , ^cP ≤ 0.01 vs control.

Control	[Ca ²⁺],/		$Tet/\mu mol \cdot L^{-1}$		
	[Ca ²⁺],/ nmol•L	¹ 1	10	30	100
NE	294 ± 10	290 ± 12	283 ± 12	238±9°	211±13
CaCl ₂	285 ± 8	271 ± 19	$189 \pm 10^{\circ}$	$171\pm14^{\circ}$	$160 \pm 10^{\circ}$
Ouabain	199 ± 8	189 ± 14	167 ± 10^{b}	$177 \pm 10^{\circ}$	166±10 ^e

High extracellular Ca^{2+} -induced $[Ca^{2+}]$, elevation When the extracellular Ca^{2+} was 5 mmol • L^{-1} , the $[Ca^{2+}]$, was increased by 217 %. Preincubation with Tet, 10, 30, and 100 μ mol • L^{-1} depressed the $[Ca^{2+}]$, elevation by 49 %, 58 %, and 64 %, respectively (Tab 2).

Ouabain-induced [Ca^{2+}], elevation Oua 1 μ mol·L⁻¹ caused a rapid increase in [Ca^{2+}], by 131 %. With prior addition of Tet 10, 30, and 100 μ mol·L⁻¹, the Ouabain (1 μ mol·L⁻¹)induced [Ca^{2+}], elevation was inhibited by 19 %, 28 %, and 29 %, respectively (Tab 2).

DISCUSSION

In this work, we have demonstrated the effects of Tet in cultured rat single myocardial cells using Fura-2 and AR-CM-MIC cation measurement system. As one of the improved Ca^{2+} -sensitive flurorescent indicator, Fura-2 promises to expand the role of changes in cytosolic free Ca^{2+} underlying cell function. AR-CM-MIC cation measurment system provides the non-imaging capability to measure the changes of cytosolic free Ca^{2+} in single cell quantitatively.

Our study showed that Tet had no effect on the resting $[Ca^{2+}]$, in myocardial cells. The Ca^{2+} channel blockers, such as verapamil, did not alter the plasma membane permeability to $Ca^{2+10,100}$. Tet was similar to that of verapamil. In this paper, we have utilized several different approaches to increase the $[Ca^{2+}]_{\mu}$. This included (1) KCl-induced $[Ca^{2+}]$, elevation via membrane depolarization which opened the voltage-dependent Ca²⁺ channel (VOC), (2) norepinephrine-induced [Ca²⁺], elevation via norepinephrine sensitive receptor-operated Ca²⁺ channel (ROC) and norepinephrine sensitive Ca^{2+} store in endoplasmic reticulum in the presence of extracellular Ca^{2+} ([Ca^{2+}]_o), without [Ca^{2+}]_o, the $[Ca^{2+}]$, increase only depended the latter⁽¹¹⁻¹²⁾. (3) high CaCl₂-induced $[Ca^{2+}]_i$ elevation via the increase of chemical permeability or VOC or other non-specific way⁽¹³⁾. (4) Ouabaininduced $[Ca^{2+}]$, elevation via blockade effects on Na⁺, K⁺-ATPase and following increment in Na⁺-Ca²⁺ exchanges⁽¹⁴⁾.

ç

1

4

÷.

The results showed that (1) the inhibiting effects of Teton KCl-induced [Ca²⁺], elevation in a concentration-dependent manner accounted for its VOC blockade effects in myocardial cells, and this was quite identical with the reference¹⁵¹. (2) The only depressing effects of Tet on norepinephrine-induced [Ca²⁺], elevation in the present [Ca²⁺], suggested its inhibition by interfering with the Ca²⁺ entry but without effect on Ca²⁺ store. The mechanism for Tet on norepinephrine-induced $[Ca^{2+}]$, elevation requires further exploration. (3) Tet depressing the high Ca^{2+} -induced $[Ca^{2+}]_i$ elevation further accounted for its inhibition by interfering with the Ca²⁺ entry, whether it was in specific manner or not remains unclear. (4) The inhibiting effects of Tet on ouabain-induced [Ca²⁺], elevation well demonstrated its antagonism on ouabain. This may be one of its pharmacologic mechanism on heart cells.

As the results have shown above. Tet does $f(-5)^{n}$ have noticeable effects on myocardial cells. Indeed, we have confirmed that Tet interfered the Ca²⁺ entry via L-type VOC. However, the inhibitory effects of Tet on Ca²⁺ channels in rat myocardial cells appeared to be non-selective.

REFERENCES

Fang DC, Yao WX, Qu L, Jiang MX.
 Effects of tetrandrine on cat papillary muscle.
 Acta Pharmacol Sin 1981; 2: 163-6.

- Li QP, Liu TP. Frequency-dependent depression of V_{max} in K⁺-depolarized guines pig papillary muscle by tetrandrine. Acta Pharmacol Sin 1992; 13, 407-11.
- 3 Wang G, Zhong XG, Fang DC, Jiang MX. Liu FH. Effects of tetrandrine on the slow inward currents in canine cardiac purkinje fibers. Acta Pharm Sin 1988; 23: 646-50.
- 4 Wang G, Cheng B, Zong XG, Fang DC, Jiang MX. Effects of tetrandrine on positive statrcase phenomena and post-restpotentiation of contraction of isolated guinea pig left atrium. Acta Pharmacol Sin 1987; 8: 522-5.
- 5 King VF, Garcia ML, Himmel D, Reuben JP, Lam YK, Pan JX, et al. Interaction of terrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by a Chinese medicinal herb or origin. J Biol Chem 1988; 263: 2238-44.
- Jacob R, Lieberman M, Murphy E, Piwnica-Worms D. Effects of sodium-potassium pump inhibition and low sodium on membrane potential in cultured embryonic chick heart cells.
 J Physiol (Lond) 1987, 387, 549-66.
- Blondel B, Royen R, Cheneval JP. Heart cell culture; a simple method for increasing the proportion of myoblasts. Experientia 1971; 27: 356-8.
- 8 Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260: 3440-50.
- 9 Kanaide H. Kobayashi S, Nishimura J, Hasegawa M, Shogakiuchi Y, Matsumoto T, et al. Quin-2 microfluorometry and effects of verapamil and diltiazem on calcium release from rat aorta smooth muscle cells in primary culture. Circ Res 1988; 63: 16-26.
- 2eng WZ, Liu TP. Effects of tetrandrine on free intracellular Ca²⁺ in isolated rat brain cells.
 Acta Pharmacol Sin 1993; 14: 397-400.
- 11 Kass RS, Wiegers SE. The ionic basis of concentrationrelated effects of noradrenaline on the action potential of calf cardiac Purkinje fibers.

J Physiol (Lond) 1982+ 322: 541-58.

- Noble D. The Initiation of the Heartbeat.
 New York: Oxford University Press, 1979: 10-32.
- 13 Colquhoun D, Neher E, Reuter H, Stevens CF. Inward cation channels activated by intracellular Ca²⁺ in cultured cardiac cells. Nature 1981; 294: 752-4.
- Grand BL, Deroubaix E, Coulombe A. Stimulatory effects of ouabain on T- and L-type calcium currents in guinea cardiac myocytes. Am J Physiol 1990; 258: H1620-H1623.

粉防己碱对培养大鼠心肌细胞胞内游离钙的影响

李新天, 王幼林 (南京医科大学药理教研室,南京 210029,中国) R972 王金晞,杨思军 (南京大学配位化学国家重点实验室、南京 210093,中国) 关键词 粉防已碱;心肌;Fura-2;钙;钙通道阻

滞剂;小檗因类;培养的细胞

(19)

目的,研究粉防己碱对心肌的作用. 方法:采用 Fura-2和 AR-CM-MIC 阳离子测定系统测定培 养大鼠单个心肌细胞胞内游离钙. 结果:外钙 1.3 mmol·L⁻¹时,细胞静息钙为90±12 nmol ·L⁻¹. 粉防己碱不影响静息钙,但可明显抑制 CaCl_o, KCl, 哇巴因引起的胞内钙增高; 对于去 甲肾上腺素引起的胞内钙增高, 粉防已碱只有在 外钙存在时, 方对其有抑制作用. 结论: 粉防己 碱抑制钙离子的跨膜运动, 但在心肌细胞, 它并 非是选择性的钙通道阻滞剂.

BIBLID: ISSN 0253-9756

Acta Pharmacologica Sinica 中国药理学报

1996 Jan; 17 (1); 58-60

Suberogorgin vs N-cyclohexyl suberogorgamide effects on urine, respiration, and blood pressure in rat and cat

PENG Wen-Duo, XU Shi-Bo (Pharmacology Laboratory, Department of Biology, Sun Yat-Sen University, Guangzhou 510275, China)

KEY WORDS suberogorgin; N-cyclohexyl suberogorgamide; urine; respiration; blood pressure

AIM: To compare the pharmacological actions of suberogorgin (Sub) and N-cyclohexyl suberogorgamide (N-CS). METHODS: Urine was collected from rats and anesthetized cats which had been loaded with water. The concentrations of Na⁺ and K⁺ in urine were determined in ICAP-9000 atomic emission spectrometry. An equitoxic (1/50 LD₅₀) dose of Sub and N-CS was used in cats. **RESULTS**: The cat urine was decreased by 63 % after iv Sub 0.4 mg · kg⁻¹, but increased by 25 % after iv N-CS 1.5 mg kg⁻¹. lasting at least 9 h. Sub and N-CS increased the respiratory rate and tidal volume, but did not change the blood pressure. The rat urine was decreased by 48 % after ip Sub 1. 3 mg kg⁻¹, but increased by 14 % after ip N-CS 3.2 mg kg⁻¹. Sub and N-CS increased the concentrations of Na⁺ and K⁺ in rat urine. These effects lasted at least 24 h. CONCLUSION: Sub is an antidiuretic, while N-CS is a diuretic drug.

Suberogorgin (Sub) was isolated from Gorgoniae suberogorgia sp from South China Sea, with iv LD₅₀ of 22.8 \pm 1.8 mg·kg⁻¹ in mice⁽¹⁾. It inhibited acetylcholinesterase (AChE)⁽²⁾. N-Cyclohexyl suberogorgamide (N-CS) showed a very weak inhibition on AChE, but a diuretic action was accidentally observed. In this study, the ef-

Received 1994-01-18 Accepted 1995-05-12

fects of Sub and N-CS on urine. respiration and blood pressure in rats and anesthetized cats were compared.

MATERIALS AND METHODS

Sub was isolated by Department of Chemistry, Sun Yat-Sen University; N-CS was synthesized in our laboratory. Both were spectrum pure.

Sprague Dawley rats (n=15) weighing $280 \pm s$ 15 g. bred in our laboratory. were fasted in metabolic cages for 18 h. Then, they were given ig with water 30 mL·kg⁻¹, and the urine recorded in 2 h was 11.4-13.5 mL·kg⁻¹. The rats were normally raised for 1 d and then fasted for 18 h. After that, they were injected ip with Sub or N-CS 5 mL·kg⁻¹, and given ig with water 25 mL·kg⁻¹. Their urine volume in 24 h was recorded. The concentrations of Na⁺ and K⁺ in urine were determined in ICAP-9000 atomic emission spectrometry after the urine was digested with nitric acid⁽³⁾.

Cats (n = 3), \updownarrow , weighing $3.5 \pm s \ 0.4 \ \text{kg}$, were anesthetized with sodium pentobarbital 30 mg \cdot kg⁻¹. NaCl 0.15 mol \cdot L⁻¹ solution was injected gtt into saphenous vein at 0.34 mL \cdot kg⁻¹ \cdot min⁻¹. Urine was collected by bladder intubations. The urine in 10 min was recorded for 9 h. Respiration was recorded with respiratory belts. Tidal volume (V₁), calculated with square-method, time