61-63 Acta Pharmacologica Sinica BIBLID: ISSN 0253-9756 中国药理学报 1996 Jan: 17 (1) · 63 · Chin J Virol 1990: 6: 358-360. (金稜医院肾脏病研究所,南京 210002,中国) 5 Kreisberg JI, Karnovsky MJ. Glomerular cells in culture. Kidney Int 1983; 23: 439-47. 大黄素,培养的细胞,肾小球系膜, 关键词 6 Chomczynski P, Sacchi N. Single-step method of RNA isola-原癌基因蛋白 c-myc R286.91 R tion by acid guandinum thiocyanate-phenol-chloroform extraction. Anal Biochem 1987: 162: 156-9. 目的: 观察大黄素对肾小素系膜细胞(MC) c-myc 7 Liu ZH, Li LS, Hu WX. Zhou H. mRNA 表达的影响,探讨大黄素抑制 MC 生长的 Effect of emodin on expression of proliferating cell nuclear antigen (PCNA/cyclin) during the mesangial cell cycle. 分子机理. 方法: 网筛法分离大鼠肾小球, 培养 Chin J Nephrol Dial Transplant 1993; 2: 45-8. 肾小球 MC. AGPC 一步法提取细胞总 RNA, 8 Persson H, Leder P. Nuclear locatlization and DNA binding c-myc mRNA 水平用斑点杂交法测定,以显影斑 properties of protein expressed by human c-myc oncogene. Science 1984; 225; 718-20. 点最大的 RNA 稀释度表示 mRNA 水平. 结果: 9 Heikkila R, Schwab G, Wickstrom E, Loke SL, Pluznik DH, 生长相对静止状态的 MC 有低水平 c-myc Watt R, et al. A c-myc antisense oligodeoxynucleotide inmRNA 表达, 而细菌脂多糖(LPS)显著增高 MC hibits entry into S phase but not progress from G₀ to G₁. Nature 1987; 328: 445-8. c-myc mRNA 表达. 于 2.5 h 达最高峰,并持续 6 h. LPS 诱导的 MC 高表达 c-myc mRNA 可被 大黄素对肾小球系膜细胞 c-myc 原癌基因表达的 大黄素(25 mg・L⁻¹)所抑制. 结论:大黄素对 影响 MC c-myc mRNA 表达的抑制效应与其抑制 MC 刘志红、荐磊石、 的生长相关.

BIBLID: ISSN 0253-9756

Acta Pharmacologica Sinica 中国药理学机

1996 Jan; 17 (1); 63-65

Effects of egtazic acid and calcimycin on synthesis of DNA and collagen in cultured human lung fibroblasts

LIU Hai-Lin¹, LU Han-Ming, LI Ding-Guo, QI Feng, JIANG Zu-Ming (Department of Internal Medicine, Xin-Hua Hospital, Shanghai Second Medical University, Shanghai 200092, China)

KEY WORDS egtazic acid; calcimycin; DNA; collagen; fibroblasts; cultured cells

AIM: To study the effects of egtazic acid (EA) and calcimycin (Cal) on the synthesis of DNA and collagen in cultured human lung fibroblasts (HLF). **METHODS:** The synthesis of DNA and collagen was determined by measuring the incorporation of [³H]TdR and [³H]proline of HLF respectively. **RESULTS:** The collagen synthesis increased markedly 24 h after exposure to both EA ($0.05 - 4 \text{ mmol} \cdot L^{-1}$) and Cal ($0.25 - 20 \mu \text{mol} \cdot L^{-1}$), and that there was no obvious change in DNA synthesis. After 36-48-h exposure, both DNA and collagen syntheses decreased in the groups of EA (1, 2, and 4 mmol $\cdot L^{-1}$);

Received 1993-10-05 Accepted 1995-02-24

the DNA synthesis was also suppressed in Cal groups in a concentration-dependent manner, whereas collagen synthesis decreased only in Cal (10 and 20 μ mol · L⁻¹). **CONCLUSION**: Extracellular Ca²⁺ influx into fibroblasts increased collagen production, However, the DNA synthesis was suppressed when the cytosolic Ca²⁺ was too high or too low.

 Ca^{2+} plays an important role in modulating cell proliferation and functional activities^(1,2). Most studies focused on the effects of Ca^{2+} on nerve cells, myocardium cells, smooth muscle cells, and tumor cells⁽³⁻⁵⁾. Few articles dealt with the influences of Ca^{2+} on DNA and collagen synthesis of fibroblasts. Organ fibroses, such as pneumonocirrhosis and hepatocirrhosis, result from an overproliferation of fibroblasts and excessive collagen synthesis. To determine the effects of Ca^{2+} influx on the DNA and collagen syn-

¹ Now in Department of Internal Medicine, The Ninth People Hospital, Shanghai Second Medical University, Shanghai 200011, China.

thesis of fibroblasts and investivgate the potentiality of treating organ fibroses with Ca^{2+} channel blockers, we observed the influences of egtazic acid (EA) and calcimycin (Cal, a calcium ionophore) on the incorporation rate of [³H]TdR and [³H] proline in cultured human lung fibroblasts (HLF).

MATERIALS AND METHODS

HLF HLF was provided by Shanghai Institute of Cell Biology, Chinese Academy of Sciences.

Reagents EA was the product of Huzhou Biochemical Factory. Cal (Sigma). RPMI-1640 medium (Gibco). [³H]TdR and [³H]proline were purchased from Shanghai Institute of Nuclear Research. Chinese Academy of Sciences and Chinese Academy of Atomic Energy Science, respectively. Scintillation liquid was xylene containing 0.5 % PPO and 0.005 % POPOP. Other reagents are all of AR.

Measurement of DNA and collagen synthesis HLF was suspended in RPMI-1640 medium $(1.2 > 10^8$ cells • L⁻¹) supplemented with 10 % calf serum containing penicillin 100 kU • L^{-1} and streptomycin 100 mg • L^{-1} , and were plated in 48-well cell culture cluster dishes. Cells were grown at 37 C in a humidified 5 % CO₂+95 %air. After 24-h incubation, EA or Cal was added, and for the untreated controls an equal amount of drug-solvent (RPMI-1640 containing 1 % NaHCO₃, 7.4 % ethanol) was added. DNA and collagen synthesis was assessed by measuring the incorporation rates of ['H] TdR and [³H] proline. The period of exposure to [³H] TdR or [³H] proline was 24 h. The final concentrations of $[^{3}H]$ TdR and $[^{3}H]$ proline were 37 and 296 MBq • L^{-1} , respectively. At the termination of culture, the cells were treated with 0.25 % trypsin and harvested onto glass fiber filters, which were washed with trichloroacetic acid 0.6 mol • L⁻¹ after rinsing with 0.9 % NaCl. The precipitates were dehydrated and decolorized with ethanol. and stoved at 80 °C. The radioactivities (dpm) were counted in a liquid scintillation counter (YSJ 80). Data were expressed as $\bar{x} \pm s$ (n=3 wells).

Statistical significance was assessed by ANOVA (Dunnett analysis).

RESULTS

Cell morphology Under light microscope, HLF grew well in all groups of Cal (0.25-20 μ mol · L⁻¹). In the groups of EA (0.05 and 0.1 mmol · L⁻¹), cells showed no obvious change. After 12-h exposure to EA, the cells shrank at 2 or 4 mmol · L⁻¹; the cell distribution appeared to be slightly sparse but there was no obvious change in shape at 1 mmol $\cdot L^{-1}$. After 24 h or longer of exposure to EA, the cells became round in all groups >1 mmol $\cdot L^{-1}$.

Effects of EA and Cal on DNA synthesis The incorporation of [${}^{3}H$]TdR was not remarkably affected in Cal 0. 25-20 µmol \cdot L^{-t} after 24h exposure. But, it was suppressed in a concentration-dependent manner after 36-48 h.

DNA synthesis was not influenced after addition of EA 0.05-4 mmol \cdot L¹ for 24 h. After 36-48 h, DNA synthesis was concentrationdependently suppressed in 1-4 mmol \cdot L⁻¹, and the suppression rate increased along with 36-48 h.

Effects of EA and Col on collagen synthesis Collagen synthesis increased in all groups of Cal and EA after 24-h exposure. But after 36-48-h exposure, collagen synthesis decreased remarkably in Cal (10 and 20 μ mol • L⁻¹) and EA (1, 2, and 4 mmol • L⁻¹) (Tab 1).

DISCUSSION

As a Ca²⁺ carrier. Cal can elevate the cytosolic Ca²⁺ concentration by transporting Ca²⁺ from extracellular fluid into the cytosol⁽³⁾. The incorporation rate of [³H]proline increased markedly and the DNA synthesis was not influenced after 24-h exposure to Cal. These showed that an elevated cytosolic Ca²⁺ concentration promoted collagen synthesis of HLF, and here Ca²⁺ influx was As to the collagen synthesis inimportant. creased after 24-h exposure to EA, we presume that the chelation of Ca²⁺ in the medium can prevent the Ca²⁺ influx into the cells, resulting in a compensatory release of Ca²⁺ from intracellular stores into the cytosol. But we did not measure the cytosolic Ca^{2+} to demonstrate it.

Both Cal and EA suppressed the DNA synthesis of HLF after 36-48-h exposure, we deem that Ca²⁺ probably possesses a double-direction regulation on DNA synthesis, viz DNA synthesis requires certain amount of Ca²⁺, but when the cytosolic Ca²⁺ concentration is beyond the upperlimit, DNA synthesis will be suppressed on the contrary. This was in consensus with the results of literature^(2,4).

In conclusion, the elevated cytosolic Ca^{2+} promoted collagen synthesis of HLF, in which Ca^{2+} influx played a significant role. The DNA

• 65 •	
--------	--

Tab 1. Effect of calcimycin and egtazic acid on syntheses of DNA and collagen in cultured human lung fibroblasts. n=3 wells, $\bar{x}\pm s$. 'P>0.05, 'P<0.05, 'P<0.01 vs control.

		DNA			Collagen		
		24 h	36 h	48 h	24 h	36 h	48 h
Calcimycin	0	4514 ± 38	6 326±15	6 102±75	1 279±129	3 175±434	3046 ± 251
(µmol •L ⁻¹)	0.25	4 544±130°	4 686±120°	4 461±47°	$3196 \pm 222^{\circ}$	3 146±77	2 744±259
	2.50	4 0 87 ±22⁵	$3592\pm63^{\circ}$	$3.263 \pm 20^{\circ}$	$3\ 507\pm 665^{\circ}$	2.734 ± 157	2 796±210°
	5.0	3 988±72"	$3916 \pm 12^{\circ}$	$2.487\pm80^{\circ}$	2 919±237°	$3.128 \pm 15^{\circ}$	$2814 \pm 194^{\circ}$
	10.0	$4\ 150 \pm 109^{\circ}$	3 116 ± 35°	2 014±72°	2 979±227°	2702 ± 274^{b}	2 438±3 39 ⁵
	20.0	$3\ 180 \pm 59^{*}$	2 722±205*	$1 827 \pm 152^{\circ}$	$3.075 \pm 224^{\circ}$	2 669±241⁵	2502 ± 217^{b}
Egtazîc acid	0	6 710±1 239	6 221 ±1251	5 858±262	1595 ± 302	3 199 ±122	2587 ± 261
(mmol·L ⁻¹)	0.05	4 098±603°	6 436±332°	4 529±1 084°	$2697\pm331^\circ$	$3.009 \pm 391^{\circ}$	$2473 \pm 209^{\circ}$
	0.10	5 003±1 150°	4 783±1 171°	$5\ 306\pm409^{*}$	$2.198 \pm 122^{\circ}$	3 447±150°	2 547±464*
	1.0	4 456±399°	2 958土454。	$2421 \pm 70^{\circ}$	2 353±182°	$1.553\pm404^{ b}$	1 558±122°
	2.0	4 033±491°	2 898±483	2 329±232°	$2\ 320\pm524^{\circ}$	$1 456 \pm 134^{\circ}$	$1.398 \pm 5^{\circ}$
	4.0	3 779±933*	$2.669 \pm 82^{\circ}$	727±255	2 448±172°	$1\ 269 \pm 55^{b}$	$1.603 \pm 397^{\circ}$

synthesis was suppressed when the cytosolic Ca^{2+} concentration was too high or too low. The results suggest that Ca^{2+} antagonists may be a group of potential useful drugs for antifibrosis. (2)

REFERENCES

- Carozzi S, Nasini MG, Schelotto C, Caviglia PM, Santoni O, Barocci S, et al. Effects of Ca²⁺ and 1, 25(OH)₂D₃ on peritoneal immune-cell cytokine release and fibroblast proliferation in CAPD patients. Adv Perit Dial 1989; 5: 111-20.
- 2 Batra S, Popper LD, Hartley-Asp B. Effect of calcium and calcium antagonists on ⁴⁵Ca influx and cellular growth of human prostatic tumor cells. Prostate 1991; 19: 299-311.
- 3 Nathanson MH, Gautam A, Bruck R, Isales CM, Boyer JL. Effects of Ca²⁺ agonists on cytosolic Ca²⁺ in isolated hepatocytes and on bile secretion in the isolated perfused rat liver. Hepatology 1992; 15: 107-16.
- Jones DP, McConkey DJ, Nicotera P, Orrenius S.
 Calcium-activated DNA fragmentation in rat liver nuclei.
 J Biol Chem 1989; 264: 6398-403.

依他酸和卡西霉素对人胚肺成纤维细胞脱氧核糖

核酸和胶原合成的影响

<u>刘海林¹,陆汉明,李定国,齐</u>凤,蒋祖明 (上海 第二医科大学附属新华医院内科,上海200092,中国)

关键词	<i>师钟转</i> 变 依他酸;	<u>卡西霉素;</u>	3D 脱氧核物	ん 唐核酸;
胶原;成:		培养的细胞	- •	RSI

目的:研究依他酸(EA)和卡西霉素(Cal)对人胚 肺成纤维细胞脱氧核糖核酸和胶原合成的影响. 方法:采用[³H]TdR 与[³H]脯氨酸掺入分别测定 脱氧核糖核酸和胶原合成. 结果:给药24 h 后, EA 0.05-4 mmol·L⁻¹和 Cal 0.25-20 μ mol·L⁻¹ 组胶原合成均显著增加,脱氧核糖核酸合成无明 显改变. 给药36和48 h, EA 1-4 mmol·L⁻¹组胶 原与脱氧核糖核酸合成降低; Cal 0.25-20 μ mol ·L⁻¹组脱氧核糖核酸合成亦下降,胶原合成仅10 和20 μ mol·L⁻¹组降低. 结论:细胞外液 Ca²⁺内 流促进胶原合成,细胞内 Ca²⁺浓度过高或过低均 抑制脱氧核糖核酸合成.