尼可刹米经犬气道给药后的药物动力学与药效学

黄如衡、周 东1,何长清1

R969.1

(军事医学科学院 毒物药物研究所,北京100850,中国: 解放军总医院 呼吸科,北京100853,中国)

Pharmacokinetics and pharmacodynamics of nlkethamide after endotracheal administration in dogs

HUANG Ru-Heng, ZHOU Dong¹, HE Chang-Qing¹ (Institute of Pharmacology and Toxicology, Academy of Mulitary Medical Sciences, Beijing 100850, China; ¹ General Hospital of PLA, Beijing 100853, China)

ABSTRACT Five dogs were anaesthetized by using iv 30 mg · kg⁻¹ Na-pentobarbiturate. For each dog, the tracheostomy was done and a sterized rubber tube was inserted into the tracheal tract. Through the rubber tube, 10 ml sterized nikethamide (Nik) solution was and 5 forceful ventilations were performed immediately with the aid of a balloon in 30 s. Following tracheal administration (ET) of Nik 8.3 or 25 mg · kg⁻¹ in dogs the pharmacokinetics and pharmacodynamics were stud-Blood Nik concentrations were determined by phosphorimetric method. shown that the absorption of Nik via tracheal tract was very quick. the blood Nik levels were 7.9 and 10.6 $\mu g \cdot ml^{-1}$ at 0.5 min and reached the maxima of 12.8 and 31.9 ug •ml⁻¹, at 2.5 min, respectively, which was higher than that of iv Nik 8.3 mg \cdot kg⁻¹. Time course of Nik concentrations in plasma after ET 8.3 and 25 mg·kg⁻¹ were fitted to a 2-compartment open model with $T_{\frac{1}{2}K_1}$ 0.48 and 0.85 min. $T_{\frac{1}{2}a}$ 2.37 and 1.68 min. $T_{\frac{1}{2}b}$ 114 and 130 min, AUC 1201 and 2790 µg·min

Received 1992-07-02 Accepted 1993-07-08

 \cdot ml⁻¹, bioavailability 84.7 % and 65.5 %, respectively.

One minute after iv or ET Nik (8.3 or 25 mg·kg⁻¹), respiration rate and tidal volume were increased and reached the maxima after 5 min. The recovery of respiration rate and tidal volume were proportional to the blood Nik concentration after 5—45 min with a linear regression coefficient of 0.9. the results indicated that ET Nik may be used instead of iv in resusciatation.

KEY WORDS nikethamide; endotracheal administration; pharmacokinetics; respiration; tidal volume

关键词 尼可刹米;气道给药;药物动力学;呼吸;潮气量

临床实验证明,在心肺复苏时经气道内用药(endotracheal administration, ET)比心内注射优越^(1,2). 尼可刹米(nikethamide, Nik)是临床上常用的呼吸衰竭抢救药物⁽³⁾,它可直接兴奋延脑呼吸中枢⁽⁴⁾,使呼吸加深加快,Nik的血浆浓度与药效呈一定的相关⁽⁵⁾. 本文用

磷光方法测定血药浓度⁶⁶. 研究气管内给药的药物动力学,同时观察呼吸频率与潮气量变化,以期为临床气道内用药提供参考.

MATERIALS AND METHODS

药物和试剂 Nik(安徽六安朝阳制药厂),配成 100 mg·ml⁻¹水溶液(pH 6.5),在2±2 C保存,用前稀释. 硼砂(AR)配成饱和水溶液. 氯仿(AR)用重蒸水洗涤5次后重蒸,收集60 ℃馏分. 无水乙醇(AR)重蒸收集78 C馏分.

仪器 磷光分光光度计,日立 MPF-2A 荧光仪加装 磷光 镜 组 成. 呼吸仪,英国 Wright 公司 Medichield 产品.

犬 杂种犬6只、不拘性别,体重13±s1 kg,将犬随机分成3组,1只为对照,2只 iv组、3只为 ET 组、2周后交替,将原 iv 改为 ET 组,原 ET 组改为 iv组、再隔1月后选6只犬作高剂量(25 mg·kg⁻¹)组实验.

给药方法 犬 iv 戊巴比妥钠30 mg·kg⁻¹麻醉后,仰卧作气管插管术,分离右侧股动脉、接血压表,取一定量尼可剎米储备液加生理盐水稀释至10 ml (使其含药量为8.3或25 mg·kg⁻¹),吸入10 ml 注射器中,在注射器尾部留有5 ml 左右空气。 注射器联接一无菌橡皮管,橡皮管自插管伸入气道内2-3 cm。 在犬吸气开始时、快速(5 s 内)将药液与空气注入肺内,并迅速接气囊加压呼吸5次,在30 s 左右完成.

血药浓度测定⁽³⁾ iv 或 ET Nik 后自股动脉采血 0.1 ml, 加饱和硼砂液 0.5 ml, 氯仿 2 ml, 振摇抽提、吸出氯仿层、在80 C水浴上蒸干, 加乙醇液 25 %、0.2 ml, 在激发光276 nm, 发射光392 nm, 测磷光强度⁽⁶⁾, 同时平行用正常血(各0.1 ml)作空白与标准(正常血中加入 Nik 0.2 μg), 按下式计算血药浓度、

 $C = (P_* - P_*)/(P_* - P_*) \times 2 (\mu g \cdot m l^{-1})$ 式中 P_* , P_* , P_* 分别为样品、标准、空白磷光强度读数.

RESULTS

药物动力学 从5次实验结果可见, ET Nik 8.3或25 mg·kg⁻¹后, 吸收极快, 在药后30 s 血药浓度已达7.8与10.6 μg·ml⁻¹, 2.5 min 达高峰, 分别为12.8与31.9 μg·ml⁻¹, 2 min

后 ET 与 iv 的血药浓度相近(P > 0.05), 大剂量组($25 \text{ mg} \cdot \text{kg}^{-1}$), 血药浓度高, 维持时间久(Fig 1).

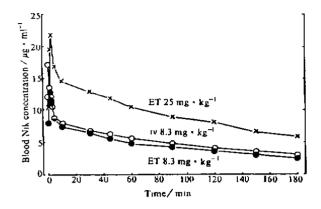


Fig 1. Blood nikethamide concentrations in dogs after iv or endotracheal administration (ET). P>0.05, ET us iv (except 0.5 and 1 min).

数据经分段拟合与最优化计算程序,在IBM-PC 微机上处理为二室开放动力学模型 (Tab 1). ET Nik 8.3与25 mg·kg⁻¹, $T_{\frac{1}{2}K_a}$ 分别为0.48与0.85 min, $T_{\frac{1}{2}a}$ 分别为2.37与1.68 min,其 $T_{\frac{1}{2}b}$ 为114与130 min, V_a 分别为495与553 ml·kg⁻¹,Ct 分别为 6.8 与 8.8 ml·min⁻¹·kg⁻¹,ET Nik 8.3 mg·kg⁻¹的生物利用度达84.7 %.

药效学

- 1 呼吸频率 犬 iv 或 ET Nik 后 1 min 呼吸频率即增加,5 min 均达高峰,分别增加 26.8,30.3,33.8 %,10 min 后逐新回降。在5-45 min 间呼吸频率变化量(ΔRR)与时间成比例关系(Tab 2)。
- 2 期气量 犬 iv Nik 后1 min 潮气量已达高峰、比给药前增加19.4 %,以后逐渐恢复.5 min 后潮气量的恢复与时间成比例。 以时间对潮气量变化(ΔTG),作图为一直线。 ET 与 iv 相似,1 min 潮气量增加7.9 %,5 min 达高峰,潮气量增加20.6 %,5 mln 后逐渐恢复.同样 ET Nik 25 mg·kg⁻¹后的潮气量变化也相

Tab 1. Pharmacokinetics of nikethamide after iv 8.3 mg 'kg⁻¹ or endotracheal administration (ET) 8.3 or 25 mg 'kg⁻¹) in dogs. (n=5, $\tilde{x}\pm s$), $C=Ae^{-\alpha t}+Be^{-\beta t}-Ge^{-K_st}$.

Parameters	iv 8.3 mg •kg -1	ET 8.3 mg*kg ⁻¹	ET 25 mg·kg ⁻¹	
	9.3±1.6	9.6±1.2	30. 4±5. 0	
B/µg·ml ⁻¹	8.0 ± 1.0	7.2 ± 0.7	14.8 \pm 2.4	
$G/\mu g \cdot m l^{-1}$		16.2±2.0 •	48. 1 ± 7.9	
α/min ⁻¹	0.46 ± 0.06	0.29±0.09	0.41 ± 0.07	
β/min ⁻¹	0.0058 ± 0.0007	0.006 ± 0.001	0.0065 ± 0.0009	
$K_{\bullet}/\text{min}^{-1}$		1.45±0.18	0.82 ± 0.13	
K_{12}/min^{-1}	0.24 ± 0.03	0.16 ± 0.02	0.82 ± 0.13	
K_{21}/min^{-1}	0.21 ± 0.03	0.13 ± 0.02	0.14 ± 0.04	
K_{10}/min^{-1}	0.013 ± 0.002	0.014 ± 0.002	0.016 ± 0.003	
$T_{\frac{1}{2}k_{\bullet}}$ /min		0.48±0.06	0.85 \pm 0.14	
$T_{\frac{1}{2}a}$ /min	1.52 ± 0.19	2.37 ± 0.29	1. 68 ± 0.28	
	121±15	114土14	130 ± 22	
	465 ± 59	495±60	553 ± 91	
$V_{\rm B}/{\rm mj \cdot kg^{-1}}$	1018 ± 128	1.122 ± 136	1 648 \pm 272	
Cl/m]•min ⁻¹ •kg ⁻¹	5. 7 ± 0.7	6. 8 ± 0 . 8	8.8±1.4	
AUC/min •µg •m1 ⁻¹	1418 ± 180	1201 ± 148	2798 ± 467	
f.	0.46 ± 0.06	0.44 ± 0.05	0.36 ± 0.06	

Tab 2. Respiration rate (RR) changes and tidal volume (TG) changes after iv or ET nikethamide in dogs (n=5, $\pm \pm s$). $^{\circ}P>0.05$, $^{\circ}P<0.05$, $^{\circ}P<0.01$ vs before ET Nik; $^{\circ}P>0.05$, $^{\circ}P<0.05$ vs iv Nik.

	Dose/ mg·kg ⁻¹	Time/ min	RR / beat min ⁻¹	∆RR/	ml_{-1}	ΔTG/
iv 8. 3	8. 3	D O	16.8±0.7		129±5	
		1	18.5 ± 0.7	1.7 \pm 0.1	154 ± 11	25 ± 2
		5	21.3 ± 0.7	4. 5 ± 0 . 0	152 ± 9	24±1
		10	18.8 \pm 0.7	2. 0 ± 0 . 1	137 ± 8	8 ±1
		30	18.0 ± 0.5	1. 2 ± 0.0	135 ± 9	6±0
		45	17.3 ± 0.3	0.5 ± 0.1	134 ± 7	5±0
ET	8. 3	0	16.5±0.5		126±8	
		1	17.5±0.6™	1. 0 ± 0 . 0	$136\pm8^{\mathrm{be}}$	9±0
		5	21. 5 ± 0. 8 [∞]	5. 0 ± 0.2	$152\pm7^{\mathrm{ch}}$	25 ± 1
		10	$19.\ 0\pm0.\ 3^{ m bd}$	2.5 \pm 0.0	$141\pm8^{\mathrm{td}}$	14 ± 1
		30	17. 5 ± 0.5^{6d}	1. 0 <u>+</u> 0. 0	132 ± 9	5±0
		45	16.8 ± 0.3^{a}	0.3 ± 0.0	124 ± 6°	2±0
ET	25	0	15.7±0.3		147±7	
		1	18.3 ± 1.5	2.6 \pm 0.2	$187\pm23^\circ$	40 ± 4
		5	21.0±1.2°	5. 3 ± 0.3	$217\pm6^{\circ}$	70±2
		10	20.0±1.0	4.3 \pm 0.2	$207\pm6^\circ$	60 ± 0
	-	30	19. $0\pm 0.5^{\circ}$	3.3 ± 0.0	$186\pm9^{\circ}$	39 ± 2
		45	$15.7 \pm 0.3^{\circ}$	0+0.0	$147 \pm 15^{\circ}$	0 ± 0

- ----

似,但变化幅度相应增加,在5 min 高峰时增加47.6 %, 以后恢复过程较快、45 min 同样恢复到给药前水平(Tab 2).

3 其他指标 犬气道给药后观察的其他指标:心电图,动脉压,动脉血氧分压,二氧化碳分压和动脉血 pH 与给药前比较,均无显著差异(P>0.05).

药物动力学与药效学关系 尼可剎米进入体内消除很快,其药理作用也很快消失。 在药后5-45 min 间,药物引起的 Δ RR 与血药浓度成线性相关,在 iv 8.3 mg·kg⁻¹,ET 8.3与25 mg·kg⁻¹的回归方程分别为:

 $C = 0.657 \Delta RR + 6.07$ r = 0.856

 $C = 0.626 \Delta RR + 5.53$ r = 0.978

 $C = 0.843 \Delta RR + 11.32$ r = 0.887

同样血药浓度变化与 ΔTG 也成线性相关, 回归方程分别为:

 $C = 0.124 \Delta TG + 6.11$ r = 0.859

 $C = 0.110 \Delta TG + 5.65$ r = 0.999

 $C = 0.064 \Delta TG + 11.34$ r = 0.900

利用上述关系式,知道 ARR 或 ATG 可计算血药浓度.

DISCUSSION

近年来气道给药已逐渐推广应用于临床,由于肺部有极大的表面积,许多药物容易经肺迅速吸收进入血循环. 经气道吸收的药物,除受机体的生理因素影响外,还受药物的理化性质的影响. 若药物颗粒超过5 µm 时,吸收就减慢. 小分子水溶性物质可通过生物膜孔道进入细胞内,脂溶性药物可溶于膜的脂质体而扩散. Nik 分子小,既具水溶性、也具脂溶性、容易在气道被吸收. 由于 ET 需要做外科手术,损伤性较大,能用 iv 的,尽量不用 ET. 但ET 药物吸收快,在药后30 s 内就可测出血药浓度,1 min,已与 iv 的相近. 且起效快,呼

吸频率与潮气量在药后1 min; 也已与 iv 的相近. 因此 ET Nik 可以作为临床心肺复苏的第二急救途径⁽⁷⁾.

ET 给药时有少数动物出现咳嗽反射,导致药液喷出,降低药效. 咳嗽反射主要与动物麻醉深浅与个体差异有关。 本文采用戊巴比妥钠30 mg·kg-1麻醉,因为麻醉深,动物很少出现咳嗽,药液注射量以5-10 ml 为宜,小于5 ml 则药液不易达到肺支气管末稍部位,不利于吸收. 超过10 ml 则又会损害肺泡,导致肺不张,影响疗效.

从药时曲线下面积(AUC)可见ET 后的AUC 比iv的AUC小,计算生物利用度为84.7%. 其原因可能在ET 给药时,部分药物停留在橡皮管及大气道中,也可能药物在肺中很快转化引起的一肺的首过作用。 生物利用度的下降,提示ET 要产生与iv的相同效应必须适当加大用药剂量.

REFERENCES

- Redding JS. Asuncion JS. Pearson JW. Effective routes of drug administration during cardiac arrest.
 Anesth Analg 1967; 46: 253-8.
- 2 Greenberg MI. The use of endotracheal medication in cardiac emergencies.
 Resuscitation 1984; 12: 155-65.
- 3 Hasegawa EAJ. The endotracheal use of emergency drugs. Heart Lung 1986; 15: 60-3.
- 4 Altose MD. Hudget DW. The pharmacology of respiratory depressants and stimulants.
 Clin Chest Med 1986; 7: 481-94.
- 5 Chen QC, Zhou WT. Li HD. HPLC determination of nikethamide concentration in plasma of 6 patients with chronic obstructive pulmonary disease. Acta Pharmacol Sin 1987, 8: 413-6.
- 6 Huang RH, Zhou D. Phosphorimetric analysis of nikethamide and its pharmacokinetics. Chin Pharm J 1990: 25, 663-6.
- 7 Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC).
 JAm Med Assoc 1980: 244: 453-509.