1

Altered α_1 -adrenoceptor density and α_{1A}/α_{1B} ratio in rat hearts after propranolol treatment¹

ZHANG Ying, HUA Zheng, WANG Xiao-Liang² (Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China)

ABSTRACT After rats were treated with propranolol (50 mg \cdot kg⁻¹, bid, ip) for 7 d, the density of α_1 -adrenoceptors in the rat myocardial cell membranes increased from 137 ± 25 to 178 ± 30 fmol/mg protein determined by receptor radioligand assay. Whereas the K_{ν} value was not significantly changed, the relative proportion of a_{1A} -adrenoceptor subtype increased from 19 ± 6 to 31 ± 8 %. The affinities of two subtypes to 5-methylurapidil were not obviously changed after propranolol treatment. It was suggested that α_{1A} -subtype was more important in a₁-receptor mediated alterations after β -adrenoceptor blockade.

KEY WORDS alpha adrenergic receptors; radioligand assay; propranolol; 5-methylurapidil; myocardium; cell membrane; prazosin

Adrenergic α_1 - and β -receptors coexist in hearts of various species, Both receptor systems mediate positive inotropic effects through different second messengers. However, β adrenoceptors play the most important role in regulating heart rate and contraction force. When β -adrenoceptors were blocked, α_1 -receptors might compensate for above cardiac functions^(1,2). Studies have implied the increase of α_1 -receptor density in rat hearts after chronic treatment with propranolol (3,4)Alpha₁adrenoceptors are mainly composed of two subtypes, α_{1A} and α_{1B} . The present study

aimed to examine the alteration of α_i -receptor subtypes in rat hearts after β -receptors were blocked by propranolol chronically.

MATERIALS AND METHODS

Wistar rats $(235 \pm s \ 13 \ g)$ were treated with propranolol (50 mg \cdot kg⁻¹, bid, ip) or 0.9 % saline (as control) for 7 d.

Preparation of heart membrane Rats were decapitated. Ventricles were isolated, chopped, and homogenized twice for 10 s with a Polytron in 7 ml icecold buffer (Tris-HCl 50, NaCl 100, edetic acid 2 mmol·L⁻¹), pH 7.4. The homogenate was centrifuged at $350 \times g$ for 10 min. The supernatant was centrifuged at $45\ 000 \times g$ for 20 min. The pellets were resuspended and washed twice in fresh buffer (Tris-HCl 50, edetic acid 1 mmol·L⁻¹), pH 7.4. The final pellets were resuspended and homogenized in ice-cold buffer again, and filtered through two layers of gauze.

Receptor binding studies Saturation binding analysis was performed with 6 concentrations of $[{}^{3}H]$ prazosin 25-400 pmol·L⁻¹. Membrane preparations (500 µl) were incubated with $[{}^{3}H]$ prazosin in a final volume of 1 ml at 30 °C for 45 min. Incubations were carried out in duplicate. Parallel incubations were conducted in the presence of phentolamine (100 µmol·L⁻¹) to determine nonspecific binding. Incubations were termined by rapid vaccum filtration and two washes with 5 ml ice-cold buffer. Drued filters were counted in scintillation liquid with a Beckmann LS 9800 scintillation counter. $K_{\rm D}$ values and maximal binding ($B_{\rm max}$) were calculated from Scatchard plot.

Competition analysis was performed with 16 concentrations of 5-methylurapidil (5-MU) ranged from 50 pmol·L⁻¹ to 50 μ mol·L⁻¹. Curves were fitted by nonlinear least-square technic. The concentrations of 5-MU necessary to inhibite half of the specific [³H]_prazosin binding (IC₅₀ value) at 2 α_1 -subtypes and

Received 1993-06-19 Accepted 1994-02-25

¹ Project supported by the National Natural Science Foundation of China, Nº 38900068.

² To whom correspondence should be addressed.

the ratio of receptor subtypes were calculated. The K_i value was calculated by the following formula:

 $K_{\rm s} = \mathrm{IC}_{\mathrm{so}}/(1+[\mathrm{L}]/K_{\rm D})$

where [L] represents the concentration of [³H]prazosin.

Drugs dl-Propranolol and phentolamine (Sigma), [³H]prazosin (9.25 GBq \cdot mol⁻¹. Du Pont NEN Research Products), 5-MU was produced by Byk Gulden (Konstanz, F R Germany).

Statistics Values of $\overline{x} \pm s$ were compared with t test for unpaired observations.

RESULTS

Alpha₁-adrenoceptor density Body weights and heart weights between control $(232\pm s \ 11 \ g, \ 0.9\pm s \ 0.1 \ g)$ and propranolol treated rats $(237\pm s \ 10 \ g, \ 0.9\pm s \ 0.1 \ g)$ had no obvious differences. Binding capacity of [³H]prazosin with α_1 -receptors in ventricular membrane preparation was higher in propranolol-treated rats (Fig 1).

Fig 1. Specific binding of $[{}^{3}H]$ prazosin to cardiac membranes in control (n=6) and propranoiol-treated (n=7) rats. $\overline{x} \pm s$. Inset, Scattard plot.

Scatchard analysis showed single component for both groups. The receptor density increased from $137 \pm s$ 25 fmol/mg protein (n = 6) in control to $178 \pm s$ 30 fmol/mg protein (n = 7) in propranolol treated rats. However, the K_p values had no significant differences between the 2 groups $(63 \pm 31 v_s 72 \pm 44 \text{ pmol} \cdot L^{-3})$.

Alpha₁-adrenoceptor subtypes Displacement of [³H]prazosin binding with sixteen incremental concentrations of 5-MU produced a biphasic competition curve (Fig 2).

Fig 2. Inhibition (%) of $[^3H]$ prazosin blnding to cardiac membranes by 5-methylurapidil in control and propranolol treated rat hearts.

The Hill coefficent calculated from 13 experiments was 0.57 ± 0.09 , indicating 2 different receptor binding sites to 5-MU. pK_1 values of 5-MU to inhibite [³H]prazosin binding at α_{1A} and α_{1B} were calculated from IC₅₀ values by nonlinear regression. In control and test group pK, values for α_{1A} subtype were 9.5 ± 0.7 and 9.2 ± 1.0 , and for α_{1B} subtype 6.8 ± 0.4 and 6.9 ± 0.4 , respectively. There were no significant differences between the 2 groups, whereas the relative proportion of α_{1A} -adrenoceptors increased from 19 ± 6 in control to 31 ± 8 % in test group (P < 0.05).

DISCUSSION

The present study showed the density of α_1 -adrenoceptors increased after chronic treatment with proprenolol. This increase of α_1 -adrenoceptor density would be a compensation when the physiological function of β -

adrenoceptors were depressed".

It has been known in displacement that the component showing high affinity to 5-MU represents α_{1A} binding sites and the component with low affinity to 5-MU belongs to α_{1B} receptor sites. In this study we found that the proportion of α_{1A} significantly increased after treatment with propranolol. But the pK_i values for 5-MU to inhibit both subtypes, which were similar to the data of Gross *et al*¹⁵, were not obviously changed, indicating that the α_1 adrenoceptor density increase after propranolol treatment was mainly due to the increase of α_{1A} subtype.

Our previous studies¹⁹ showed that the regulation of cardiac α_{1A} subtype is more sensitive to pathological condition and drugs compared with α_{1B} subtype, implying that α_{1A} -subtype was a more potently compensatory factor for physiological alteration, especially in the state that β -adrenoceptor activity was depressed.

ACKNOWLEDGMENT 5-MU was kindly donated by Prof Ursula RAVENS (University of Essen, F R Germany).

REFERENCES

- Kunos G. Ishac EJN. Mechanism of inverse regulation of alpha₁- and beta-adrenergic receptors. Biochem Pharmacol 1987; 36: 1185-91.
- van Zwieten PA. Interaction between α- and βadrenoceptor-mediated cardiovascular effects.
 J Cardiovasc Pharmacol 1986: 8 Suppl 4: 218-288.
- 3 Mugge A. Reupcke C. Scholz H. Increased myocardial at-adrenoceptor density in rats chronically treated with propranolol. Eur J Pharmacol 1985; 112: 249-52.
- Steinkraus V. Nose M. Scholz H. Thormahlen K. Time course and extent of α₁-adrenoceptor density

- changes in rat heart after β₁ adrence ptor blockade.
 Br J Phármacol 1989; 96; 441-9.
- Gross G., Hauft G., Rugevies C., 5-Methyl-urapidal discriminates between subtypes of the ar-adviscoptor. Eur J Pharmacol 1986; 151: 353-5.
- Kunos G. Mucci L. O'Regau S. The influence of hormonal and neuronal factors on rat heart adrenoceptors. Br J Pharmacol 1980; 71, 371-86.
- Simpson WW, Rodgers RI , McNeill JH.
 Cardiac responsiveness to olpha and beta adrenergic animes: effects of carbachol and hypothyroidism.
 J Pharmacol Exp Ther 1981; 219, 231-4.
- 8 Gong J. Wang XL. Zheng YF. Wang XF. Alphaadrenoceptor stimulation mediated positive chromotropic effect in isolated right heart atria of normotensive and SHRsp rats.

Acta Pharmacol Sin 1993: 14: 179-82.

9 Hua Z, Wang XL. Alpha_{1A}- and alpha_{1B}-adremoceptor-mediated positive chronotropic effects on isolated rat attenum. Acta Pharmaeol Sin 1993; 14: 317-9.
2 Q 4

, 普萘洛尔对大鼠心肌细胞膜 α₁肾上腺素受体 密度及 α₁₄/α₁в比例的影响

峥, 王晓良 R 965-2 (中国医学科学院药物研究所,北京100050、中国)

 A 摘要 放射配基结合实验表明,大鼠 ip 普萘 洛尔(Pro) 7 d 后,心肌细胞膜 α,肾上腺素能 受体密度由137±25增加到 178±30 fmol/mg protein (P<0.05), K_P 值无显著改变. 5-MU 竞争结合实验表明,使用 Pro 后 α_{1A}亚型 在 α₁受体总数中所占比例由19±6 % 增加到 31±8 % (P<0.05),但两种受体亚型的亲和 力都未改变。 说明β受体阻断后,α_{1A}亚型变 化更为敏感。

关键词 α 肾上腺素能受体: 放射配位体测定; 普萘洛尔: 心肌; 细胞膜; 哌唑嗪; 5-甲基 乌拉地尔