- 7 Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart.
 - Am J Physiol 1967; 212: 804 8.
- 8 Wróblewski F, LaDue JS Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 1955; 90: 210 – 3.
- 9 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351 - 8.
- 10 Burton KP. Evidence of direct toxic effects of free radicals on the myocardium. Free Radic Biol Med 1988; 4: 15 - 24.

双乙酰香茶菜甲素抗离体大鼠工作心脏 缺血再灌注损伤的作用

张春芬,王道生¹、凌秀珍 12 965.1

(机) 医子院到廷教顿室, 机] 2/2113, 中国

'苏州医学院药理教研室, 苏州 215007, 中国)

关键词 双乙酰香茶菜甲素;心肌再灌注损伤; (脂质过氧化)

(DAA-A)对心肌缺血再灌注损伤的作用. 方法: 离体大鼠心脏停灌40 min, 再灌25 min, 造成心肌缺血再灌注损伤模型. 结果: DAA-A 0.13, 0.25, 0.50 mmol·L⁻¹对再灌注所致心功能低下有心脏保护作用,降低室额发生率及乳酸脱氢酶(LDH), 丙二醛(MDA)的生成量. DAA-A 0.25 mmol·L⁻¹改善心肌超微结构. 结论: DAA-A 抗心肌缺血再灌注损伤的作用与其抗脂质过氧化损伤有关.

BIBLID: ISSN 0253-9756

Acta Pharmacologica Sinica 中国药理学报

1996 May: 17 (3): 248 - 251

Effects of daurisoline on intracellular Ca2+ activity in myocardium1

WANG Zhen-Xin², ZHU Jie-Quan, ZENG Fan-Dian, HU Chong-Jia, MA Yi-Long³, ZHONG Shi-Ming³ (Department of Clinical Pharmacology; ³School of Public Health, Tongji Medical University, Wuhan 430030, China)

KEY WORDS microelectrodes; calcium; electrophysiology; myocardium; daurisoline

AIM: To explain the effect of daurisoline (DS) on delayed afterdepolarization (DAD). METHODS: ${\rm Ca^{2+}}$ -sensitive microelectrode technic was used to record intracellular ${\rm Ca^{2+}}$ activity (${\rm d_{Ca}^{2}}$) and triggered activity (TA) arising from DAD in myocardium. RESULTS: Strophantin G 3 µmol·L⁻¹ yielded an increase in resting myocardial ${\rm d_{Ca}^{2}}$ by 0.19 \pm 0.11 µmol·L⁻¹ and transient elevations of ${\rm d_{Ca}^{2}}$ by 1.48 \pm 0.55 and 4.96 \pm 1.81 µmol·L⁻¹, respectively during the development of DAD and TA. By pretreatment with DS or verapamil, strophantin G-caused elevations of the ${\rm d_{Ca}^{2}}$ in resting and provoked myocardia were eliminated and TA disappeared. DS 50 µmol·L⁻¹ reduced

Na $^+$ -free medium-induced elevation of dog Purkinje fibrous α_{Ca}^l and abolished caffeine-induced increase of dog myocardial α_{Ca}^l . CONCLUSIONS: DS inhibited DAD and TA by preventing an increase of α_{Ca}^l via transmembrane Ca^{2+} entry and Ca^{2+} release from the reticulum.

Although a substantial increase of cytoplasmic Ca^{2+} is a prerequisite for delayed afterdepolarizations (DAD) that has been implicated as a cellular mechanism for arrhythmias due to affecting normal impulse conduction and engendering triggered activity (TA)^[1], little has been reported in literature on simultaneous measurements of intracellular Ca^{2+} activity (σ_{Ca}^i) and DAD/TA in a same myocardium^[2]. A neutral ligand ETH₁₀₀₁ Ca^{2+} sensitive microelectrode (Ca-ISE), which developed to have a fine tip and show stable property, ample sensitivity and transient response to free Ca^{2+} in a submicromolar range^[3,4], allowed to

¹ Project supported by the National Natural Science Foundation of China, No 39170842.

² Now in Xiamen Medical Institute, Xiamen 361008, China. Received 1994-07-13 Accepted 1995-06-12

measure $a_{C_8}^i$ (= coefficient × [Ca²⁺]₁) during the development of DAD and TA in the myocardium. This experiment was performed to verify the direct relationship between the $a_{C_8}^i$ and DAD/TA, and elucidate the mechanism responsible for effects of daurisoline (DS, RR, 7, 7'-demethyldauricine, C_{37} H_{42} N_2O_6) on DAD and TA, using Ca-ISE technic.

MATERIALS AND METHODS

 DS^{15} (white powder, mp 93 – 94 °C, TLC showed only one spot, purity > 98.5 % by HPLC) was prepared by the Faculty of Pharmacy in Tongji University. Verapamil hydrochloride (Ver), strophantin G (Str) and Ca^{2+} -cocktail were purchased from Fluka.

Microelectrodes were pulled from aluminosilicate tubing to produce a requisite tip using PF-2 ventrial micropipette puller. Standard microelectrodes were filled with KCl 3 mol \cdot L⁻¹ and had a resistance of 15 – 30 M Ω . Similar electrodes, siliconized and baked, were back-introduced into the tip with the exchanger ETH₁₀₀₁ (Ca²⁺-cocktail) and then filled with CaCl₂ 10 mmol \cdot L⁻¹ for constructing Ca-ISE. The Ca-ISE was calibrated before and after each experiment using a series of calibrating solutions⁽³⁾.

Unbranched papillary muscles were isolated from right ventricles of guinea pigs ($\frac{9}{5}$, n=34, 300 ± 31 g). Canine hearts were also chosen because its cells are larger enough to tolerate and maintain impalements of both electrodes. Dogs (n=8) weighing 18.3 ± 1.7 kg were stunned. Free-running Purkinje strand and myocardium were dissected from the ventricles.

The preparations were superfused with oxygenated Tyrode solution containing NaCl 145, KCl 5.4, CaCl₂ 1.8, MgCl₂ 1.0, glucose 11, and Tris 10 mmol \cdot L⁻¹ at 37 \pm 0.3 °C, and driven by rectangular pulses of 2 ms duration and twice threshold voltage from a stimulator (BMS-8303) through bipolar platinum electrodes.

The preparation was penetrated by a standard microelectrode and then impaled by the Ca-ISE. Both sites of the impalement were several cell legnths apart to make sure that there was no paraelectrode shunt. Both electrodes were connected via Ag/AgCl pellets to head stages of a 100 T Ω input-impedance microelectrode amplifier (SWF-I, made by Instrumental Factory of Chengdu) with individual and their differential outputs. The superfusate potential was difined as zero for both electrodes. The transmembrane resting potential ($E_{\rm m}$) or action potential (AP) from a standard microelectrode and Ca-ISE potential ($E_{\rm Ca}$) were fed to a storage oscilloscope (SJ-6) for photographical recording and monitored with a double beam oscilloscope (SBR-I). $E_{\rm Ca}$ and

its subtracted difference from $E_{\rm m}(\Delta E)$ were recorded on a bichannel recorder (LMS-2B). The level of myocardial o_{Cs} was obtained by comparing ΔE directly with the calibration curve.

Data were expressed as $\bar{x} \pm s$ and analyzed by t test.

RESULTS

Acta Pharmacologica Sinica

Ca-ISE calibrating and testing of accuracy In the test of its response to Ca²⁺ in a series of calibrating solutions which mimic the cellular ionic background, the chosen Ca-ISE showed Nernstian response to free Ca²⁺ down to 0.1 μmol·L⁻¹ and lower with more than 20 mV between 0.1 and 1 μmol·L⁻¹. The calibration curves of pre- and post-experiment were similar, both slopes were equal. The AP from the Ca-ISE resembled one from the standard microelectrode and the magnitudes of both AP plateaux were a good match (Fig 1).

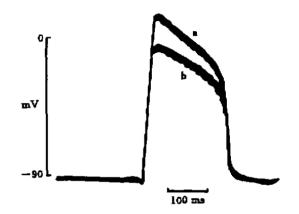


Fig 1. Superimposed tracings of transmembrane action potentials recorded with a standard microelectrode (a) and Ca²⁺-sensitive microelectrode (b) during impalement of a guinea pig ventricular trabecula at a stimulation rate of 1 Hz.

Elevation of a_{Ca}^{l} during emergence of DAD/TA and effect of DS After 60-min incubation, measurements of DAD/TA and a_{Ca}^{l} started in guinea pig right ventricular trabecula. The resting myocardial a_{Ca}^{l} was $0.19 \pm 0.06 \, \mu \text{mol} \cdot \text{L}^{-1}$ (n = 16). At the end of 36 stimuli at cycle length (CL) of 250 ms, a small transient elevation in a_{Ca}^{l} was $0.28 \pm 0.59 \, \mu \text{mol} \cdot \text{L}^{-1}$ (P > 0.05, Fig 2A) and DAD or TA did not occur. Superfusion of trabecula with Str 3 $\mu \text{mol} \cdot \text{L}^{-1}$ for 15 min led a_{Ca}^{l} in resting myocardium to a steady increase of $0.19 \pm 0.11 \, \mu \text{mol} \cdot \text{L}^{-1}$. After a drive train of 36 beats at a CL

of 250 ms, the at was further increased by 1.48 $\pm 0.55 \ \mu \text{mol} \cdot \text{L}^{-1}$ in 7 preparations displaying DAD with the amplitude of 8.7 ± 1.2 mV, and 4.96 $\pm 1.81 \ \mu \text{mol} \cdot \text{L}^{-1}$ in 9 preparations developing TA. This elevation of at was augmented by a train of stimuli at CL from 300 to 250 ms (Fig 2B).

BIBLID: ISSN 0253-9756

When preparations were superfused with oxygenated Tyrode solution containing DS 50 μ mol·L⁻¹ for 20 min, Str was added to the superfusate (final concentration 3 μ mol·L⁻¹). The resting level of at from 9 preparations was $0.23 \pm 0.06 \ \mu \text{mol} \cdot \text{L}^{-1}$, which was similar to the control value (P > 0.05). At termination of 36 applied impulses at a CL of 250 ms, the transient elevation of a_{Ca}^{i} was $0.21 \pm 0.63 \ \mu \text{mol} \cdot \text{L}^{-1}$ (P >0.05, Fig 2C) and TA disappeared (3/9 preparations showed DAD with the amplitude of 0.9 \pm 0.2 mV and a transient elevation of 0.55 \pm 0.29 $\mu \text{mol} \cdot L^{-1}$ in the $\alpha_{C_a}^i$).

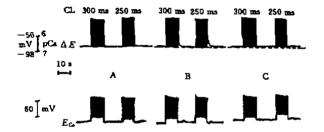


Fig 2. Effect of daurisoline (DS, 50 μ mol·L⁻¹) on intracellular Ca^{2+} activity (α_{Ca}^{1}) after stimulation of a guinea pig ventricular trabecular exposed to strophantin G (3 µmol ·L⁻¹) at drive cycle length (CL) of 300 and 250 ms for 36 impulses. Panel A: the control; panel B: the strophantin G-induced transient elevation of $\mathfrak{a}_{C_0}^1$; panel C: the block of strophantin G-induced elevation of al, by pretreatment with DS. E_{Ca} : the signal from Ca^{2+} -sensitive microelectrode (Ca-ISE): ΔE : the potential difference from Ca-ISE and standard microelectrode. The dotted line indicates control level. $pCa = -\lg a_{Ca}^1$.

In 7 preparations with continuous superfusion of Ver 11 μ mol·L⁻¹ for 15 min, the addition of Str 3 μ mol·L⁻¹ failed to elevate a_{Ca}^i in resting and provoked myocardium which remained 0.24 ± 0.10 and $0.38 \pm 0.08 \ \mu \text{mol} \cdot \text{L}^{-1}$, respectively, and TA was not induced. In 4/7 preparations, DAD with an amplitude of 1.2 ± 0.4 mV developed and transient elevation in \mathbf{o}_{Ca}^{1} was 0.11 ± 0.02 pmol · L - 1.

Effects of DS on Na -free medium-elicited

elevation of a_{Ca}^{i} After dog ventricular Purkinje fibers were allowed to stabilize for 60 min, the ac. from 8 preparations was $0.36 \pm 0.17 \ \mu \text{mol} \cdot \text{L}^{-1}$. When the preparation was switched to Na+-free (choline substitute) Tyrode solution, the a_{Ca}^{i} gradually reached a peak increase of 68 ± 8 % within 10 min. After washout of the Na+free medium, the preparation was allowed to recover in normal perfusate. Subsequent superfusion with DS 50 μ mol·L⁻¹ for 25 min, the preparation was reexposed to Na+-free medium in the presence of DS 50 μ mol·L⁻¹. In this run, Na⁺-removal gave a peak increase of 10 % \pm 6 % in α_{Ca}^i , which indicated that DS decreased but did not eliminate the acation induced by Na+-free.

Effect of DS on caffeine-caused increase in ac.

After superfusion with Tyrode solution for 60 min, dog ventricular myocardium was measured to be $0.18 \pm 0.04 \ \mu \text{mol} \cdot \text{L}^{-1}$ in the a_{Ca}^{L} . Superfusion of caffeine 5 mmol· L^{-1} caused an elevation of 4.1 ± 0.4 -fold in the α_{Ca} from 7 preparations. At 25 min after successive superfusion with DS 50 µmol $\cdot L^{-1}$, the application of caffeine 5 mmol $\cdot L^{-1}$ elicited an increase of 4.4 % \pm 4.3 % in the a_{Ca}^{i} (P >0.05).

DISCUSSION

The Ca-ISE technic has been developed enough to monitor the o_{Ca}^{\dagger} in cardiac tissue 3.41. present investigation found that this technic was well suited for simultaneous measurements of the a_{Ca}^{\dagger} and DAD/TA in a same myocardium.

In this study, after of in resting myocardium was elevated by Str (3 μ mol·L⁻¹), a single applied pulse did not elicit DAD or TA yet. Only when stimulation at a specific frequency lasted enough time, did Str induce DAD or TA, and the α_{Ca}^{I} further elevated transiently. It indicated that TA emerged when driven activities elicited a transient elevation of the α'_{Ca} after the rise in a resting level. DS is a same kind of phenolic alkaloid as dauricine which is a novel type of anti-arrhythmic drug with electrophysiologic characteristics of class I/III. We found DS eliminated the resting and transient elevations of otal induced by Str, and made TA disappear. Ca2+ channel blockers had been shown to inhibit DAD induced by Str ⁶ but not o'_{Ca} oscillations caused by Na⁺-free medium⁽⁷⁾. The present experiment manifested that by pretreatment with Ca²⁺ channel blocker Ver, Str did not significantly induce elevations of o'_{Ca} in resting and provoked myocardium, and TA disappeared. Those results supported the view that an elevation in o'_{Ca} is essential for the development of DAD and TA, and suggested that inhibition of DS on DAD and TA was related to the prevention of an increase in the o'_{Ca}.

The result showed that in the presence of Str which was found to activate T- and L-type Ca^{2+} current Ca^{1} and inhibit Ca^{+} - Ca^{-} -transporting ATPase, driven activities potentiated the elevation of ca_{Ca} and the emergence of TA, and demonstrated that the ca_{Ca} elevation elicited by Ca^{+} -free medium was significantly attenuated by pretreatment with DS. This implied that DS could reduce the accumulation of cytosolic Ca^{2+} as a consequence of Ca^{2+} -ca $^{2+}$ -exchange.

Low concentration of caffeine, principally increasing the sarcoplasmic reticulum Ca^{2+} release⁽⁹⁾, led to an elevation of α'_{Ca} . This elevation in α'_{Ca} could be eliminated by DS. It might be deduced that DS could forestall Ca^{2+} release from the sarcoplasmic reticulum.

In summary, this study provided an evidence that an increase in the σ_{Ca}^{\prime} was a prerequisite to the generation of TA originating from DAD in myocardium. The inhibition of DS on DAD and TA might result from the amelioration of an increase in the myocardial σ_{Ca}^{\prime} by prevention of the transmembrane Ca^{2+} gain and sarcoplasmic reticulum Ca^{2+} release.

REFERENCES

- 1 Levy MN. Role of calcium in arrhythmogenesis Circulation 1989: 80 (N Suppl): N-23 - N-30.
- 2 Freeman LC, Li Q. Effects of halothane on delayed afterdepolarization and calcium transient in dog ventricular myocytes

- exposed to isoproterenal Anesthesiology 1991; 74: 146 54
- 3 Marhan E, Rink TJ, Tsien RW, Tsien RY Free calcium in heart muscle at rest and during contraction measured with Ca²⁺sensitive microelectrodes. Nature 1980; 286: 845 - 50.
- 4 Lado MG, Sheu SS, Fozzard HA. Changes in intracellular Ca²⁺ activity with stimulation in sheep cardiac Purkinje strands. Am J Physiol 1982; 243: H133 - 7.
- 5 Zheng XW, Min ZD, Zhao SX.
 A new alkaloid of Menispermum dauncum daunsoline.
 Kexue Tongbeo 1979; 24: 285 8.
- 6 Furukawa T, Kimura S, Castellanos A, Bassett AL. Myerburg RJ In vivo induction of "focal" triggered ventricular arrhythmas and responses to overdrive pacing in the canne heart. Circulation 1990: 82: 549 59.
- 7 Allen DG, Eisner DA, Orchard CH. Characterization of oscillations of intracellular calcium concentration in ferrer ventricular muscle. J Physiol (Lond) 1984; 352: 113 28.
- 8 Le Grand B, Deroubaix E, Coulombe A, Coraboeuf E Stimulatory effect of ouabain on T- and L-type calcium currents in guinea pig cardiac myocytes Am J Physiol 1990; 258: H1620 - 3.
- 9 Sitsapesan R, Williams AJ. Mechanisms of callenne activation of single calcium-release channels of sheep cardiac sarciplasmic reticulum. J Physiol (Lond) 1990; 423: 425 - 39.

248-251 蝙蝠葛苏林碵对心肌细胞浆 Ca²⁺活度的影响

王镇辛,朱接全,曾繁典,胡崇家, 马逸龙³、钟时明³ (同济医科大学临床药理

<u>马逸龙</u>3√钟时明³(同济医科大学临床药理研究室、 ³同济医科大学公共卫生学院、武汉 430030, 中国)

关键词 微电极; 钙; 电生理学; 心肌; 蝙蝠葛 苏林碱

A 目的: 探讨蝙蝠葛苏林碱 (DS) 对迟后除极的作用。方法: 采用 Ca²+ 敏感性微电极技术。结果: 毒毛旋花甙 G (Str, 3 μmol·L⁻¹) 使豚鼠心室乳头肌细胞浆 Ca²+ 活度 (α'ca) 增加 0.19 ± 0 11 μmol·L⁻¹, 在出现迟后除极和触发活动 (TA) 时又分别增加 1 48 ± 0.55 和 4.96 ± 1.81 μmol·L⁻¹ 标本经 DS 作用后。 Str 不再引起 α'ca增高和 TA DS 抑制无 Na+和咖啡因引起的狗心肌 α'ca增加结论: DS 可阻止 Ca²+ 跨膜人胞浆而防止 α'ca增高起抗 TA 作用

R 972