BIBLID: ISSN 0253-9756

雷公藤内酯的抗炎作用

P 97/. (

郑幼兰、林建峰,林承才,徐 娅(福建省医学科学研究所,福州350001,中国)

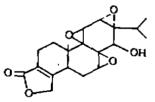
Anti-inflammatory effect of triptolide

ZHENG You-Lan. LIN Jian-Feng, LIN Cheng-Cai, XU Ya (Department of Pharmacology, Fujian Institute of Medical Sciences, Fuzhou 350001, China)

ABSTRACT Triptolide (Tri) was isolated from Tripterygium wilfordii Hook f. Tri 0.1 $-0.2 \text{ mg} \cdot \text{kg}^{-1} \text{ sc or } 0.15 - 0.3 \text{ mg} \cdot \text{kg}^{-1} \text{ ig}$ inhibited markedly the increased vascular permeability induced by ip 0.7 % HAc in mice. Tri $0.05-0.1 \text{ mg} \cdot \text{kg}^{-1}$ ip or $0.15-0.3 \text{ mg} \cdot$ kg⁻¹ ig inhibited hind paws swelling induced by sc 0.15 ml carrageenan and also inhibited the same swelling induced by sc 2. 5 % formaldehyde 0.1 ml in rats. Tri 0.05-0.1 mg·kg⁻¹ ip inhibited markedly proliferation of granuloma induced by se implantation of cotton-pellets in rats, but 0. 2 mg·kg⁻¹ ip can not inhibit the same swelling induced by sc 0. 15 ml carrageenan in adrenalectomized rats. Tri 0. 2 mg·kg⁻¹ ip decreased markedly weight of thymus. Tri 0.2 mg •kg⁻¹ ip, but 0.1 mg • kg⁻¹ ip did not reduced the content of ascorbic acid of adrenal gland in rats. Tri 0.2 mg •kg⁻¹ ip did not decrease the pro-staglandin E content in inflammatory tissues. These results indicate that high dose of Tri can stimulate the pituitary-adrenal axis.

KEY WORDS triptolide; carrageenan; ascorbic acid; dexamethasone; prostaglandins E

摘要 雷公藤内酯(triptolide, Tri) sc. ip 及 ig 0.05-0.3 mg·kg⁻¹对渗出性和增殖性炎症


Received 1993-12-16

Accepted 1994-05-31

均有明显抑制作用。 Tri 0.2 mg·kg⁻¹ ip 引起 胸腺萎缩,对摘除双侧肾上腺大鼠 Tri 可使角 叉菜足跖肿胀的作用消失,并能使大鼠肾上腺 内抗坏血酸含量明显降低,且会被地塞米松所 阻断。 但对炎症组织释放的 prostaglandins E 含量没有影响。

关键词 雷公藤内酯,角叉菜,抗坏血酸,地 塞米松,前列腺素 E

雷公藤内酯 (triptolide, Tri)是卫矛科 (Celestraceae)雷公藤(Tripterygium wilfordii Hook f)根提取的有效成份之一。 Tri 治疗类风湿性关节炎15例近期疗效达100 %^{CII}. Tri 减轻巴豆油诱发的耳部水肿,对红细胞膜有稳定作用,但不影响大鼠肾上腺内抗坏血酸的含量,其抗炎作用不是通过兴奋垂体一肾上腺皮质系统^{CII}. 本文研究 Tri 的抗炎作用.

Triptolide

MATERIALS

雷公廉内酯(triptolide, Tri)无色柱状结晶、C₂₀ H₂₄O₆、mp 227-228 C由本所植化室研制。 容于2 % 丙二醇。 吲哚 美辛(Indomethacin, 北京制药三厂),以 CMC 配成2 %混悬液, 氮化可的松(5 mg·kg⁻¹, 江苏扬州制药厂)。 地塞米松针剂(5 mg·kg⁻¹福州制药厂),角叉菜(carrageenan 辽宁省药物研究所)。Evans

blue (BDH), 抗坏血酸粉剂(广东西随化工厂), prostaglandins E (PGE) (Sigma 公司).

Sprague-Dawley 大鼠及昆明种大鼠, 含, 由上海细胞生物研究所和福建中医学院动物室提供.

METHODS AND RESULTS

对毛细血管通透性的影响⁽³⁾ \$ 小鼠94 只,体重21±s 3 g,分别在 Tri sc 30 min 和 ig 1 h 后,各 iv 0.5 % Evans blue 5 ml·kg⁻¹,5 min 后 ip 0.7 % HAc 10 ml·kg⁻¹,30 min 后脱颈椎处死,剖腹,用蒸馏水多次冲洗腹腔,冲洗液 10 ml,加 NaOH 0.1 mol·L⁻¹0.1 ml 放置 30 min,用 722型光 栅分光光度计(590 nm)比色。 结果:Tri sc 或 ig 均能使小鼠腹腔冲洗液 Evans blue 浓度明显降低,表明 Tri 抑制腹腔毛细血管通透性的增加,并有剂量依赖性(Tab 1)。

Tab 1. Effect of triptolide and indomethacin on increased vascular permeability induced by ip 0. 7 % acetic acid in mice. n=10, $\bar{x}\pm s$.

*P<0.05, *P<0.01 vs control.

	Dose/ mg•kg ⁻¹	Route	Evens Blue/ µg•ml ⁻¹
Control		Sc.	6.7±1.3
Tr i ptolide	0.1	SC	$3.4 \pm 0.8^{\circ}$
	0.2	sc	2.6±0.8°
ndomethacin	40	sc	2.7 \pm 0.7°
Control		ig	4.3 \pm 1.0
Friptilide	0.15	ig	3.5 \pm 0.9
	0.3	ig	$1.5 \pm 0.6^{\circ}$
Indomethacin	100	ig	2.6 ± 1.4^{b}

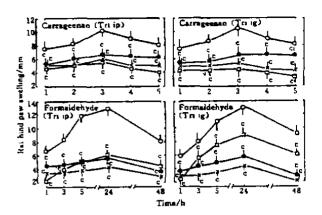


Fig. 1. Effect of Triptolide (Tri) on swelling of rat hind paw induced by phlogistic agents. Carrageenan; control (\bigcirc) ; Tri 0. 05 mg·kg⁻¹ ip or 0. 15 mg·kg⁻¹ ig (\clubsuit) ; Tri 0. 1 mg·kg⁻¹ ip or 0. 3 mg·kg⁻¹ ig (\times) . Indomethacln 40 mg·kg⁻¹ ip or 100 mg·kg⁻¹ ig (\bigcirc) . Formaldehyde: control (\bigcirc) ; Tri 0. 05 mg·kg⁻¹ ip or 0. 3 mg·kg⁻¹ ig (\clubsuit) , Tri 0. 1 mg·kg⁻¹ ip or 0. 3 mg·kg⁻¹ ig (\bigcirc) , Dexamethasone 1 mg·kg⁻¹ ip or dexamethasone 5 mg·kg⁻¹ ig (\bigcirc) . n=6, $\overline{x}\pm s$.

不切除肾上腺的正常大鼠,另二组摘除双侧肾上腺后,饲以1% NaCl 溶液,术后d 3分别 ip 2%丙二醇10 ml·kg⁻¹和 Tri 0.2 mg·kg⁻¹,30 min 后按上法注射角叉菜致肿。 结果:Tri 对角叉菜足肿胀抑制作用消失(Tab 2)。

Tab 2. Effect of ip triptolide on swelling of normal and adrenal ectomized rat hind paws induced by carrageenan. n=6. $\overline{x}\pm s$. $^{\circ}P<0$. 01 vs control.

	Normal rat Tr	Adrenaled iptolide/mg+l	tomized rat/
	0. 2	~	0. 2
Rats hind	paws swelling/	mm	
1 h	5.0 \pm 1.2°	6.0 ± 0.6	6.0 ± 0.6
2 h	5.2±1.1°	7.3 \pm 0.8	7.6 \pm 0.6
3 h	5.8±1.2°·	8.3 ± 0.8	8.6 ± 0.6
4 h	$5.3 \pm 1.3^{\circ}$	7.8 \pm 1.0	8.2 ± 0.9
5 b	5, 1 ± 1 , 2^{c}	7.3 \pm 0.8	7.6 ± 0.6

对棉球肉芽肿增生的影响等 3 大鼠24

只、体重200±s 40 g、乙醚麻醉、在无菌操作下切开两侧腋下皮肤各植入20 mg 的消毒棉球1个、术后当日给药、qd > 6 d 于 d 7处死大鼠、剥离肉芽组织、在90 C烘1 h 后称干重,并计算其抑制率。 结果: Tri ip 及 ig 对棉球肉芽肿增生均具有抑制作用(Tab 3),

Tab 3. Effect of triptolide and hydrocortisone on weight of granuloma induced by cotton-pellets in rat. n=6. $\bar{x}\pm s$. $^bP<0.05$, $^cP<0.01$ vs control.

Do mg	ose/ ·kg ⁻¹ R	oute	Granuloma wt. g/kg body wt.	Inhibition/
Control		ip	1.19±0.36	
Triptalide	0.05	ip	0.71 ± 0.29^{b}	39.8
	0.1	qi	0.47±0.10 ^b	60. 5
Hydrocoti- sone	10	ip	$0.46 \pm 0.06^{\circ}$	61.2
Control		ig	0.72±0.14	
Triptolide	0,15	ig	0.48 ± 0.15^{b}	51
	0.3	ig	$0.44 \pm 0.04^{\circ}$	66
Hydrocati- sone	30	ig	0.47±0.08°	52

对幼鼠胸腺重量的影响。 取鼠龄15 d、体重11±s1g的含小鼠60只,均分4组. 分别 ip Tri 0.1-0.2 mg·kg⁻¹,对照组(2 %丙二醇)10 ml·kg⁻¹与氢化可的松30 mg·kg⁻¹ qd×5 d 于 d 6将小鼠脱颈椎处死,剖腹,以 JNA型精密扭力天平秤胸腺重量. 结果: Tri 及氢化可的松都能减轻胸腺重量,且有一定的剂量依赖性(Tab 4).

Tab 4. Effect of triptolide and hydrocortisone on weight of thymus in 15-day-old mice. n=15, $\bar{x}\pm s$. 'P<0.01 vs control.

	Dose/ mg•kg ⁻¹ •d ⁻¹	Thymus wt. g/kg Body wt.
Control		3.7±1.4
Triptolide	0.1×5	2.0 \pm 0.6°
	0.2 \(\sigma \)	1. 4 ± 0 . 6°
Hydrocotisone	30×5	$1.2 \pm 0.3^{\circ}$

对大鼠肾上腺抗坏血酸含量的影响 ◆ ↑

鼠18只,均分3组,分别 ip 对照组(2%丙二醇) 10 ml·kg^{-1} , $\text{Tri } 0.1 - 0.2 \text{ mg·kg}^{-1}$,给药后2 h,脱颈椎处死、剖腹、取右侧肾上腺称重、然后用3.5 ml 的三氯醋酸制成匀浆、离心390>g、测上清液中抗坏血酸的含量 11 .并换算成每100 mg 肾上腺组织中抗坏血酸的 μ g 数进行组间比较(Tab 5).结果:Tri ip 0.2 mg·kg $^{-1}$ 可使大鼠肾上腺内抗坏血酸含量降低(P < 0.05)。表明 Tri 大剂量有兴奋肾上腺皮质功能的作用。而 ip Tri 0.1 mg·kg $^{-1}$ 似也有少许降低肾上腺内抗坏血酸含量(P < 0.05)。

Tab 5. Effect of triptolide on ascorbic acid of adrenal in rat. n=6, $\bar{x}\pm s$.

* P>0.05. * P<0.05 vs control.

Criptolide/ mg•kg ⁻¹	Weight/	Ascorbic acid mg/kg adrenal
	42 2 ±29	4.6±0.9
0.1	388 ± 24	3.8±0.5
0.2	403±17	3.5 ± 0.4^{b}

对地塞米松处理大鼠肾上腺抗坏血酸含量的影响^(a) 含大鼠12只,均分2组. sc 1 mg·kg⁻¹地塞米松后10 min,分别 ip 对照组(2% 丙二醇) 10 ml·kg⁻¹和 Tri 0.2 mg·kg⁻¹2 h后将大鼠脱 颈椎处死,按上法取肾上腺,测抗坏血酸的含量, 结果;地塞米松+2%丙二醇组肾上腺内抗坏血酸含量为427±68 μg,地塞米松+ Tri 为391±55 μg 二者差异不显著(P>0.05). 表明 sc 地塞米松后 Tri 降低肾上腺抗坏血酸含量的作用可被阻断,提示 Tri 兴奋肾上腺皮质功能的作用可被阻断,提示 Tri 兴奋肾上腺皮质功能的作用并非直接作用于肾上腺,可能跟垂体有关。

放入7 ml 生理盐水中浸泡1 h, 离心390×g 取 上清液0.3 ml, 加 KOH 甲醇溶液0.5 mol·L-1 2 ml, 在50 C水浴异构化20 min, 加甲醇液5 ml, 用751型分光光度计(278 nm)测定 PGE 含 量¹⁹³,最后换算成每克炎症组织释放 PGE 的 и 数. 结果: 对照组大鼠每克炎症组织释放 PGE 总量为237±39 μg, Tri 组235±30 μg (P >0.05), 吲哚美辛组为107±78 μg(P< 0.01), 表明 Tri 的抗炎作用可能与抑制 PGE 的合成或释放无关.

DISCUSSION

本实验研究从多种实验性炎症模型证实 Tri 对急、慢性炎症均有明显的抑制作用,而且 所使用的剂量很小,并且有剂量依赖性, 但 对切除双侧肾上腺的大鼠, Tri 抗角叉菜足跖 肿胀的作用消失,幼鼠胸腺萎缩以及大剂量 Tri 0.2 mg·kg⁻¹ ip 能使肾上腺中抗坏血酸含 量降低,表明 Tri 对肾上腺皮质功能有一定的 影响. 我们曾在家兔和狗进行 Tri 长期毒性 试验中,还发现两侧肾上腺重量增加,病理切 片束状带、网状带增生,提示 Tri 可能直接作 用于以肾上腺, 一般认为抗炎作用跟垂体一 肾上腺皮质系统有密切关系. 而肾上腺内抗 坏血酸含量降低则可间接反应肾上腺皮质活动 的增强. 本研究结果表明 Trì 可使正常大鼠 肾上腺内抗坏血酸含量降低。 如预先给予地 塞米松, 使垂体发生化学性阻断, 则 Tri 所引 起肾上腺抗坏血酸的含量降低被阻断. 说明 Tri 可能是垂体引起 ACTH 释放的增加, 从而 激动肾上腺皮质分泌功能(18).

本研究还发现 Tri 0.1 mg·kg-1 ip 不能明 显降低肾上腺抗坏血酸的含量. 但是,此剂 量动物关节炎模型已具有明显抗炎作用,表明 Tri 还有其他的作用机制。 炎症组织的中性白 细胞和吞噬细胞在生成 PGE 方面起重要作用. 本研究结果 Tri 0.2 mg·kg-1 ip 对炎症组织释 放 PGE 含量没有影响. 而吲哚美辛却能明显 地抑制炎症组织释放的 PGE. 表明 Trì 的抗 炎作用跟抑制 PGE 的合成或释放无关。 Tri 是目前市售雷公藤片的主要成份, 本研究可为 Tri 治疗类风湿性关节炎提供实验理论基础.

REFERENCES

- I Su DF, Song YJ, Li RI. Comparative clinical observation on rheumatoid arthritis treated by triptolide and ethylacetate extract of Triptervgium wilfordii. Chin J Integ Trad West Med 1990; 10: 144-6.
- 2 Li LZ, Chen SF. Wang FJ. Yang J. Tan GP. Xu JY. et al. Effects of triptolide on inflammation and immune function. Chin Pharmacol Bull 1986, 2: 25-9.
- 3 Tang XC, Lin ZG, Cai W, Chen N, Shen L. Anti- inflammatory effect of 3-acetylaconitine. Acta Pharmacol Sin 1984; 5; 85-9.
- 4 Zhu LQ, Liao XL. Peng ZK, Fan CK. Anti-inflammatory effect of diethylcarbamazine citrate. Acta Pharmacol Sin 1989; 10: 81-4.
- 5 Robert H. Silber PD. Paul SA. Animal techniques for evaluating adrenocortical drugs. In Necline JH, Siegler PE, editors. Animal and clinical pharmacologic techniques in drug evaluation. Chicago: Year Book Medical Publishers, 1964; 542-50.
- 卫生部药品生物制品检定部编:药品的生物检定法. 第一版,北京:人民卫生出版社 1978;29-31.
- Roe JH. Kuether CA. The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenyl-hydrazine derivative of dehydroascorbic acid. J Biol Chem 1943; 147; 399-407.
- 8 Mei YR, Cheng DY, Li YF, Yuan ZQ, Ye YH. Anti-inflammatory action of LeiFeng Shiling and its effect on pituitary-adrenocortical system. Chin Trad Herb Drugs 1988; 19: 28-30.
- 9 Zhou CC, Sun XB, Liu JY, Luo SQ, Lu CY, Anti- inflammatory effect of a-spinasterol. Acta Pharm Sin 1985; 20: 257-61.