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Since 1997, several epizootic avian influenza viruses (AIVs) have been transmitted to humans, causing diseases and even deaths.  
The recent emergence of severe human infections with AIV (H7N9) in China has raised concerns about efficient interpersonal viral 
transmission, polygenic traits in viral pathogenicity and the management of newly emerging strains.  The symptoms associated with 
viral infection are different in various AI strains: H5N1 and newly emerged H7N9 induce severe pneumonia and related complications 
in patients, while some H7 and H9 subtypes cause only conjunctivitis or mild respiratory symptoms.  The virulence and tissue tropism 
of viruses as well as the host responses contribute to the pathogenesis of human AIV infection.  Several preventive and therapeutic 
approaches have been proposed to combat AIV infection, including antiviral drugs such as M2 inhibitors, neuraminidase inhibitors, 
RNA polymerase inhibitors, attachment inhibitors and signal-transduction inhibitors etc.  In this article, we summarize the recent prog-
ress in researches on the epidemiology, clinical features, pathogenicity determinants, and available or potential antivirals of AIV.
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Introduction 
Avian influenza virus (AIV) is a potential source for the emer-
gence of human influenza pandemics.  Historically, several 
harmful influenza pandemics have originated from AIVs 
through genetic reassortment between human and avian influ-
enza strains, as happened in the 1918 H1N1, 1957 H2N2, and 
1968 H3N2 pandemics[1, 2].  The unprecedented emergence of 
H5N1 human infections in 1997 provided the first evidence 
that AIV could directly transmit from poultry to humans[3].  
Since February 2013, there have been cases of severe human 
infection with H7N9 AIV in China; this AIV strain consists 
of genes from three AIV strains and is viewed as a pandemic 
threat[4].  

Avian influenza virus (AIV) is an influenza A virus, which 
is a member of the genus Orthomyxovirus.  The genome of 
AIV consists of eight minus-sense single-stranded RNA seg-
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ments that encode a minimum of 10 unique viral proteins.  
The current classification into subtypes is based on the surface 
glycoproteins hemagglutinin (HA) and neuraminidase (NA).  
To date, 16 HA subtypes and nine NA subtypes have been 
described[5, 6].  The unique genome of influenza virus H17N10 
was recently discovered in bats in Guatemala[7].  One remark-
able feature of influenza viruses is their inclination to undergo 
antigenic variation through antigenic drift and antigenic 
shift[8].  Antigenic drift consists of relatively minor mutational 
alterations in the antigenicity of HA or NA and occurs con-
tinuously as a result of selection pressure from host immu-
nity[8].  Antigenic shift by genetic reassortment of the eight 
gene segments can result in the appearance of a novel HA/NA 
combination against which the human population has little 
or no immunity[9].  If the majority of people are immunologi-
cally naïve to novel strains and such strains can be transmitted 
efficiently from human to human, influenza pandemics may 
occur[9].  

Aquatic birds are the reservoirs of all influenza A virus 
subtypes.  Most influenza viruses infect wild and/or domes-
tic birds with limited or no signs of the disease and are thus 
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classified as low pathogenic avian influenza (LPAI) viruses[10].  
However, highly pathogenic avian influenza (HPAI) viruses 
can cause severe diseases in poultry, with fatality as high as 
100%[10].  Currently, all HPAI viruses belong to subtype H5 or 
H7, but not all H5 or H7 viruses are HPAI.  

Human infections with AIV
Epidemiology
Three different subtypes of AIV have been confirmed as capa-
ble of infecting humans: H5, H7, and H9 (Table 1).  Humans 
can be infected by AIV primarily after their mucous mem-
branes have come into direct contact with infectious secre-
tions or excreta from infected birds or contaminated poultry 
products[11].  The main infectious route of AIV seems to be via 
the upper respiratory tract and conjunctivae[12, 13].  Direct intro-
duction to the lower respiratory tract may occur only after 
massive exposure, such as the culling operations of infected 
poultries[14].  The role of infection through other routes (eg, 
gastrointestinal tract) remains to be explored.  

The first warning that AIV could directly transmit from 
avian species to humans occurred in 1997 in Hong Kong and 
resulted in 18 infections and 6 deaths[3].  HPAI H5N1 influenza 
viruses were found to be endemic in poultry in most provinces 
of southern China, a fact that was supported by long-term sur-
veillance[15–17].  Since 1997, HPAI H5N1 has spread from Asia 
to Europe, Africa, and the Far East through the poultry trade 
and migratory bird movements[18–22].  More than 600 cases of 
human infection have been confirmed in the past 10 years, and 
the fatality rate is approximately 60%[23].  Children and young 
adults appear to be more susceptible to the virus[24].  

The H7 subtypes of AIV have caused multiple cases of 
human infection since 2002 in Canada, China, Italy, Nether-
lands, the United States, and the United Kingdom[25].  In 2003, 
an HPAI H7N7 virus was found to transmit from ducks to 
humans; 89 cases of human infection were confirmed, and one 
patient died from severe pneumonia[26].  Several other AIV H7 
strains, including HPAI H7N3, LPAI H7N3, and LPAI H7N2, 
have had sporadic outbreaks in recent years resulting in only 
mild illness in humans[12, 27–32].  The latest LPAI H7N9 outbreak 
in China, however, caused several deaths due to severe pneu-
monia and related complications[4, 33–36].  Although all H7 types 
of AIV are still zoonotic, they may be more likely to develop 

into interpersonal pandemics because these viruses preferen-
tially bind to α-2,6-linked SA and/or a mammalian adaptation 
trait on the PB2 protein[4, 25].

Since 1999, when the first human infection of LPAI H9N2 
was detected in Hong Kong, this virus has been infrequently 
isolated from humans[30].  The symptoms associated with 
H9N2 infection are generally mild, and there is no evidence of 
human-to-human transmission[30–32].  

Clinical features
The main clinical manifestations of AIV infection depend on 
the viral subtype.  Some LPAI (eg, H7N2, H7N3, and H9N2) 
and HPAI strains (H7N7) only cause asymptomatic or mild 
symptoms, such as conjunctivitis or uncomplicated influenza-
like illness, in humans[12, 37–42].  In current human infections 
with LPAI (H7N9), a typical influenza-like illness (eg, fever 
and cough) appeared in the early course of the disease.  Blood 
biochemistry tests identified that aspartate aminotransferase 
(AST), lactate dehydrogenase (LDH), and creatine kinase (CK) 
levels significantly increased, while white blood cell counts 
were normal or slightly decreased.  Some patients progressed 
to severe pneumonia followed by acute respiratory distress 
syndrome (ARDS), and finally died from multi-organ failure[4].  
Interstitial infiltration, lobar infiltration, and collapse/consoli-
dation could be observed in chest radiographs 7 to 13 d after 
the onset of illness.  These clinical features of H7N9 infections 
were comprehensively described by Gao et al[43].

In HPAI H5N1 infection, the onset of disease occurred at 
a median of 3 to 4 d after exposure.  The initial symptoms of 
disease were also influenza-like.  Dyspnea could be observed 
in 42%–72% of patients, and extra-pulmonary symptoms such 
as conjunctivitis and gastrointestinal symptoms (eg, abdomi-
nal pain, diarrhea, and vomiting) occasionally occurred[44–46].  
Other complications included Reye’s syndrome and pul-
monary hemorrhaging[44, 47, 48].  Many patients progressed to 
severe pneumonia, rapidly developed ARDS 4–13 d after dis-
ease onset, and finally died from multi-organ failure.  Compar-
ing with survivors of HPAI H5N1 infection, fatal cases were 
more likely to present with leukopenia, lymphopenia, throm-
bocytopenia, and elevated levels of AST, LDH, and CK[49–53].  
Abnormal chest radiographic findings were the same as those 
for H7N9[46].  

Table 1.  Human infections with avian influenza virus. 

  Subtype                                                          Locationa and year                                                                                 Cases        Fatalities          References
 
 H5N1 HK (1997); AZ, BD, CN, DJ, EG, HK, ID, IQ, KH, LA, MM, NG, PK, TH, TR, VN (2003–2013) 622 371 [3, 23]
 H7N2 US (2002–2003); UK (2007) 3 0 [27, 28]
 H7N3 IT (1999–2003); CA (2004); UK (2006); MX (2012) 12 0 [12, 28, 29]
 H7N7 UK (1996); NL (2003) 90 1 [13, 26]
 H7N9 CN (2013) 132 37 [35]
 H9N2 CN, HK (1998–1999, 2003, 2007, 2009); BD (2011) 12 0 [30-32, 41]

a Abbreviation of Locations: Azerbaijan (AZ), Bangladesh (BD), Cambodia (KH), Canada (CA), China (CN), Djibouti (DJ), Egypt (EG), Hong Kong Special 
Administrative Region of China (HK), Indonesia (ID), Iraq (IQ), Italy (IT), Laos (LA), Mexico (MX), Myanmar (MM), Netherland (NL), Nigeria (NG), Pakistan (PK), 
Thailand (TH), Turkey (TR), United Kingdom (UK), United States (US),  Vietnam (VN).
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The primary histopathological findings in fatal H5N1 
human infections were extensive infiltration of lungs,  
disseminated intravascular coagulation, and multi-organ 
failure.  In the lung, pneumocytes were the primary target 
of H5N1 infection, resulting in diffuse alveolar damage with 
interstitial fibrosis, hyaline membrane formation, patchy 
interstitial lymphoplasmacytic infiltrates, bronchiolitis with 
squamous metaplasia, and pulmonary congestion with vary-
ing degrees of hemorrhage[54–57].  The HPAI (H5N1) virus also 
infected multiple organs in addition to the lungs.  Postmor-
tem findings for patients who died from A/H5N1 infection 
showed edemas, degeneration of myocytes in the heart, exten-
sive hepatic central lobular necrosis, extensive acute tubular 
necrosis in the kidney, disseminated intravascular coagulation, 
and cerebral involvement[50, 54, 58–60].  A fatal case of AIV (H5N1) 
infection in a pregnant woman revealed viral infection in the 
brain, placenta, and fetus[55, 61].  In addition, systemic cytokine 
activation resulted in hemophagocytic syndrome, lymphoid 
depletion, and skeletal muscle fiber necrosis[54, 56].  

The viral load of AIV varies in respiratory secretions, tissues, 
plasma, cerebrospinal fluid, and feces.  Respiratory secretions 
and tissues commonly have the highest viral loads, and virus 
can be detected in all patients.  Infectious virus and viral RNA 
have been detected in feces and intestines, suggesting that the 
virus sometimes replicates in the gastrointestinal tract[49, 59, 62].  
Intestinal involvement in A/H5N1 virus infections may 
explain the common occurrence of diarrhea.  Viral RNA in 
plasma is more often detected in patients with fatal disease 
than in those with nonfatal disease, indicating that levels of 
viral replication may influence the outcome[63].  A high viral 
load is also correlated with an increase in host response, as 
patients with HPAI (H5N1) infections rarely have detectable 
viral RNA in the respiratory tract for more than 3 weeks[63].  

Host responses
The severe disease associated with AIV infection in humans 
could be caused by a variety of mechanisms, including 
viral dissemination, differences in tissue tropism and host 
response[64].  Generally, the host responses to AIV are compli-
cated and include apoptosis and autophagy as well as immune 
responses (innate, humoral, and cell-mediated)[65–68].  

Autophagy, a tightly regulated homeostatic process for self-
digestion of unwanted cellular subcomponents, has been sug-
gested to be responsible for lung injury in AIV infection[65–67].  
The autophagic death of alveolar epithelial cells may also 
be responsible for the high mortality rate of H5N1 infection 
because autophagy-blocking agents applied prophylactically 
or therapeutically in mice significantly increased the survival 
rate and alleviated the lung injury caused by H5N1 infec-
tion[67].  

Accumulating evidence suggests that virus-induced 
cytokine/chemokine dysregulation also plays a significant 
role in the pathogenesis of AIV infection[68].  Respiratory epi-
thelial cells and macrophages are the primary innate immune 
cells involved in AIV infection[68].  Pronounced activation of 
the proinflammatory cytokine/chemokine cascade prolongs 

the period of inflammatory response and contributes to fur-
ther tissue damage and the persistence of the systemic inflam-
matory response syndrome[69].  Furthermore, cytokines can 
further sensitize neighboring cells by up-regulating RIG-I and 
amplifying the cytokine cascade in some HPAI infections[70].  
It appears that cytokine responses may be driven by high-
level viral replication, because plasma levels of macrophage- 
and neutrophil-attractant chemokines as well as pro- and 
anti-inflammatory cytokines (IL-6 and IL-10) were higher in 
patients with HPAI (H5N1) infection compared to the levels in 
patients with a conventional influenza infection[50].  

It should be noted that IL-17, Th-17 mediators, and IL-17-
responsive cytokines were found in serum samples of 2009 
swine-origin H1N1 influenza virus (S-OIV H1N1) infected 
patients[71].  IL-17 deficiency or treatment with monoclonal 
antibodies can significantly alleviate acute lung injury induced 
by the S-OIV H1N1 virus in mice[71].  In addition, IL-17 has 
been suggested to enhance the proinflammatory outcome of 
an antiviral response in human cells[72].  Thus, monoclonal 
antibodies against IL-17 may be helpful to reduce severe lung 
injury induced by AIV infections.  

The suppression of interferon is also involved in human AIV 
infection.  HPAI (H5N1) was found to attenuate the expression 
of IRF3 as well as the levels of type I IFNs, and subsequently 
substantially delay the phosphorylation of Stat2 and induc-
tion of IFN-stimulated genes (ISGs) in vitro[73, 74].  Viral protein 
M2 appeared to be the “main culprit” that correlated with the 
complete suppression of known viral inflammasome activa-
tion[75].  

In addition to cytokine response, apoptosis and autophagy, 
other humoral and cell immune responses are also involved 
in AIV infection[68, 76].  Surprisingly, although some of these 
responses exhibited antiviral activity, they did not affect virus 
replication, although some immune cells cannot be excluded 
from playing a role in the dissemination of the virus in 
vivo[60, 68].

Pathogenicity determinants 
The virulence of AIV is determined by a constellation of 
genes[77–81].  These genes play important roles in viral replica-
tion and/or pathogenicity and are also potential targets of 
antiviral agents.

HA protein
HA influenza virus protein plays a crucial role in the early 
stages of the viral life cycle by binding to the viral receptor 
and mediating the fusion process[11].  Influenza virus infection 
begins when HA binds to sialic acid (SA)-linked glycoprotein 
receptors on the surface of the target cell.  Usually, AIVs pref-
erentially bind to α-2,3 linked SA, which is located mainly on 
type II pneumocytes, alveolar macrophages and nonciliated 
cuboidal epithelial cells at terminal bronchioles, while human 
influenza viruses tend to use α-2,6 linked SA as a receptor in 
the upper respiratory tract of humans[11, 82–85].  AIVs can infect 
human airway epithelium, but replication is limited due to the 
non-optimal cellular tropism[86].  Thus, the adaptation of AIV 
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HA for recognition of α-2,6 linked SA located in the human 
upper respiratory tract would promote interpersonal trans-
mission.  Amino acids in the HA receptor-binding domain 
(RBD), formed by the 190-helix, 220-loop, and 130-loop, deter-
mine the receptor binding preference of influenza viruses[87–89].  
However, several AIV (H5N1) strains with increased binding 
to human-type receptors isolated from humans still prefer 
binding to avian-type receptors and do not perform effi-
cient human-to-human transmission[90–94].  An LPAI (H7N2) 
strain isolated from humans has also been reported to have 
dual binding affinity to both types of receptors, but no obvi-
ous inter-personal or inter-mammalian transmission was 
observed[95].  The H7N2 strain has an eight amino acid deletion 
in the 220-loop of the HA RBD[95].  Two specific mutations in 
H7-HA, Q226L and G228S, have also been suggested to con-
tribute to the increased binding affinity for human receptors[96].  
The Q226L mutation was identified in clinical isolates of H7N9 
in 2013[4].  Five amino acid substitutions (or four with reas-
sortment) in HA of the H5N1 virus have efficiently supported 
airborne viral transmission among mammals[97–99].

The post-translational cleavage of HA0 into HA1 and HA2 
subunits activates the membrane fusion potential of HA and is 
crucial for infectivity of the virus[100].  Most LPAI viruses pos-
sess a single arginine residue at the cleavage site of HA, which 
is cleaved by extracellular trypsin-like proteases restricted to 
the respiratory tract[101].  In contrast, HPAI viruses contain a 
motif of multiple basic amino acid residues at the equivalent 
cleavage site, permitting HA0 to be cleaved by ubiquitously 
distributed intracellular proteases, such as furin-like pro-
teases, and enabling systemic infection[100, 102–104].  Notably, the 
circulating H7N9 virus possesses only a single arginine at the 
HA cleavage site, yet it has caused severe disease and death in 
humans[4, 34].  This fact indicates that the existence of a multi-
basic cleavage site is not essential for the high pathogenicity of 
AIV in humans and other genes may also be involved.  A flex-
ible loop structure in the cleavage site between HA1 and HA2 
is critical for the efficient cleavage of HA0.  The relatively sta-
ble alpha-helix structure in the flexible cleavage loop (eg, key 
residue R328 hidden behind the helix) and the inaccessibility 
of the cleavage site may contribute to the low pathogenicity of 
a H16 subtype AIV[105].  The natural alpha-helix element might 
also provide a new opportunity for influenza virus inhibitor 
design[105].  

NA protein
An evolutionary balance between the HA and NA proteins 
of AIVs is essential for the entry and release processes of the 
virus[106].  As a result, mutations within the active sites of either 
HA or NA can affect the enzymatic activity of both proteins.  
For example, some H5N1 viruses in sustained circulation in 
poultry possess additional glycosylation sites and a shortened 
NA stalk, both of which might enhance the virulence of AIV 
in mammals[107].  A deletion of five amino acids in the NA 
stalk region was also found in circulating H7N9 isolates[4], 
which may help to explain the unusually high virulence of this  
strain.  

Ribonucleoprotein complex (RNP)
The polymerases PB2, PB1, and PA, and the nucleocapsid 
protein (NP) together form the RNP, which is critical for virus 
replication, virulence, and the determination of host restric-
tions[108].  Several amino acids in PB1 (eg, positions 99 and 368) 
and PB2 (eg, positions 89, 627, and 701) are basic molecular 
determinants associated with enhancing polymerase activity 
and pathogenicity of H5N1 virus in mammals[109].  Mutations 
of these positions in the H5N1 virus can not only promote 
higher viral yields in both the upper and lower respiratory 
tract of mice but also result in the conversion of a non-lethal 
H5N1 virus to a lethal one[110].  Similar mutations can also be 
observed in the currently circulating H7N9 virus[4, 34, 36, 111, 112].  

PB1-F2 protein
Produced by an alternate reading frame in the PB1 gene, 
PB1-F2 is a non-structural accessory protein in influenza A 
viruses[113].  PB1-F2 protein is expressed by almost all avian 
influenza A strains, but strains from human and swine hosts 
have forms with premature truncations at either the C- or N- 
terminal end[114, 115].

PB1-F2 has been shown to specifically target and sensitize 
alveolar macrophages to apoptotic stimuli[116, 117].  The presence 
of an intact PB1-F2 protein was also found to contribute to 
viral pathogenicity; an N66S mutation in H5N1 PB1-F2 led to 
the delayed activation of IFN-stimulated genes and increased 
cytokine/chemokine levels in mice due to the inhibition of 
early type I IFN responses at the level of the mitochondrial 
antiviral signaling protein (MAVS)[118, 119].

The precise function of the PB1-F2 protein remains unclear.  
Research on this protein has indicated that the PB1-F2 pro-
tein has strain-specific functions that could vary in different 
hosts[120, 121].

NS1 protein
A multi-functional nonstructural RNA-binding protein, NS1 
is critical for inhibiting both IFN production and the antiviral 
effects of IFN-induced proteins, such as dsRNA-dependent 
protein kinase R (PKR) and RNase L[122, 123].  A P42S mutation 
in NS1 dramatically increased the virulence of an H5N1 strain 
in mice and was also found in the circulating H7N9 virus[4, 124].  
This substitution, in association with other mutations in HA, 
NA, PB1, and PB2, contribute to the pathogenicity of AIV 
H7N9 in humans.  

Antiviral agents against AIV
Several safe and effective drugs can be used to manage human 
and avian influenza infection.  These agents include M2, 
neuraminidase, polymerase, attachment and signal-transduc-
tion inhibitors as well as ribavirin, arbidol, and herbs.  Several 
M2 and neuraminidase inhibitors have been approved for 
prophylaxis and the therapeutic treatment of influenza (Table 
2).  Other agents are still being studied in preclinical or clinical 
investigations.  Here, we review the basic pharmacokinetics 
and properties that support the use of these agents against 
AIV.  
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M2 inhibitors
The migration of H+ ions into the interior of viral particles is 
mediated by the M2 channel and allows for the uncoating of 
virus particles in the endosome[125, 126].  There are two commer-
cially available M2 inhibitors: amantadine and rimantadine 
(Table 2).  They have been widely used in the treatment of 
both human and avian influenza infections for many years and 
have been shown to shorten the disease duration and facilitate 
symptom resolution[127].  

Unfortunately, most of the currently circulating animal 
viruses, including H5N1, H9N2, the 2009 swine-originated 
H1N1, and current H7N9, are all M2 inhibitor resistant due to 
overuse of the inhibitors[111, 128–130].  The widespread resistance 
of these strains precludes the use of these M2 inhibitors in 
most cases of human infection[131, 132].  Resistance mutations 
occur mainly in the trans-membrane portion of the M2 protein 
(position 26, 27, 30, 31, or 34) and result in an enlarged diam-
eter of the M2 channel pore, thus reducing the binding of M2 
inhibitors[126].  Different subtypes or clades of AIV exhibit dif-
ferent frequencies of M2 inhibitor resistance[133].  For example, 
all 24 cases of clade 1 H5N1 isolated between 2008–2011 had 
an S31N substitution, while the frequency of this mutation 
in clade 2 ranged from 0% to 67%.  In addition, all 3 cases 
of H7N9 that have been isolated are S31N variations[133].  It 

seems that the increase in adamantane-resistant influenza 
viruses is not mediated by continued selective drug pressure; 
therefore, the WHO recommends amantadine or rimantadine 
only be used to prevent or treat AIV that is known to be sensi-
tive.  Interestingly, one study suggested that a G23C mutation 
in the H7 HA protein might also play a role in amantadine 
resistance[134].  In addition, several novel M2 inhibitors, includ-
ing new adamantane derivatives and biological agents (eg, 
annexin A6), have shown marked activity against human 
influenza viruses[135–137].  Whether any of these agents could 
replace amantadine and rimantadine as an influenza virus 
treatment needs to be further explored.

Neuraminidase inhibitors
Viral neuraminidase (NA) enables progeny virus to be cleaved 
from its receptor and spread to other cells.  The neuramini-
dase inhibitors, which are cyclopentane or pyrrolidine deriva-
tives, can prevent the further spread of influenza by blocking 
the release of newly formed particles[138].  Four commercial 
neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, 
and laninamivir) have been approved for use in humans[139].  
The first two are widely used in most countries and are effec-
tive against influenza infection.  Particularly for oseltamivir, 
early administration can not only shorten the duration of ill-

Table 2.  Main Characteristics of current available antivirals[125–127, 131–134, 138–146].

  Characteristics    Amantadine           Rimantadine                 Oseltamivir                          Zanamivir             Laninamivir             Peramivir
 

aNot identified; bData from independent research different from other neuraminidase inhibitor; *Mutations have been found to arise naturally drug-
resistant in avian influenza; #Low resistance.

Molecular weight
Prophylaxis dosing 
(Adult)
Treatment dosing 
(Adult)
Route 
Half-life (h)
Use status and 
major adverse 
reactions

Inhibitory activity 
on Avian influenza

Reported 
mutations confer 
to drug resistance

187.7
100 mg bid  

100 mg bid 

Oral
12–18
Pregnancy class 
C drugs, neuro-
psychiatric reac-
tions

EC50 to AIV:
H5N3: 0.1 μmol/L
H7N2: 0.1 μmol/L
H9N2: 0.5 μmol/L
(plaque assay)

215.8
100 mg bid 

100 mg bid 

Oral
24–36
Pregnancy 
class C drugs, 
neuro psychiatric 
reactions

312.4 (free base)
75 mg qd 

75 mg bid for 5 d

Oral
6–10
Few major adverse 
effect, nausea, 
vomiting and transient 
neuropsychiatric 
reactions
IC50s of NA activity (N1–
N9): 1.4–3.6 nmol/L; 
EC50 to AIV (N1–N9): 
1.0–42.0 μmol/L 
(ELISA); 0.1–0.9 nmol/L 
(plaque assay)
N1 NA: I223R*, 
H275Y*, N295S*#;
N2 NA: E119V*, 
D151E#,  R224K, 
E276D#, R292K*, 
N294S*#, R371K; N9 
NA: H274Y, R292K  

332.3
10 mg qd

10 mg bid for 5 d

Inhaled
4.14–5.05
Few major adverse 
effect, nausea, cough, 
and fatal bronchospasm 
(patients with underlying 
pulmonary disease)
IC50s of NA activity 
(N1–N9): 1.4–11.5 
nmol/L; EC50 to AIV 
(N1–N9): 4.0–58.3 
μmol/L (ELISA); 0.6–3.6 
nmol/L (plaque assay)

N1 NA: I223R*; N2 NA: 
E119A, E119D,  R224K, 
R292K*#, R371K, 
E276D, N9 NA: E119G

472.53
–a

40 mg single dose

Inhaled
>240 
Few major adverse 
effect, nausea, 
vomiting, and 
dizziness

IC50s of NA activity 
(N1–N9): 1.8–27.9 
nmol/L; EC50 to AIV 
(N1–N9): 0.3–2.5 
nmol/L (plaque 
assay)

N1 NA: N295S

328.4
–a

600 mg qd for 
5–10 d 
Parenteral
12–25
Few major adverse 
effect, diarrhea, 
nausea, vomiting 
and decreased 
neutrophil count
IC50s of NA  activity 
(N1–N9): 0.9–4.3 
nmol/L; EC50 to AIV 
(N1–N9): 0.5–11.8 
μmol/L (ELISA)

N1 NA: H275Y*, 
N295S*; N2 NA: 
E119V, R292K*

M2: L26F, V27A* , V27D* , V27T, 
V27S, I27T*, I27S*, I27A*, A30E*, 
A30T, A30P*, A30V, A30G, S31N*, 
G34E*, W41A; HA: G23C
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ness but also facilitate symptom resolution[139].  Neuraminidase 
inhibitors are also effective against different AIV subtypes in 
vitro (Table 2)[140–142].  Studies in animal models have demon-
strated that oseltamivir given as treatment or prophylaxis was 
active against the H5, H7, and H9 avian influenza strains[140, 143].  
The protective efficacy was influenced by the virulence of the 
strains, the dosage and treatment initiation time[140, 143].  Clini-
cal trials also suggested that oseltamivir and zanamivir were 
useful in reducing the mortality of lethal H5N1 infection, 
while resistance to the treatments rarely emerged[132].  There-
fore, the WHO recommends these two agents as the primary 
intervention for treatment and prevention of human AIV 
infections.  However, continued monitoring of AIV for drug 
susceptibility is needed, because oseltamivir-resistant seasonal 
influenza strains have been spreading around the world since 
2009[144, 145].  Notably, one of the current H7N9 isolates has 
an R292K substitution[4], which has been associated with in 
vitro resistance to neuraminidase inhibitors in another N9 NA 
subtype AIV.  This mutation has also been confirmed to lead 
to oseltamivir- and zanamivir-resistance in clinical N2 AIV 
subtype (Table 3)[146].  The presence of the NA R292K substitu-
tion in two H7N9 patients who also received corticosteroid 
treatment resulted in treatment failure[147].  Thus, it is crucial to 
assess the prevalence of drug-resistant H7N9 in future influ-
enza surveillance.  Among the newly developed neuramini-
dase inhibitors, laninamivir has an extremely long persistence 
time in the lungs[141], increasing the prospect of a long-lasting 
antiviral that can effectively prevent influenza infection with a 
single dose.  

RNA polymerase inhibitors 
The influenza polymerase consists of several polypeptides, 
including PB1, PB2, and PA, and also contributes to the high 
virulence of AIV in humans[1, 4, 148].  Therefore, novel antivirals 
that target polymerase are anticipated to reduce the replica-
tion of AIV as well as inhibit the severe pathogenicity induced 
by the virus.  Current influenza RNA polymerase inhibitors 
can be divided into nucleosides and non-nucleosides.  These 
polymerase inhibitors, such as fluorodeoxycytidine analogs 
and favipiravir (T705), have been shown to be active in the 
treatment of influenza both in vitro and in vivo[149–151].  The 
most potent inhibitor among fluorodeoxycytidine analogs was 
2’-deoxy-2’-fluorocytidine (2’-FdC) which inhibited various 
strains of HPAI and LPAI with 50% inhibitory concentrations 
(IC50s) ranging from 0.21 to 3.2 μmol/L in MDCK cells[149].  
2’-FdC 60 mg·kg-1·d-1 of  (ip, bid×8 d) could protect 60%–80% 
of mice from lethal HPAI H5N1 infection when administered 
24 h before virus exposure[149].  T705 is a pro-drug that needs to 
be converted to its active form, T705-RTP[150].  T705-RTP then 
competitively inhibits the RNA synthesis activity of influenza 
polymerase.  T705 was effective against several H5N1 strains 
with an IC50 range of 1.3–7.7 μmol/L in vitro, while the range 
of oseltamivir was 0.007–0.92 μmol/L[151].  In vivo, T705 300 
mg·kg-1·d-1 with different delivery methods was able to protect 
100% of mice from a lethal H5N1 infection[151].  

Several other polymerase inhibitors are in development 

against AIV infection.  A GTPase induced by type I and type 
III IFNs, Mx1, inhibits influenza virus infection by interact-
ing with the ribonucleoprotein complex and interfering with 
viral assembly by disrupting the PB2-NP interaction[152].  A 
short peptide derived from PB1 (731–757) was also reported to 
inhibit virus polymerase[153].  Several small interfering RNAs 
(siRNAs) targeting the overlapping gene of PB1 and PB1-F2 
were found to reduce virus-associated cell apoptosis and virus 
titers in chicken embryos[154].  A novel compound, THC19, 
inhibited influenza viral genome replication and/or transcrip-
tion in a PA-dependent manner[155].  Another novel compound, 
ASN2, induced IFN production and inhibited growth of influ-
enza A viruses through ASN2-mediated inhibition of viral 
polymerase function and the subsequent loss of expression of 
the viral IFN antagonist, NS1[156].

Although the efficacy of these polymerase inhibitors needs 
to be further examined in clinical investigations, these lead-
ing compounds have resulted in the development of a series 
of novel anti-influenza agents that target the viral RNA poly-
merase.  

Ribavirin and arbidol
Ribavirin and arbidol have long been recognized as broad-
spectrum antiviral agents against viruses from different fami-
lies.  Viruses resistant to these treatments have rarely been 
observed[157–162].  The target of ribavirin is a cellular enzyme, 
inosine 5’-monophosphate (IMP) dehydrogenase, which is 
involved in viral RNA synthesis and cellular biosynthesis 
of GTP.  The IC50 of ribavirin on H5N1 ranged from 6 to 22 
μmol/L in vitro[157].   Ribavirin 75 mg·kg-1·d-1 (po, bid×8 d) pro-
tected 70% of mice from lethal H5N1 infection[163].  The clinical 
efficacy of ribavirin on influenza was less effective than that 
of adamantanes or NA inhibitors and more dependent on the 
delivery manner[162, 164, 165].  Aerosolized ribavirin effectively 
eliminated the influenza virus and shortened the duration 
of illness in clinical observations, while orally administered 
ribavirin did not[162, 164, 165].  However, the clinical utility of riba-
virin may be limited due to the risk of hemolytic anemia and 
teratogenicity[166].  A prodrug of ribavirin, viramidine, may 
improve the utility of ribavirin[157].  This prodrug had a similar 
activity against seasonal and H5N1 influenza viruses but was 
less toxic.  Furthermore, viramidine effectively protected mice 
from lethal influenza, even when the drug was administered 
in drinking water[157].  This drug is now in Phase 3 develop-
ment for HCV treatment[167].  

Arbidol has been widely used in Russia for almost 20 
years[158].  The mechanisms of arbidol are complicated; both 
membrane fusion inhibition and immunomodulatory activ-
ity may contribute to its broad antiviral effects[158].  Arbidol 
was shown to stabilize HA by causing a 0.2 pH unit reduc-
tion in the pH required for transition to the low pH form of 
the protein.  A recombinant arbidol-resistant strain possessed 
single amino acid substitutions in the HA2 subunit that abro-
gated this activity of arbidol[168].  Arbidol was active against 
H5N1, H9N2, H2N2, and H6N1 AIV with a range of IC50 
values from 19.4 to 58.3 μmol/L[160, 169].  Our current research 
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also confirmed that post-treatment with arbidol decreased the 
mortality in influenza-infected mice by mitigating lung lesion 
formation and reducing viral titers[170].  Furthermore, it effi-
ciently protected the host from virus-induced inflammation by 
modulating the expression of pro-inflammatory cytokines[170].  
These data suggest that arbidol might also be effective in the 
treatment of severe AIV infections in humans.  

Attachment inhibitors 
As mentioned above, influenza virus needs to attach the SA 
receptor to enter host cells.  A number of attachment inhibitors 
have been developed against AIV, including sialidase mim-
ics, sialyl glycopolymers and hemagglutinin inhibitors.  The 
sialidase recombinant construct DAS181 is an inhaled bacterial 
sialidase that prevents the attachment and subsequent infec-
tion of influenza virus by removing influenza-receptor interac-
tions[171].  DAS181 was shown to have activity against H5N1 
infection in both continuous and shorter treatments in human 
airway epithelium models[172].  Further studies were performed 
in lethally H5N1-infected mice models; 1 mg·kg-1·d-1 DAS181 
(inhale, qd×8 d) protected 100% of mice from viral infection in 
both prophylactic and therapeutic approaches[173, 174].  A phase 
2 study of DAS181 on seasonal or pandemic influenza has 
been completed, and when patients were given 10 mg·kg-1·d-1  
DAS181 (inhale, qd×3 d), they showed a significant reduc-
tion in viral load over 5 d, but no symptom improvement[175].  
Sialylglycopolymers and other hemagglutinin inhibitors (eg, 
Neo6, EB peptide, and NDFRSKT peptide) showed enhanced 
binding affinity for HA compared to normal SA, allowing 
them to block attachment of H5N1 and H9N2 AIV[176–180].  A 
fusion inhibitor, tert-butyl hydroquinone (TBHQ), bound in 
a hydrophobic pocket formed at the interface between HA 
monomers and consequently inhibited the conformational 
rearrangements required for membrane fusion[181].  Although 
most of these agents are still in pre-clinical studies, they are 
anticipated to be used against any newly emerging influenza 
strains, especially AIV[178, 179].  

Signal-transduction inhibitors 
Aside from agents that directly target viral proteins, current 
antiviral strategies also focus on the intracellular cascade 
needed for viral replication[182–184].  Two signaling pathways 
that are required to ensure efficient virus replication have 
been considered suitable targets for antiviral approaches: the 
IKK/NF-κB module and the Raf/MEK/ERK cascade[184].  Both 
of these pathways are also critical for cytokine and interferon 
synthesis during influenza infection[182–184].  Thus, inhibitors 
targeting these cascades may not only inhibit the replication of 
virus but also moderate the severe systemic inflammation in 
AIV infection[184].  This hypothesis has been confirmed by sev-
eral laboratory experiments in vitro and in vivo[182–185], although 
the efficacy in humans needs to be further investigated.  How-
ever, some inhibitors targeting NF-κB, such as aspirin, have 
been routinely used in influenza-like illness for many years[185].  
Current research identified that a high dosage of aspirin effi-
ciently blocked influenza virus replication both in vitro and 

in vivo, and there are plans to use this drug in clinical studies 
with administration via inhalation[185].  Several other anti-in-
flammatory agents (eg, statins and sphingosine analogs) have 
also received attention and are being investigated[186–190].  How-
ever, results from these studies were mixed and sometimes 
even conflict[186–190].  Nonetheless, these studies have promoted 
optimization of these agents and suggested new strategies for 
therapies against AIV infection.  

Herbs
Herbs may also be a potential choice for AIV treatment.  Some 
Chinese herbs were recommended and authorized by the 
Chinese government during the 2009 H1N1 and 2013 H7N9 
pandemics[191, 192].  Herbal medicines that contain Isatis tincto-
ria L, Lonicera japonica Thunb, Saposhnikovia divaricata (Turcz) 
Schischk, Bupleurum chinense DC, Forsythia suspensa (Thunb) 
Vahl, Citrus reticulata Blanco, and Perilla frutescens (L) Britton 
are commonly taken in a formula used for the prophylactic 
and therapeutic treatment of influenza infection.  A number 
of clinical trials for these herbs for the treatment of influenza 
have been conducted, but systematic reviews on the utility of 
these herbs for H1N1 influenza treatment have revealed that 
few herbal medicines showed a positive effect on viral shed-
ding, and most of the medicines had a positive effect only on 
fever resolution or relief of symptoms[193, 194].  Although more 
rigorous placebo-controlled and randomized trials are needed 
to reach further conclusions[193, 194], many Chinese herbs exhibit 
beneficial immunomodulatory effects for rapid recovery of 
viral infections and might be effective treatments for AIV 
infection[195].  

Other emerging agents
Recently, several active proteases of influenza A viruses such 
as TMPRSS2 (transmembrane protease serine S1 member 2) 
and HAT (human airway trypsin-like protease) have been 
considered potential drug targets.  Peptide mimetic protease 
inhibitors (eg, BAPA) suppressed the cleavage activation of 
HA and the spread of virus in TMPRSS2- and HAT-expressing 
cells[196, 197].  

Serine proteases, which mediate influenza HA cleavage, are 
responsible for influenza virus activation.  Agents targeted to 
serine proteases (eg, aprotinin, leupeptin, and camostat) sup-
pressed the cleavage of HA and limited the reproduction of 
human and avian influenza viruses that have a single arginine 
in the HA cleavage site.  It is anticipated that these agents will 
be used for the treatment of HPAI viruses (eg, H5 and H7), 
whose hemagglutinins possess multi-arginine/lysine cleavage 
sites[198].

There are also several compounds that target the NS1 pro-
tein and show considerable anti-influenza potential.  For 
example, JJ3297 inhibits the replication and spread of influ-
enza virus by reversing the NS1-induced inhibition of inter-
feron mRNA production in an RNase L-dependent manner[199].  
A C-Jun N-terminal kinase (JNK) inhibitor, SP600125, reduced 
the amplification of influenza virus by indirectly inhibiting the 
NS1-mediated supportive functions[200].
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Conclusion
Persistent outbreaks of avian influenza in Southeast Asia sug-
gest that avian influenza may be the most likely candidate for 
the next influenza pandemic.  Many AIV patients died from 
overwhelming viral pneumonia with other serious compli-
cations.  Thus, rapid, sensitive, and confirmatory diagnoses 
for early identification and continued monitoring of viral 
adaptation to humans are essential for the control of AIV 
infections.  It should be noted that AIV infections differ from 
human influenza infections in humans in many ways, includ-
ing viral transmission, viral dissemination, clinical features, 
pathogenesis, and host response.  The diagnosis and therapy 
of AIV infections have unique features as well.  For example, 
sample analysis from the lower respiratory tract may offer a 
more sensitive diagnosis.  Several drugs have been used as 
prophylactic or therapeutic treatments against AIV infection, 
including M2 inhibitors, neuraminidase inhibitors, ribavirin, 
etc.  As the frequency of drug-resistant influenza increases, 
the rational use of antivirals, and drug-resistant monitoring 
should be encouraged.  Meanwhile, efforts should be made to 
design and develop further new antivirals that target the basic 
steps of viral replication, such as attachment, internalization, 
and cellular processes, or relatively specific targets, such as the 
viral RNA polymerase, PB1-F2, NS1, etc.
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