Intracellular Ca²⁺ during fertilization and artificial activation in mouse oocytes¹

DENG Man-Qi², FAN Bi-Qin (Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)

KEY WORDS mice; oocytes; ovum; calcium; fertilization; electric stimulation

AIM: To study the mechanism of oocyte activation METHODS Mouse in mammals. oocytes arrested at metaphase of the second meiotic division were loaded with Fura 2-AM and then activated with ethanol, calcimycin, electric pulse or fertilization. Intracellular free Ca2+ during activation were measured by Spex AR-CM-MIC cation system. Cortical granule exocytosis after activation was detected under electron microscopy. RESULTS: Sperm penetration initiated a long lasting Ca²⁺ oscillation in Ca²⁺ containing IVF medium in mouse ova. The Ca2+ oscillation lasted for over 3-4 h until the ova developed to pronuclear stage. The Ca2+ oscillated faster as extracellular Ca2+ concentration was increased from normal 1.7 mmol·L⁻¹ to 5.0 mmol·L⁻¹ and ceased to oscillate when extracellular Ca2+ was removed. The ova resumed Ca²⁺ oscillation after transferred back to IVF (Ca^{2+} 1.7 mmol·L⁻¹). The ova which exhibited Ca2+ oscillation all extruded second polar body and formed pronuclei. Suppression the Ca²⁺ oscillation by intracellular injection of egtazic acid (2 - 10 pL, 200 µmol ·L⁻¹) blocked the activation of occytes. Heparin (100 μ mo] · L⁻¹) injection failed to prevent the Ca²⁺ oscillation. In artificial activation, ethanol, calcimycin, and a single electric pulse usually induced a monotonic Ca²⁺ rise and resulted in the activation only in older occytes (>18 h after CG Activation of freshly ovulated oocytes injection) required multiple intracellular Ca2+ increases induced by repetitive electric pulses. Artificial activation elicited the similar cortical granule exocytosis in oocytes as occuring at fertilization. Suppression of the intracellular Ca^{2+} elevation by introduction of egtazic acid into the oocytes blocked the activation process. CONCLUSIONS: The increase of intracellular free Ca^{2+} is the primary signal responsible for the initiation of oocyte activation but there are distinct differences between fertilization and artificial activation both in Ca^{2+} change patterns and Ca^{2+} sources. Young oocytes require oscillatory Ca^{2+} signals for activation.

Mammalian unfertilized ova can be artificially activated by a variety of chemical and physical stimuli such as ethanol, calcimycin, and electric stimulation. Mammalian oocyte exhibits a regular Ca^{2+} oscillation in intracellular Ca^{2+} ($[Ca^{2+}]_1$) during fertilization^[1,2]. It was assumed that this Ca^{2+} oscillation played an important role in inducing the activation process^[1-4]. If artificial stimulation can induce exactly the same intracelluar changes as occuring at fertilization is an open question. In this report we investigated the $[Ca^{2+}]_1$ change patterns and Ca^{2+} sources in fertilized and artificially activated mice oocytes and studied the role of Ca^{2+} in oocyte activation.

MATERIALS AND METHODS

Preparation of oocytes Occytes were collected and manipulated in $M_2^{(14)}$, and were recovered by flushing the oviducts from mated and unmated Kunming albino mice, superovulated by injection of equine gonadotrophin (EG) 10 1U followed 48 h later by injection of chorionic gonadotrophin (CG) 10 IU. In wwo fertilized ova were retrieved from mated mice with visible vaginal plug 13 – 14 h after CG injection as fertilization usually occurs 13 h after the injection of CG or mating⁽⁷¹⁾. Oocytes used for artificial activation were recovered 13 h and 18 h after CG injection. The cumulus cells surrounding the oocytes were removed by culturing in M_2 containing 0.1 % hyaluronidase for 3 – 5 min. Following each treatment the oocytes were extensively washed with M_2 .

¹ Project supported by National Natural Science Foundation of China, Xe 39370516.

²PhD candidate in the Department of Biology, Nanjing University. Now in Institute of Developmental Biology, Chinese Academy of Sciences, Beying 100080, China.

Received 1994-04-23 Accepted 1995-12-18

Media and reagents Fertilized ova and artificially activated oocytes were cultured in an improved medium by Charot, Ziomek, and Bavister $(CZB)^{51}$. The intracellular free Ca^{2+} in fertilized ova was measured in *in intro* fertilization medium $(IVF)^{(4)}$. Electric pulsing medium was composed of mannitol 0.3 mol $\cdot L^{-1}$ & Ca^{2+} 50 µmol $\cdot L^{-1}$ (6). All media were prepared with AR and ultra-pure water (>18.0 MΩ). Bovine serum albumin was added to the medium prior to use. Fura-2 acetoxymethyl ester (Fura 2-AM, Sigma) was used as Ca^{2+} fluorescent probe, which was disolved in anhydrous Me₂SO (2 mmol $\cdot L^{-1}$ stock solution). Heparin (Sigma, $M_r = 3500$) was used as the inhibitor of IP₃ activated intracellular calcium store.

Artificial activation methods and apparatus Occytes were stimulated by exposing to 7 % - 8 % ethanol⁽⁸⁾ or calcimycin 0.95 μ mol L^{-1} (c) for 5 = 6 min. After several rinses in M₂ the oocytes were cultured in CZB at 5 % CO₂ + 95 % air at 37 au for 3 – 4 d to assess their developmental capacities. For electric activation, oocytes were transferred to a pulsing chamber containing the pulsing medium^[6] and stimulated by DC pulse (at field strength of 170 kV/m and duration of 80 - 100 µs). The pulsing chamber was arranged in parallel by platinum electrodes glued to a thin glass coverlip (0.2 mm depth). The gap between the 2 electrodes was 0.75 mm. The diameter of platinum wire was 0.3 mm. This modified chamber made occytes pulsed and their $[Ca^{2+}]$, changes monitored simultaneously under the same set of conditions. Occyte activation was evaluated according to the formation of normal pronucleus 4 - 6 h after stimulation.

Measurement of intracellular Ca²⁺ The collected *in vivo* fertilized ova and unfertilized ova waiting for artificial activation were preloaded with Fura 2-AM 5 μ mol·L⁻¹ in M₂ medium + 10 % fetal calf serum at 37 °C for 30 min. After loading the oocytes were extensively washed with M₂. The fluorescence intensities of fertilized ova were monitored for >1 h. The Fura 2-AM loaded unfertilized oocytes were artificially activated and [Ca²⁺], was measured by an inverted Nikon diaphot epifluorescence microscope equipped with a Spex (USA) made AR-CM-MIC cation monitoring system. The fluorescence of single oocyte was recorded every 2 s.

Microinjection of drugs into occytes To suppress the intracellular increase of $[Ca^{2+}]_{i}$, egtazic acid 200 µmol·L⁻¹ was injected to the cytoplasm of the occytes. IP₃ activated intracellular calcium store was inhibited by injection of heparin 100 µmol·L⁻¹ into the occytes. The injection volume was 2 - 10 pL.

To assess the cortical granule exocytosis following artificial activation and fertilization, the occytes were fixed in 3 % glutaraldehyde⁽⁹⁾ after fertilization or artificial stimulation.

RESULTS

Intracellular Ca²⁺ in fertilized ova We

detected 20 in vivo fertilized ova and 16 of them exhibited Ca^{2+} oscillations (from basal level of $40 - 90 \text{ nmol} \cdot L^{-1}$ to the peak level of $500 - 800 \text{ nmol} \cdot L^{-1}$) in IVF medium containing Ca^{2+} 1.7 mmol· L^{-1} (Fig 1).

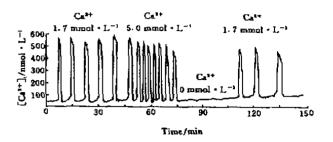


Fig 1. Effect of extracellular Ca²⁺ on fertilization-induced Ca²⁺ oscillation.

The Ca²⁺ oscillation continued until pronucleus was formed in the ova. The increase of $[Ca^{2+}]_{i}$ was not observed in other 4 ova during the experiment. After the measurement of Ca^{2+} , the oocytes were evaluated for sperm penetration and pronuclear formation under phase contrast microscope. The 4 ova showing no $[Ca^{2+}]$, changes contained visible pronuclei. The $[Ca^{2+}]_i$ oscillated faster when the fertilized ova were transferred to the IVF containing Ca²⁺ 5.0 mmol $\cdot L^{-1}$ and vanished after transferred to IVF without Ca²⁺ and later resumed Ca²⁺ oscillation after extracellular Ca²⁺ was restored to control level (Fig 1). Introduction of heparin (100 μ mol·L⁻¹) to cytoplasm of cocytes failed to prevent the Ca2+ oscillation.

After the long lasting Ca^{2+} oscillation the fertilized ova extruded the second polar body, formed the pronuclei and then cleavaged to blastocyst *in vitro* while injection of egtazic acid (200 μ mol·L⁻¹) into the oocytes blocked the above mentioned process.

Intracellular Ca²⁺ during artificial activation When cocytes were submerged in M_2 containing 7 % - 8 % ethanol [Ca²⁺], rised to the peak and remained at that level (Fig 2) and declined to basal level after the cocytes were transferred to M_2 without ethanol.

Calcimycin induced a large monotonic Ca^{2+} increase in M₂ (Fig 2). In Ca^{2+} -free or Ca^{2+} -

· 358 ·

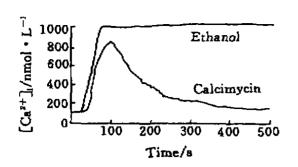


Fig 2. Oocytes in ethanol and after exposure to calcimycin.

chelated M_2 , ethanol and calcimycin still induced a small $[Ca^{2+}]$, elevation. While injection of heparin to the oocytes suppressed the $[Ca^{2+}]$, increase.

An electric pulse induced an abrupt $[Ca^{2+}]_i$ increase and the amplitude of $[Ca^{2+}]$, transient was determined by both the electric parameters and the extracellular Ca^{2+} level. The intenser and the higher the electric stimulation was, the higher the $[Ca^{2+}]_i$ was induced. A single pulse failed to induce repetitive Ca^{2+} rises unless an additional stimulation was applied. There was an exact oneto-one correspondence between an electric pulse and a $[Ca^{2+}]_i$ transient (Fig 3).

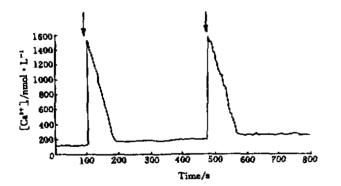


Fig 3. Multiple electric stimulations induced repetitive $[Ca^{2+}]_1$ transients in mouse oocyte. The arrows indicate electric discharge.

In pulsing medium devoid of Ca^{2+} , electric stimulation did not induce any $[Ca^{2+}]$, elevation even if stronger field strength and longer pulse duration were imposed.

A single increase of $[Ca^{2+}]_i$ was enough to induce activation in older oocytes (>18 h after CG) but was futile in activating the young oocytes (<13 h after CG). The young oocytes were activated only by multiple $[Ca^{2+}]$, rises induced by repetitive pulses.

Electron microscopy study showed that artificially activated oocytes exhibited a similar cortical granule exocytosis as occurring at fertilization. The parthenogenetically activated oocytes resumed second meiotic division and developed to the morphologically normal blastocysts *in vitro* just like fertilized ova.

DISCUSSION

In mammalian animals, fertilized ova showed a regular Ca^{2+} oscillation. Artificially increasing intracellular Ca^{2+} concentration in M II oocytes induced the activation process such as cortical granule exocytosis, Pb II extrusion, pronuclear formation, cleavage and embryonic development. Suppression the elevation of $[Ca^{2+}]_i$ blocked the activation of oocyte. This demonstrates that the increase of intracellular free Ca^{2+} is the primary signal responsible for the initiation of oocyte activation.

High level of extracellular Ca²⁺ accelerated the fertilization-induced Ca²⁺ oscillation while removal of the extracellular Ca2+ hampered the Ca2+ oscillation. It suggests that extracellular Ca2+ plays an important role in maintaining Ca²⁺ oscillation. The detailed pathway of Ca^{2+} influx is Some authors proposed that IP₃ unknown. activated intracellular calcium release (IICR) was the main mechanism in fertilization-induced Ca2+ oscillation⁽²⁾. In our experiment heparin failed to suppress the Ca²⁺ oscillation, implying that Ca²⁺ oscillation is not solely dependent on HCR in mouse ova. It is difficult to find a strong inhibitor to completely block the influx of extracellular Ca^{2+} , so the role of IICR remains to be investigated. Ethanol and calcimycin-induced monotonic $[Ca^{2+}]_i$ elevation was produced both by IP₃ activated intracellular calcium release and influx of extracellular Ca^{2+} . Electrically induced $[Ca^{2+}]_i$ increase came mainly from the influx of extracellular Ca^{2+} through electroporation on cell membrane⁽¹¹⁾. This suggests that artificially induced $[Ca^{2+}]$. increases are different from fertilization-induced Ca^{2+} oscillation both in Ca^{2+} change pattern and Ca^{2+} sources.

It seems paradoxical that if a single increase of $[Ca^{2+}]$, is enough to initiate the oocyte activation, what is the biological significance of Ca^{2+} oscillation **?** in fertilized ova? It should be noted that artificially inducing the monotonic $[Ca^{2+}]$, elevation activated only older oocytes effectively but was futile in activating recently ovulated oocytes which were normally fertilized by spermatozoon. The freshly ovulated oocytes were activated by repetitive $[Ca^{2+}]$, rises induced by multiple electric pulses, suggesting that the activation of recently ovulated oocytes requires oscillatory Ca^{2+} signals.

ACKNOWLEDGMENT To Assoc Prof WANG Jin-Xin in the Department of Chemistry for his help in Ca^{2-} measurement.

REFERENCES

- Whitaker M, Swann K. Lighting the fuse at fertilization Development 1993; 117: 1 - 12
- 2 Muyazaki SI IP₃ receptor-mediated spatial and temporal Ca²⁺ signalling of the cell. Jpn J Physiol 1993: 43: 409 34.
- 3 Whitaker M, Patel R. Calcium and cell cycle control. Development 1990: 108: 525 - 42.
- 4 Kline D. Kline JT. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol 1992: 149: 80 - 9.
- 5 Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Forres I.
 An improved culture medium supports development of randombred I-cell mouse embryos in intro.
 J Reprod Fert 1989; 86: 679 - 88
- Ozil JP. The parthenogenetic development of rabbit oocytes after repetitive pulsatile electrical stimulation Development 1990: 109: 117-27.
- Kubiak JZ. Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest.
 Dev Biol 1989; 136: 537 43.
- 8 Cuthbertson KSR. Parthenogenetic activation of mouse oocytes
 24 vetro with ethanol and henzyl alcohol
 J Exp Zool 1983; 226: 311 4.
- 9 Schuel H. Secretory functions of corrical granules in fertilization

and development. Gamete Res 1978; 1: 299 - 382

- Miyazaki SI. Cell signalling at fertilization of hamster eggs.
 Reprod Fert 1990; Suppl 42: S163 75
- 11 Zimmermann U. Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta 1982; 694: 227 77.
- 357-360 受精和人工激活诱导的小鼠卵内游离钙离子变化

关键词 小鼠; 卵母细胞; 卵; 钙; 受精; 电刺激

- A目的:研究哺乳类动物卵母细胞激活机制 方 法:将休止于第二次成熟分裂中期的小鼠卵母细 胞负载 Fura 2-AM 后用乙醇, 钙离子载体, 电脉冲 或受精等激活;采用 Spex AR-CM-MIC 阳离子检 测系统测定卵激活过程中细胞内游离 Ca2+浓度变 化; 电镜下检测卵激活后皮质颗粒释放 结果. 在含 Ca²⁺(1 7 mmol·L⁻¹)的 IVF 液中, 精子受精 诱发卵内 Ca²⁺ 浓度波动, 这种 Ca²⁺ 波动持续达 3 ~4h直至受精卵发育至原核期消失 当外 Ca²⁺ 升高至 5.0 mmol·L⁻¹时 Ca²⁺ 波动加快; 去除外 Ca^{2+} 后 Ca^{2+} 波动很快消失;将卵移人含 Ca^{2+} IVF 后又恢复 Ca²⁺ 波动 出现 Ca²⁺ 波动的卵随后均 排出第二极体并形成原核 胞内注射 Ca²⁺ 螯合 剂依他酸(200 µmol·L⁻¹)抑制受精诱导的 Ca²⁺波 动则阻止卵激活。 胞内注射肝素 (MW = 3500, 100 µmol·L⁻¹)不能阻止受精 Ca²⁺ 波动 乙醇, 钙离子载体和 1 次电脉冲刺激诱导卵内 Ca²⁺浓度 升高 1 次并且仅诱导大龄卵(>18 h CG)激活 刚排出卵的激活则需要[Ca²⁺],多次升高诱导 人工激活诱导卵出现与受精相似的皮质颗粒释 卵内注射 Ca2+螯合剂抑制[Ca2+],升高则阻 放 断卵激活的一系列反应 结论:细胞内游离 Ca²⁺升高是诱导卵激活的重要信号;受精与人工 激活诱导的[Ca²⁺], 升高及 Ca²⁺来源存在明显差 异; 小龄卵激活需要[Ca²⁺], 波动信号诱导
 - R321.2 R339.22