Alterations of subtypes of cardiac adrenoceptors in old rat1

YU Geng-Sheng, CHEN Ming-Zhe, HAN Qi-De² (Institute of Vascular Medicine, Third Hospital, Beijing Medical University, Beijing 100083, China)

AIM: To determine alterations of subtypes of myocardial adrenoceptors in senescence. METHODS: Heart membrane preparations were made from 3- and 25-month old Wistar α₁- and β-adrenoceptors were measured by radioligand, 125I-BE2254 and pindolol, binding assays, respectively. SULTS: In the old rat heart, α_{1} - and β -adrenoceptor densities were declined from the young rats of 119 ± 4 and 45.9 ± 1.9 pmol L⁻¹ to 70 ± 6 and 36. 4 ± 1 . 6 pmol L⁻¹(P<0.01), with a greater change in α_1 -AR and in β -AR. The ratio of α_{1A}/α_{1B} subtypes was decreased from the young rats of 39/61 to the old rats of 26/ 74 (P < 0.05). **CONCLUSION**: The cardiac adrenoceptors are decreased with different extents in the different subtypes in old rats.

KEY WORDS aging; alpha-1 adrenergic receptors; beta adrenergic receptors; heart; radioligand assay

In senescence, positive inotropic and chronotropic responses induced by cate-cholamine were diminished in mammalian hearts^{11,2}. That the density of α_1 -adrenoceptors in old rat heart decreased significantly, as compared with the young rats, may be, at least in part, the reason for the decreased adrenergic responsiveness in the heart¹¹¹. The alteration of β -adrenoceptors was not only at the receptor level but also in the coupling to

Received 1994-08-08 Accepted 1995-02-24

the adenylate cyclase via G-proteins⁽³⁾, while the density of β -adrenoceptors decreased in the old rat heart⁽⁴⁾.

The change of subtypes of cardiac adrenoceptors in senescence is not clear. We have reported that the ratio of α_{1A}/α_{1B} subtype elevated significantly in the blood vessels of old rats¹⁵³. But in parotid cells age does not alter the ratio¹⁶³. It suggests that the alterations of α_1 -adrenoceptor subtypes in different tissues would be expressed in different manner. The purpose of the present work is to determine the alterations of cardiac α_1 -adrenoceptor subtypes and β -adrenoceptors in the old rats.

MATERIALS AND METHODS

Drugs BE2254 (2-β (4-hydroxyphenyl)-ethylaminomethyl)-tetralone (Beiersdorf); chloroethylclonidine (CEC), dl-propranolol, phentolamine; (—)-pindolol (Sigma); carrier-free Na¹²⁵I (Institute of Atomic Energy, Chinese Academy of Sciences).

Tissue preparation for radioligand binding Wistar rats. 3 or 25 months old, were killed by cervical dislocation. The hearts were homogenized in cold phosphorate 20 mmol L^{-1} buffer solution (PBS, pH 7.6). After centrifuged at 20 $000 \times g$ at 4 C for 10 min. the pellets were made to the appropriate tissue concentration.

CEC pretreatment Aliquots (usually 10 mL) of the resuspended preparation were incubated at 37 C with or without CEC (20 μ mol L⁻¹) in HEPES buffer (pH 7.6) for 10 min. Reactions were stopped by adding 20 mL cold PBS, centrifuged at 20 000 × g for 10 min. The pellets were washed with cold PBS twice and resuspended in 10 mL PBS.

Radioligand binding BE2254 (BE) and (—)-pindolol (Pin) were radioiodinated to specific activity of 81.4 PBq mol⁻¹ and stored at —20 C in methanol. Measurement of specific L25 I-BE or L25 I-PIN binding

¹ Project supported by the Research Grant from Ministry of Public Health of China, № 91103015, from the National Natural Science Foundation of China, № 39370299, № 39470806, and from China Medical Board of New York, № 93—591

Correspondence to Prof HAN Qi-De.

were performed by incubating 0.1 mL tissue preparaturns with 125 I-BE or 125 I-Pin in PBS (final volume 0.25 mL) at 37 (in the presence or absence of competing drugs for 20 min. The incubation was terminated by adding Tris-HCl (10 mmol L^{-1} , pH 7.4) 10 mL and filtering over a glass fiber filter (Schleicher and Schuell, No 30. Keene NH. USA) under vacuum. Each filter was washed with 10 mL of Tris-HCl (± 0 mmol L⁻¹) buffer and dried; then the radioactivity was measured. Nonreceptor binding was determined to be binding in the presence of phentolamine (10 µmol L-1) or propranotof (10 μmof L-1). Saturation was determined by incubating tissue with increasing concentrations of 125 I-BE (25 - 500 pmol L⁻¹) or 125 I-Pin (50 – 1000 pmol L^{-1}) and the data were analyzed by the method of Scatchard.

Statistics All the data were expressed as $\bar{x} \pm s$. and t-test was used to compare the difference.

RESULTS

The specific binding sites of 125 I-BE (B_{max}) in the preparations from old rat hearts were decreased while the dissociation constant $(K_{\rm D})$ was increased significantly (P < 0.01), as compared with the young rats. After the incubation with CEC 20 µmol L⁻¹ for 10 min at 37 C, the $B_{\rm max}$ was decreased by $74\pm8~\%$ in the old rats, but decreased by only 61 \pm 5 % (P < 0.05) in the young rats (Tab 1).

125 I-BE and specific binding sites in hearts of Tab 1. young and old rats. $\bar{x} \pm s$.

T>0.05. T<0.01 vs young.

Rats	Young (n=6)	Old (n=5)
Control		
K_{D}	29 ± 4	57 = 4°
$B_{\mathtt{max}}$	119 ± 4	$70\pm6^{\circ}$
CEC pretreated	d	
$K_{\rm P}$	59 ± 10	63.5 \pm 1.3
$B_{\mathtt{max}}$	46 ± 3	$18-1\pm1-2$

 $K_{\rm D}$: pmol L⁻¹; $B_{\rm max}$; pmol/g protein

In the old rats (n=5), the densities of β adrenoceptors (B_{max}) were decreased from the young rats (n=6) of 45. 9 ± 1.9 pmol/g protein to 36.4 \pm 1.6 pmol/g protein (P < 0.01). But there was no change in K_D values as compared with the young rats (83 \pm 10 vs 68 \pm 5 pmol L⁻¹, P > 0.05). The loss of β -adrenoceptors in old rat heart was less severe than that of \alpha_1-adrenoceptors as the ratio of \beta- and α₁-adrenoceptors was increased from the young rats of 39.5 \pm 1.7 % to 53 \pm 4 % (P < 0.05).

DISCUSSION

Cardiovascular impairment is one of the most significant functional manifestations of the aging and lots of evidence suggest that myocardial adrenergic responsiveness is reduced in senescence (1-4). The results of this study showed that the density of β-adrenoceptors in old rat heart was decreased significantly as compared with the young rats, whereas the K_D value without any difference between the 2 groups. It implied that the decline of cardiac β-adrenoceptors might be a reason for the diminished response of myocardiac tissue to catecholamine in the senescence.

It was reported that α_{1A} -subtype might be involved in the induction of embryonic gene expression in ventricular cell hypertrophy whereas all-subtype medicated positive inotropic effects in rat heart (7.8). In our experiments, we found that the myocardial α_1 adrenoceptors were decreased in density and increased in K_D value in the old rat, as compared with the young rats. Pre-treatment of the preparations with CEC 20 µmol L⁻¹ decreased the 125 I-BE binding sites by 74 % in old rat and 61 % in the young rats which suggested that the proportion of myocardial α_{1B} subtype was increased significantly, but in contrast to the results of functional experiments in blood vessels (5). From these results we might be able to speculate that the aiB-subtype would take an increasingly important role in cardiac inotropic response mediated by a_t -adrenoceptors and the changes of a_t -adrenoceptor subtypes would express tissue specifically in the rat with aging, although the significance of different a_t -adrenoceptor subtypes in rat tissues still need to be further studied. In addition, our results disagree with that of Gascon et $al^{(s)}$. What created the discrepancy was not clear, but the concentration of CEC used in the experiments might be a critical factor that would be considered seriously.

Interestingly, in present experiments, the ratio of β/α_1 adrenoceptors was increased in the old rat heart, which suggested that the decline of α_t -adrenoceptors was greater than that of β -adrenoceptors. However, what about the effects of this alteration in the ratio of α_1 - and β -adrenoceptors on the function of ϕ in the heart from old rat is not clear. Since both α_1 - and β -adrenoceptors are involved in the regulation of heart function, their relative role in the inotropic effect, induce by cate-cholamine, of old rat heart must be further $\frac{\beta}{\beta} = \frac{\beta}{\beta} = \frac{\beta}{\beta}$

REFERENCES

- Kimball KA, Cornett LE, Seifen E, Kennedy RH.
 Aging: changes in cardiac α₂-adrenoceptor responsiveness and expression.
 - Eur J Pharmacol-Mol Pharmacol Sec 1991; 208; 231-8.
- 2 Docherty JR. Changes in adrenoceptor function with age. In, Bevan JA, Majewski H, Maxwell RA, Story DF, editors. Vascular neuroeffector mechanisms. Oxford, WA, IRL Press, 1988, 281-7.
- 3 Robberecht P, Gillard M, Waelbroeck M, Camus JC, De Neef P, Christophe J. Alterations of rat cardiac adenylate cyclase activity with age.
 - Eur J Pharmacol 1986: 126: 91-5.
- 4 Fan T-HM, Banerjee SP. Age-related reduction of beta-

- adrenoceptor sensitivity in rat heart occurs by multiple mechanisms. Gerontology 1985; 31: 373-80.
- 5 Han QD. Li JL. Changes of the α_1 -adrenoceptor and its subtypes in blood vessels of old rats.
 - Acta Physiol Sin 1991: 43: 22-30.
- 6 Villalobos-Molina R. Miyamoto A. Kowatch MA. Roth GS. α₁-Adrenoceptors in parotid cells, age does not alter the ratio of α_{1A} and α_{1B} subtypes. Eur J Pharmacol-Mol Pharmacol Sec 1992; 226; 129-31.
- 7 Michel MC, Knowlton KU, Gross G. Chien KP. a₁-Adrenergic receptor subtypes mediated distinct functions in adult and neonatal rat heart (Abstract). Circulation 1990; 82 Suppl 4; III-561.
- 8 Simpson PC. Cuenco RG. Paninghatan MO. Murphy MD. An α₁-adrenergic receptor subtypes sensitive to WB4101 transduces cardiac myocyte growth (Abstract). Circulation 1990; 82 Suppl 4; III-561.
- 9 Gascon S. Dierssen M, Marmol F, Vivas NM, Badia A. Effects of age on a₁-adrenoceptor subtypes in the heart ventricular muscle of the rat.

J Pharm Pharmacol 1993; 45: 907-9.

老年大鼠心脏肾上腺素受体亚型的改变

禹更生,陈明哲、韩启德 (北京医科大学

目的: 研究老年心脏肾上腺素受体亚型的改变. 方法: 制备3月龄与25月龄 Wistar 大鼠心脏膜标本,分别采用¹²⁵I-BE2254与¹²⁵I-Pindold作放射配基结合分析,测定 α₁与β肾上腺素受体. 结果: 老年大鼠心脏的 α₁与β肾上腺受体密度分别由年轻大鼠的119±4与45.9±1.9 pmol/g下降至70±6与36.4±1.6 pmol/g (P<0.01),α₁-AR 降低的幅度大于βAR. 此外α₁A与α₁B亚型之比由年轻大鼠的39:61下降至26:74 (P<0.05). 结论: 老年大鼠心脏肾上腺素受体减少,且不同亚型减少的程度不同.

关键词 衰老: α 肾上腺素受体: β 肾上腺素 受体: 心脏: 放射配位体测定