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ABSTRACT

Preconditioning of the myocardium with short episodes of sublethal ischemia will delay the onset of necrosis
during a subsequent lethal ischemic insult.  Ischemic preconditioning seems to involve a variety of stress signals
which include activation of membrane receptors and signaling molecules such as protein kinase C, mitogen-acti-
vated protein kinases, opening of ATP-sensitive potassium channel, and expression of many protective proteins.
The purpose of this review is to assess the current position in this field and to facilitate future research.

INTRODUCTION

Efforts to prevent ischemic injury have focussed
on finding ways to block events associated with irre-
versible ischemic injury.  In 1986, Murrey et al de-
scribed a classic phenomenon termed ischemic precon-
ditioning (IP) for the first time.  It was originally thought
that each ischemic episode caused cumulative ATP deple-
tion while the intermittent reperfusion would wash out
the ischemic catabolites.  Surprisingly ATP levels were
not depleted by subsequent ischemic challenges and no
infarction occurred.  This observation led the same
group of scientists[1]  to test the hypothesis that the pres-
ervation of high-energy phosphates was due to a slow-
ing of consumption during ischemia associated with a
rapid and protective adaptation of the myocyte.  They
tested this hypothesis by subjecting the myocardium to
a series of four 5-min coronary branch occlusions; each
separated by 5 min of reperfusion.  This rendered the
myocardium more resistant to the subsequent sustained
40-min ischemic insult.  The infarct size was reduced
to 25 % of that seen in control group.  This phenom-

enon is called “preconditioning with ischemia.”  The
classic IP is short lived and fast decayed with anti-
ischemic effects disappearing completely within 2 h.
However, a delayed resurgence of the IP-induced
cardioprotection was demonstrated by Kuzuya et al in
1993[2].  They observed that a significant effect of IP
reappeared when sustained ischemia was initiated 24 h
later.  This delayed effect of preconditioning has been
refered to the “second window of protection[3].”  The
duration of delayed IP appears to be relatively long last-
ing and its effects may maintain for a few days.  The
evolution of necrosis is delayed but not prevented.  Pre-
conditioning will limit infarct size during a temporary
coronary occlusion but not during a prolonged or per-
manent occlusion.  The stimulus for preconditioning is
a critical reduction in myocardial blood flow, and the
end point is infarct size.  The optimal duration of is-
chemia appears to be species dependent.  Ischemic pre-
conditioning has been demonstrated in rats after one to
three cycles of ischemia/reperfusion(I/R)[4], a single
5-min cycle of I/R in rabbits[5] and a 2.5-min cycle of I/
R in dogs[6].

TRIGGERS OF CLASSIC PRECONDITIONING

Classic ischemic preconditioning is not dependent
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on the existence of collateral vessels[1] and occurs in
the presence of protein synthesis inhibitors[7].  The cel-
lular basis of the mechanism underlying precondition-
ing is not fully understood.  Preconditioning results in
activation of a number of receptors such as adeno-
sine[8], alpha-adrenergic[9], delta-opioid[10], and brady-
kinin.

Two individual stimuli,  sublethal hypoxic ischemic
insult and elevated bradykinin levels by ACE inhibition,
were insufficient to induce a preconditioning response
when administered separately, but in combination, a full
protective effect was seen.  Triggers must be distin-
guished from mediators of preconditioning.  Bradyki-
nin is a trigger but not useful during sustained ischemia
but adenosine is a potential trigger and a mediator dur-
ing sustained ischemia.

Adenosine  After the onset of myocardial ische-
mia, ATP depletion occurs rapidly[11] and adenosine is
released in large amounts in the interstitial space.  Here
it interacts with its own receptors.  Activation of ad-
enosine receptors along with an increase in adenosine
receptor density during ischemic-preconditioning pro-
vides the basis for adenosine to exert its protective ef-
fect on the ischemic heart[12].

The A1 adenosine receptor, which is located on
cardiac myocytes, is involved in the cardioprotective
effect of ischemic preconditioning.  In isolated guinea-
pig heart protection by IP could be reproduced by acti-
vation of A1 receptors but could not be abolished by
blockade of A1 receptors[13].  The newly characterized
A3 receptor, which inhibits stimulated adenyl cyclase
activity, has also been suggested to mediate ischemic
preconditioning in the rabbit[14].  Exogenous adenosine
is most protective when administered before ischemia,
whereas during ischemia, it was only partially protective.
Adenosine produced the protective effects of IP, pre-
served ATP, perhaps by stimulating glycolysis.

ATP-sensitive K+ channels  This channel is nor-
mally inhibited by intracellular ATP and opens during
periods of energy depletion.  In the heart K-ATP chan-
nels are present on the sarcolemma of cardiac myocytes
where they were first described but their purpose re-
mains unclear[15,16].  Reports that sulphonylurea recep-
tor antagonists could diminish IP-induced protection,
suggested that K-ATP channels might be effectors of
protection and this idea was reinforced by the observa-
tion that K-ATP channel openers like cromakalin and
pinacidil mimicked protection[17, 18].  On the basis of this,
it was proposed that opening of surface K-ATP chan-

nels during ischemia was somehow facilitated by acti-
vation of signaling pathways such that action potential
shortening that occurred in early phase of ischemia was
enhanced.  The result was better preservation of cellu-
lar energy stores and suppression of deleterious down-
stream events, such as cellular calcium overload.  The
opening of surface K-ATP channels in cardiomyocytes
has little effect on membrane potential, but the outward
current carried by K-ATP shortens the action potential
and if large enough can render the cell inexcitable.  Us-
ing flavoprotein flourescence method, the pharmaco-
logical profile of several K-ATP openers and inhibitors
has been characterized, and compounds have been found
that specifically act on either the mitochondrial or
sarcolemmel K-ATP channels.  Compounds capable of
activating mitochondrial K-ATP mimicked protection
against ischemia.  However compounds selective for
sarcolemmel channels have no such action and serve
convincing evidence that sarcolemmel channels play a
much less role in protection.

The mechanism of mitochondrial K-ATP protec-
tion may involve alterations in mitochondrial handling,
optimization of energy production, and modulation of
reactive oxygen species (ROS) production during is-
chemia or reperfusion.  Mitochondrial K-ATP channel
opening may not only be a common downstream effec-
tor leading to protection but also provide positive feed-
back by altering upstream components such as ROS or
protein kinase C (PKC).  Mitochondrial K-ATP chan-
nels are not only modulated by PKC and NO but also
may trigger translocation and activation of tyrosine
kinase.

Bradykinin and B2 receptors  It was shown in
1996 by Miki et al that captopril, potentiates IP without
increasing kinin levels, and that the effect of captopril
can be reversed by HOE140, a specific bradykinin re-
ceptor antagonist.  This finding has been further ex-
tended using B2 kinin receptor knockout mice as well
as kininogen deficient rats, and demonstrated a loss of
protective effect in these strains.  The results obtained
in these experiments suggest that activation of prekal-
likrein may contribute to the effect of IP and that an
intact kallikrein-kinin system is necessary for the
cardioprotective effect of IP[19].  Pretreatment with
bradykinin resulted in cardiac protection against free
radical injury through the activation of B2 receptors, sug-
gesting that endogenous generation of bradykinin may
mediate IP in guinea pig heart[20].  But blockade of B1

receptor not B2
[19] receptor prevented protection afforded
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by IP, as seen in isolated rat heart following in vivo
ischemia-reperfusion injury. This suggests that  in coro-
nary circulation an endogenously produced B1 receptor
agonist could itself be a trigger for IP.  It is also known
that all the vasomotor effects of kinins are mediated by
B2 receptors.  However, inducible G-protein-coupled
B1 receptors are rapidly upregulated after tissue injury
and damage[21].  So to ascertain whether the bradykinin
receptor subtype involved in vascular preconditioning
is the B2 subtype or the subtype B1 requires further
research.

POST RECEPTOR SIGNALING CASCADE

Triggers mentioned above are coupled to G
proteins, and pretreatment with pertussis toxin blocked
the protective effect of ischemic preconditioning[22].
Activation and translocation of PKC play key roles in
mediating both classic and delayed preconditioning.  G
protein coupled receptors lead to activation of phos-
pholipase C and the generation of diacylglycerol (DAG),
which activates and translocates PKC to cell mem-
branes where it activates K-ATP channels at or near
physiological levels of ATP.

Hypoxic preconditioning stimulated the activity of
PKC and markedly enhanced the activity of K-ATP chan-
nels in the isolated rat cardiac myocytes[23].  PKC acti-
vation is also involved in the upregulation of K-ATP
channels.  Isolated cardiomyocytes and transgenic mice
have identified PKC as the isoform resposible for this
protection[24].  Kinases other than PKC, such as tyrosine
kinase (TK), also appear to be involved in the mecha-
nisms of preconditioning because treatment with
blockers of this kinase, such as genistein, before the IP
stimulus can blunt protection[25].  Furthermore mitogen
activated protein kinases (MAPKs) participate in the
intracellular events that lead to cardioprotection in de-
layed preconditioning, are also involved in classical
preconditioning.  A specific p38 MAPK inhibitor
SB203580 abolished protective effect of IP[26].  In con-
scious rabbit, IP elicited an increase of p44 and p42
MAPK cellular activity that was associated with trans-
location of both kinases from cytosol to the nuclear
compartment[27].

GENERAL CHARACTERISTICS OF DELAYED
PRECONDITIONING

Unlike the early phase of IP, which lasts 2 to 3 h
and protects against infarction but not against stunning,

the late phase of IP lasts 3 to 4 d and protects against
both infarction and stunning, suggesting that it may have
greater clinical relevance.  The delayed protection ex-
tends to other indices of cardiac dysfunction-reperfusion
induced tachyarrythmias.  The prolonged duration of
protection makes it particularly interesting.  It is trig-
gered by a variety of stimuli, such as heat stress, exercise,
and cytokines.  Thus, late IP appears to be a universal
response of the heart to stress in general.  It is now
clear that late IP is a polygenic phenomenon that re-
quires the simultaneous activation of multiple stress-
responsive genes.  Adenosine A1 receptor activation
during preconditioning is an important trigger of de-
layed protection against infarction.  Since it is clear that
delayed IP can be induced by means other than tran-
sient ischemia, it leads to the development of various
practical therapeutic approaches.  Bacterial endotoxin
treatment is known to induce delayed myocardial
protection, probably by upregulating various cytopro-
tective proteins, including antioxidants and inducible
nitric oxide synthase.  The endotoxin derivative mono-
phosphoryl lipid A induces myocardial protection 24 h
after administration and opening of the K-ATP channel
may be integral to this late protective response.

TRIGGERS AND MEDIATORS OF LATE PHOS-

PHOLIPASE C (PC)

 Nitric oxide appears to play a dual role in the patho-
physiology of the phase of ischemic IP, acting initially
as the trigger[28] and subsequently as the mediator[29] of
this adaptive response.  Direct measurement of NOS
activity has shown biphasic regulation of NOS by IP,
with an increase in calcium dependent NOS (eNOS)
activity immediately after IP followed by an increase in
calcium independent NOS (iNOS) activity 24 h later[30].
The finding that both IP and nitroglycerin induce a rapid
increase in steady state levels of iNOS mRNA, which is
abolished by administration of L-NA before IP, also sup-
ports this concept.  Taken together these studies sup-
port the paradigm in which 2 different NOS isoforms
are sequentially involved in the pathophysiological cas-
cade of late PC, with eNOS generating the NO that
initiates the development of IP response on d 1 and
iNOS then generates the NO that protects against re-
current ischemia on d 2[31].  Monophosphoryl lipid A
(MLA) repesents a novel agent capable of enhancing
myocardial tolerance to ischemia/reperfusion injury[32].
Current evidence suggests that the cardio-protective ef-



Tyagi P  et al / Acta Pharmacol Sin  2002 Oct; 23 (10): 865-870· 868 ·

fects of MLA involve myocardial inducible nitric oxide
synthase [iNOS(s)] enzyme activation with NO coupled
activation of myocardial K-ATP channels upon ischemic
challenge.  MLA is currently being evaluated in phase 2
clinical trials, in patients undergoing coronary artery
bypass surgery.  More recently it was determined that
RC-552, a novel synthetic glycolipid related in chemi-
cal structure to MLA, could offer similar protection[33].

SIGNALLING ASPECTS OF DELAYED PRE-
CONDITIONING

Activation of PKC appears to be a crucial inter-
mediate step since inhibition of PKC during precondi-
tioning abolishes protection 24 h later[34].  The involve-
ment of other parallel downstream kinases including
tyrosine kinase and MAPK kinases may also be involved.
Delayed protection induced by adenosine A1 agonist in
rabbits is dependent on both PKC and tyrosine kinase
activation, since it can be abolished by pretreatment with
either chelerythrine (a PKC inhibitor) or lavendustin-A
(a tyrosine kinase inhibitor)[35].  In addition other cas-
cades are likely to be important, especially those in the
MAPK families.  Three major MAPK families exist in
eukaryotic cells: the classic p42/p44 MAPKs[27], p38
kinase, and the stress activated c-jun N-terminal kinase
(JNK).  PKC is known to phosphorylate and activate
raf-1 kinase, which provides a direct link to the p42/
p44 MAPK family.  Other studies suggest that activa-
tion by ischemia or reactive oxygen species of p38 ki-
nase and JNK are known to phosphorylate factors that
co-ordinate gene transcription.  The activation of p38
is short lived.  The activation of p44/p42 MAPKs and
JNKs is abolished by chelerythrine, indicating that it is
downstream of and dependent on activation of PKC.
Selective overexpression of PKC  in adult rat myocytes
induces activation p44/p42 MAPKs and protects against
stimulated ischemia.  The involvement of these kinases
in delayed preconditioning is to become the focus of
attention in the coming years.

PROTEIN EFFECTORS OF DELAYED PRE-
CONDITIONING

The time course of delayed preconditioning is sug-
gestive of a mechanism involving new protein synthesis.
There is either increased activity of manganese super-
oxide dismutase (SOD) or elevation of myocardial con-
tent of the major inducible heat shock protein, HSP
72[3].  Both proteins are stress-induced proteins and have

cytoprotective properties.  Manganese-SOD is a mito-
chondrial antioxidant, which detoxifies superoxide
anions.  HSP 72 is a chaperone protein involved in regu-
lation of protein folding, transport, and denaturation
during the cellular response to injury.  These relation-
ships have been confirmed by gene transfection studies
and transgenic mice constitutively over expressing hu-
man HSP72[36].

THERAPEUTIC APPROACHES BASED ON PRE-
CONDITIONING

 Even with the development of pharmacological
agents that mimic preconditioning, the timing of ad-
ministration will be critical.  Patients with unstable an-
gina are at high risk of myocardial infarction and such a
treatment would “buy time” for the administration of
other revascularisation techniques.

Preconditioning strategies could also be applied
prior to a planned procedure involving a potentially in-
jurious ischemic insult.  An example is coronary artery
bypass graft (CABG) surgery.

A1 agonists represent a promising therapy, how-
ever down regulation of the receptor occurs with con-
tinued occupancy of the receptor.  Intermittent admin-
istration with modest doses would circumvent this
problem. Bradykinin synthesized by endothelial cells is
involved as a trigger in preconditioning and may con-
tribute to cardioprotective effect of ACE inhibitor[37].
K-ATP channel openers are also possibilities of thera-
peutic exploitation.  The role of mitochondrial rather
than sarcolemmal K-ATP channels in classical precon-
ditioning suggests that targeting the organelle which is
specifically invalid has theoretical advantages.  This also
avoids the unwanted side effects of sarcolemmal trans-
membrane potential[17].
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