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ABSTRACT

Autoi mmune diseases char acterized by activation of i mmune eff ector cellsand damage of target organs are
currently treated with a combination of several disease-modifying antirheumatic drugs (DMARDS) that preserve
different immunomodul atory mechanisms. Such a combination treatment strategy not only provides synergistic
effects but also reduces s de effectsfrom individual drug. Tetrandrine (Tet), purified from acreeper Stephania
tetrandra S Moore, is a bis-benzylisoquinoline akaloid and has been used to treat patients with slicoss, autoim-
mune disorders, and hypertension in Mainland China for decades. The accumulated studies both in vitro and in
vivo reved that Tet preservesa wide variety of immunosuppressive effects. Importantly, the Tet-mediated immu-
nosuppressve mechanisms are evidently different from someknown DMARDs. The synergigic effects have also
been demongtrated between Tet and other DMARDSs like FK506 and cyclosporin. Theseresults highlight Tet avery
potential candidate to be consdered as one of DMARDs in the treatment of autoimmune diseases, especidly rheu-
matoid arthritis. This review summarizes evidence-based in vivo and in vitro sudies on this potentia Chinese
immunosuppressive herb.

INTRODUCTION joints accompanied with or without other organ
involvement. Although many contributing factorswere
condgdered toplay rolesin causng rheumaoid arthritis,
the etiology remansunclear. While nosingle agent was
proven to be enough to control disease progresson,
current acceptable therapy for rheumatoid arthritisis
aimed to attenuate disease activity with a combination
of disease-modifying antirheumatic drugs (DM ARDS)
!Project supported by Nationa Health Research | nstitutes, such as methotrexate, sulfasalazine, |eflunomide,
Taiwan, China (NHRI-GT-EX89B915C) and Tri- Service Gen- hydroxychloroquine, cyclosporin, gold, azathioprine...
Zera] Hospitd (TSGH-C91-13). etc™ . The purpose of a combi nation therapy isto ob-
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The immune system isa well-organized and well-
regulated system and its dysregulation may lead to the
development of autoimmune diseases. The proto-type
of such agroup of illnessesisrheumataid arthritis(RA),
adisease with progressve and massve destruction of
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ferent immunomodulatory mechanisms and, in the
meantime, to reduce sde effects from each drug by
decreasing their dosages.

Along the way of invegtigating the pathogenesis
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of autoimmune diseases, the activated immune effector
celssuch asT cdls B cells, monocytesmacrophages,
and dendritic cells have been consigently found in the
peripheral blood andthe involved organs. Among these
immune ef fector cells, T cells have been considered to
be the most important because the regulation of T cell
activation requires antigen gecificity and agreat amount
of cytokines released in autoimmune responsesarefrom
T cdls*™,

Itisdear that full activation of T cellsrequires the
integration of two sgnas oneisfrom aT cell receptor
sgna and the other isfrom a cogimulatory signal®.
Among the molecul es expressing costimulatory activi-
tieson T cells, only CD28 could in combination with
theactivation of T cell receptor induce deectable levels
of interleukin-2 and prevent anergy, a satus of un-re-
sponsiveness®!?, The importance of CD28
cogimulation in T cell activation is subgtantiated by the
accumul ated data showing that 1) bl ockade of CD28
costimul atory sgnal leadsto the reduction of disease
severity and proteinuria as well asthe prolongation of
survival in lupus-prone micé™; 2) blockade of CD28
costimulation results in the increased survival of the
transpl anted organs such as heart, kidney, bone mar-
row and pancreas™**®:; 3) enhanced activation of CD28
by immobilized anti-CD28 monoclona antibodies
(mADbs) leads to the reduction of virusload aswell as
the expanson of CD4" T cdlsin HIV-infected pati-
ents*™: 4) blockade of CD28 costimulation causes im-
provement of symptoms in psoriasis patients*®; 5) in-
troduction of CD28 costimul ation elicits tumor rejec-
tionin animal model§°%,

Asdefrom the activation of immune effector cells,
the defective apoptosis (programmed cell death) mecha
nism also playsacrucia rolein disease progresson of
RA and other autoimmune diseases®*!. Apoptosisisa
natura protective mechaniam for embryogeness, for
thymic organto diminateinappropriate T cellsand for
immune-privilege gtesto protect frominflammatory cell
invasion'®?!, Different from the necrotic process, the
apoptotic process does not induce any inflammatory
response because dead cells or their degraded products
are rapidly phagocytosed before any leakage of cellular
contents. Since the etiology of autoimmune diseasesis
largely unknown, the immune reaction towards the
apoptotic bodiesreleased or apoptotic antigens expressed
from dead cells has been implied as one of the mecha
nisms leading to autoimmune diseases®*1, After de-
velopment of autoimmune diseases, fail to execute the
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appropriate apoptotic program may result in sustention
of inflammatory process®®*. |nlight of the signifi-
cance of apoptotic process, the apoptosis-based therapy
has been suggested as one of the approaches to control
the progression of autoimmune di seases™!.

Altogether, both the inappropriate activation of
immune effector cells and the ineffective deletion
(through apoptos s) of these cellsmay lead to the de-
vel opment and progresson of autoimmune disorders
(Fig 1). The therapeutic approaches for autoimmune
diseases may rely on both the inhibition of cell activa
tion and the maintenance or enhancement of the
apoptotic program of immune effector cdls.
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Fig 1. Regulation of immune effector cells leads to autoim-
mune diseases. Two major pathways contribute to the de-
velopment of autoimmune diseases; one is the over-ex-
panded proliferation or activation of immune effector cells
and the other is the defective execution of the apoptotic
program of immun e effector cells, especially those already
being activated cells.

Although thesignificance of T cellsin autoimmune
pathogenesisisvery clear, the T-cell directed biological
therapies for RA has been unsuccessful due to both
lack of efficacy and serious s de effects. The use of
pharmacological agents such as cyclosporin A and
leflunomide that block T cell activation and prolifera-
tion give more promising therapeutic outcomes
(reviewed in [40]). Han-Fang-Chi isthedried tuberous
root of the creeper Stephania tetrandra S Moore. The
purification of Han-Fang-Chi yieldsan activeingredient
tetrandrine (Tet) that accounts for its mgjor biol ogical
activities*®. Tet has been used in China for severa
decades to treat patients with silicos s and rheumatic
dissases that are associated with the activation and in-
filtration of immune effector cells at leson stes. Ina
clinica sudy of Tet effects in Slicosspatients, the ad-
minigration of 200 mg or 300 mg per day with aver-
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agely total 120 gm(s) of Tet to silicoss patients results
in sgnificant improvement of pulmonary function and
reduces the progression of slicosis*?. Additionaly,
such atherapeutic srategy only causes limited sde ef-
fectsduring the three-year follow-up. These sde &f-
fectsinclude abdomina distenson, diarrhea, dry eye,
itching, hyperpigmentation and mildly el evated liver
enzymes. All these symptoms and signs resolve spon-
taneoudy after discontinuance of the medication*’.
Thisclinical observation highlightsnot only the effec-
tiveness but also the acceptable tol erance of Tet for
clinical use.

EFFECTS ONT CELLS

Theearly observation that Tet inhibits del ayed-type
hypersenstivity (DTH) responses in mice model sug-
gests that Tet may have some direct effects on T
cdls®, Subsequently, Kondo et al*¥ showed that Tet
inhibited plaque-forming cell response to a T-cell-de-
pendent antigen, sheep red blood cell, but it has no f -
fect on such aresponseto aT-cell-independent antigen,
lipopolysaccharide. Furthermore, the severity of ar-
thritisisgreatly reduced by late or prophylactic admin-
igration of Tet in an adjuvant-induced chronic arthritis
model of rats*.

Based upon these observations, a series of studies
examining directly the effects of Tet on T cellswere
performed. In purified human periphera blood T cells,
Tet inhibitsthe CD28-costimulated T cell proliferation
and cytokine production. Both T helper 1 (Thl) and
Th2 cytokines are susceptible to Tet suppression®!.
However, Tet may or may not directly down-regulate
CD28 signaing pathway because T cell receptor-medi-
ated sgnaing eventscan a so be inhibited by Tet. The
investigation of Tet-regulated T cell receptor down-
dream sgnaling pathways clearly showsthat Tet spe-
cificdly inhibits protein kinase C-dependent but not cal-
cium-dependent signaing events*”. In addition, these
observations suggest that the immunosuppressive ef-
fects of Tet may not relateto itscal cium-channd block-
ing properties*’. Since there are morethan 11 protein
kinase C i soenzymes identified so far®¥, whether Tet
targets one or several protein kinase C isoenzyme-me-
diated s gnaling pathwaysis currently not known. Be-
cause the activation of protein kinase Cisoenzymes can
readily bedetected in many signaling pathwaysinava
riety of immune and non-immune effector cells, these
results also partly explain the broad-spectrum anti-in-
flammatory properties of Tet'®*?, Molecular dissec-
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tion of Tet-targeting signaling molecules showed that
Tet effectively inhibited CD28-costimulated NF-kB ac-
tivities and had ignored effects on AP-1 activities
(unpublished observations). These observations con-
clude that Tet could down-regulate the activation of T
cell receptor through at least blocking protein kinase C
and NF-kB sgnaing pathways(Fig 2).

IL-2 Gene

Fig 2. Tetrandrine targets protein kinase C-NF-k B signal-
ing pathway. The T cell receptor signal is conducted via the
CD3 complex that contains several subunits. This signal
then causes both increase of intracellular calcium and acti-
vation of protein kinase C isoenzymes. The increase of
intracellular calcium leads to the activation of nuclear fac-
tor of activated T cells (NFAT) and the activation of protein
kinase C results in the stimulation of NF-k B transcrip tion
factors. CD28 costimulation has unique effects, distinct
from those through T cell receptor, on the activation of NF-
k B. Tetis supposed to inhibit the T cell receptor-mediated
protein kinase C-NF-k B signaling pathway. Whether Tet
has direct effect on CD28-mediated NF-k B activation is
currently unclear. In contrast, cyclosporin is a suppressor
of calcium-dependent NFAT activation.

Both in vivo and in vitro sudies also suggest that
the T cell receptor sgnaling pathway targeted by Tet is
different from that targeted by cyclosporin that inhibits
Ca*-dependent calcineurin activity®>, | mportantly,
the combination of both Tet and cyclosporin provides a
synergism a much lower ther gpeutic concentrations
of each drug”’. Indeed, in diabetes animal modds,
Lieberman et al™ also showed that Tet in combination
with FK506, an immunosuppressive agent functionally
similar to but more potent than cyclosporin, synergisti-
cally prevent the development of diabetes.
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EFFECTS ON OTHER IMMUNE EFFECTOR
CELLS

The immunosuppressive ef fects of Tet could aso
be demongtrated in other immune effector cells, includ-
ing macrophages, monocytes, B cells, neutrophils, and
mast cells. At therapeutic concentrations, Tet inhibits
the production of tumor necrosisfactor apha (T NF-
a) from monocytes simulated with killed Staphylococ-
cus aureus’™ . Both fangchinoline and isotetrandrine,
two Tet analogues, aso inhibit interleukin-1(IL-1) and
TNF-a productionfrom Staphylococcus aureus Cowvan
1-gimulated human peripheral blood mononuclear
cel19%¥. Such an effect is mediated at | east through
transcriptional regulation of MRNA expression of these
cytokine genes. Further expansion of these observa
tions demonstrates that Tet inhibits not only IL-1 and
TNF-a but a9 other cytokineslikelL-6 andIL-8 pro-
duction from activated monocytes aswell asinhibits
the antibody production from activated B celIs/*.
Moreover, Tetsgnificantly blocksthe extent of inflam-
mation of uveitisinduced by endotoxin and IL-1a ad-
minigration in ras™. Therefore, asde from theinhi-
bition of cytokine production, Tet aso suppresses
cytokine-mediated tissue damage, a suggestion that Tet
may directly block cytokine-mediated sgnaling
pathways. The reaults of these sudies may somehow
be explained in part by an early observation showing
that Tet sgnificantly inhibits the production of nitric
oxide, acritica mediator of inflammation, inlipopolysac-
charide-stimulated macrophages®. In cultured human
umbilical vein endothelia cdls, Tet dose-dependently
inhibits the secretion of a chemotactic factor and then
blocks the migration of monocytes®. In addition, Tet
also suppressesthe IL-1a and plate et-derived growth
factor (PDGF)-induced tube formation of rat vascular
endothelia cells, an important step in angiogenesis®!.
The inhibitory potency is measured to be about 100-
fold stronger than hydrocortisoneg®!.

With regard to innate immune regponses, Tet has
been shown to down-regulate tumor promoter and
phorbol myrigtate acetate-induced adherence of neu-
trophils**!. T he phagocytic effects of neutrophils are
aso greatly inhibited by Tet’™. In an anima model of
myocardia ischaamia-reperfusioninjury, Tet effedtively
suppresses the up-regulation of Mac-1 on neutrophils
and therefore blockstheir migration and reducesthe
injury-induced myocardia infarct size and ventricular
tachyarr hythmid®.
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INDUCTION OF PROGRAMMED CELL DEATH
(APOPTOSIS)

Since the apoptotic processis defectivein autoim-
mune di seases®* | any drug that could potential ly in-
duce the apoptoss of activated immune effector cells
may have its additional advantage to control the inap-
propriate expanson of immune responses. Severd
Wesgtern anti-rheumatic drugs such as corti costeroid,
nonsteroidal anti-inflammatory drugs and
hydroxychloroguine, and a Chinese anti-rheumaticdrug,
Tripterygium wilfordii Hook f, have been shown to pre-
serve the capacity of inducing cellular apoptosis® .
Reasonably, the apoptotic effects of Tet may aso play
arolein the control of autoimmune di sorders.

Tet a 0.1 nmol/L to 100 mmol/L concentration-
dependently reduces the viability of mouse peritoneal
macrophages, guineapig aveolar macrophages and
mouse macrophage-like J774 cdllS®!. In the example
of othe permanent cdl lines, U937 and HL-60, Tet also
dose-dependently inhibits cellular proliferation and in-
duces cellular apoptosis®®”. In contrast to the cellular
apoptosis induced by glucocorticoids in CEM-C7 cdlls,
the induction of apoptosisby Tet is much more rapid
(40 h compared to 4 h, respectively)®!. In addition,
the Tet-induced cellular apoptosis appears not to re-
quire de novo protein synthesis®®. A finding suggests
that glucocorticoid-induced and Tet-induced cellul ar
apoptosis may be mediated through different
mechanisms. Asde from the results shown in immor-
tal cdl lines and murinecdlls, Tet could aso induce the
apoptotic program in human periphera blood lympho-
cyted®,

Congstent with theresultsin other immune ef-
fector cells, Tet effectively causes apoptosis of human
peripheral blood T cells*®. Impoartantly, compared to
resing T cells, Tet preserves much sronger killing ca-
pacity towards activated T cell$®. When drug-induced
apoptosis wasreadily compared, the resultssuggest that
the Tet-induced T cell apoptotic mechanismis different
from the one induced by hydroxychloroquine, a com-
monly used Western antirheumatic drug'®. While Tet-
induced T cell apoptotic DNA damage requirescaspase-
3activity, hydroxychlorogquine-induced T cell apoptotic
DNA damage is mediated through a cagpase-3- and
caspase-8-independent but Z-Asp-Glu-Val-Asp.
fluomethyl ketone-sensitivesignaling pathway!®. The
differential usages of cagpase-mediated apoptotic
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mechanisms by Tet and hydroxychloroquine may aso
provide apossible synergism of prescribing both drugs
for the treatment of autoimmune di seases.

ANTFOXIDATIVE EFFECTS

One of the important effects of Tet that may ex-
plain many of its biological activitiesis the anti-oxida-
tive property. In measuring both hypoxanthi ne/xan-
thine oxi dase and erythrocytes auto-oxidation systems,
Tet effectively scavenges the generated superoxide an-
ions at concentrations from 7.5 to 15 nmol/L™. Other
evidence dso showsthat Tet inhibits freshly fractured
quartz-induced lipid peroxidation'™. In evauation of
active oxygen production from neutrophils, the results
indicate that the generation of superoxide and luminol-
dependent chemiluminescence induced by opsonized
zymosan, arachidonic acid, formylmethionyl-leucyl-
phenyldanine, or by phorbol myridate acetate decreases
significantly when Tet or its analogues are added into
the reaction’. In addition, Tet i nhibits hexose-mono-
phosphate shunt activity and hydrogen peroxide pro-
duction in neutrophils$™. T he anti-oxidati ve reaction
rate congtant of Tet with *OH is determi ned to be 1.4x
10"mol™s*, avalue that is comparable with other anti-
oxidants such as ascorbate, glutathione, and cysteine
[ When human mononuclear cells were examined,
Tet greatly inhibits irradiation-induced superoxide pro-
duction from these cdld™. In animal models, via in-
hibiting Ca®* influx and reactive oxygen species
formation, Tet suppresses neutrophil adhesion to fibrino-
gen™. Part of the effectsis mediated through G pro-
tein modulation that prevents Mac-1 up-regulation in
neutrophil activation!™.

STRUCTURAL MODIFICATION

A great potential for Tet being one of the DMARDs
is the advantage that there are severa structuraly smi-
lar Tet analogues. | mportantly, the subtle structura
difference among Tet analogues appears to have great
impact ontheir differential immunosuppressve adivities.
Based upon ther sructura similarity and the difference
inbiologicd activity, structura modification of thisgroup
of drugs can lead to the discovery or devel opment of
more potent yet less toxic immunosuppressve drugs.

Tet and berbamine are two purified plant alkaloid
analogues. Differ by only one subgtitution in the sde
chain of oneof the benzene rings, thesetwo drugs pre-
serve quite different immunosuppressive adivities. For
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example, Tet but not berbamine inhibits the chronic in-
flammation of adjuvant-induced arthritisin rats*!. The
incidence of relapsing experimental alergic encephalitis
(EAE) isreduced by 41 % and 65 % for Tet and ber-
bamine treatment, respectively™. Tetis shown to pre-
serve 6-18 times more potent than berbamine in sup-
pressing the production of IL-1 and TNF-a from the
simulated monocytes and macrophages as well as the
production of TNF-b by activated lymphocytes™. In-
vegtigation of the direct cytokine effectsin rat subcuta-
neousair pouch modd of inflammeation reveals that both
compounds are equipotent in suppressing leukocyte in-
filtration into air pouchesinduced by IL-1 and TNF®,
Nevertheless, Tet is more potent than berbamine asa
suppressant of platelet acti vating factor-induced mono-
nucl ear cell infiltration and is less eff ective than ber-
bamine in car ageenen-induced polymorphonuclear cell
infiltration®™. While Tet has sronger suppressive ef-
fects on adher ence and locomotion of neutrophils, ber-
baminepreservesgreater capacity for inhibition of natu-
ral killer cell cytotoxicity'®™. Along the arachidonicacid
metabol izing pathway, Tet but not berbamine potently
inhibits the | ipooxygenase-dependent |eukotriene pro-
duction from activated human monocytes and
neutrophils. However, both compounds were equally
potent in suppressing cyclooxygenase-dependent pros-
taglandin generation'®!. In the context of T cdl
response, both Tet and berbamine are equipotent in sup-
pressng the induction and expresson phasesof DTH
responses to sheep red blood cell antigens in mice®!.
When human periphera blood T cells were examined,
the results also indicate that both Tet and berbamine
equipotently block CD28-codimulated T cell activities,
including cytokine production, cell surface activation
marker expresson aswell ascell proliferation™. This
sudy a so identifies dauricine as the most potent one
among Tet ana ogues that i nhibit CD28-costimulated T
cdll activities*. Surprisngly, the accumulated evidence
alsosuggeststhat Tet but not berbamine preservesgrong
anti -oxidati ve activity!™®, Theresultsin aseries of
these studies are summarized in Tab 1.

CONCLUSION

Tet preserves very extendve immunosuppressive
effects through inhibiting the activation of variousim-
mune effector cells and inducing the apoptosis of these
cells. Themoleaular target of Tet is aurrently unknown,
but likely to beinvolved in T cell receptor - protein
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Tab 1. Comparison of the biological activities bewteen tetrandrine and berbamine.

Biological Properties

Tetrandrine

Berbamine

Meutrgphil adherence

v ! &1

NK cefl cyotoxicity ¥
Anti-oxidative activity -+ — 72,81
1. 1, TNF ¢ production ‘+ l ™
Leulptriena production ‘+ vlr 82
Pr;;taglnndin praductivn “’ * B 52
LFLLL responses: 1 el agtivation + + ETR
Aljuvanl-imlueed arthridis * ¥ 45
Experimental allergic :nch.I;aIitl': I J,_ B ¥ T8
1L-L and TNF direct effects ¥ ¥ | - ‘

* I'he symbol (strong) and  § (weak) indicate the suppressive intensities

OCH; CH;0

N
' | Al

OCH,

lelrndrime

kinase C- NF-kB signaling pathway in theexample of T
cells. Although only minor dructurd difference is
present among Tet and its anaogues, great biologica
differences exis among these analogues. These obser-
vati ons a so give us i mportant insights into structure-
activity relaionships of Tet and its anaogues and the
opportunity to design novel analoguesthat are poten-
tially more potent and lesstoxic than currently available
drugs for the treatment of autoimmune disorders.
Asde from its calcium-channel bl ocking eff ects,
there areat least two mgjor fields about Tet that are not
covered in thisreview. Oneisits anti-cancer effect
like theincrease of chemotherapeutic agent drug sens-
tivity in multi-drug resstance cells and the other isits
anti-slicosseffect likethe inhibition of pulmonary mac-
rophage and pulmonary fibroblagt activation. Inthis
context, theclinical application of this drug may not be
limited to the currently known knowledge on this drug.

r OCH, CH0
cn;*‘N ‘: E:DEH:J

=Ll
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