Synergistic anticancer effects of tetrandrine combined with doxorubicin or vincristine in vitro ${ }^{1}$

SLN Ai-Xu, YE Zu-Guang², LI Chun-Ying, XUE Bao-Yun, LI Lan-Fang, CAO Xiu-Fang, YANG Qing. DAI Bao-()iang (Department of Pharmacology, Institute of Chinese Materia Medica. China Academy of Traditinnal Chinese Medicine, Beijing 100700, China)

KEY WORDS tetrandrine; doxorubicin;

 vincristine; multiple drug resistance; cultured tumm cells; drug synergism; drug combinations: tetrazolium salts
ABSTRACT

AIM: To study the interaction between tetrandrine (Tet) and doxorubicin (Dox) or vincristine (Vin) against human breast eancer cell lines MCF-7 and MCF-7/Dox or human nasopharyngeal cancer cell lines $K B$ and $\mathrm{KB}_{\bigvee-200}$ in vitro. METHODS: Anticancer activities of a drug alone and a drug combination of Tet and Dox or Vin were determined by tetrazolium (MTT) metherl. The interaction between Tet and Dox or Vin was evaluated by brth a value of a sum of fractional inhibitory concentration (SFIC) and an isobulogram method. RESULTS: The SFIC values of the three-differentratio combinations between Tet and Dox ranged from 0.14 to 0.38 for MCF-7, and 0.10 to 0.29 for MCF-7/Dox: those of Tet-Vin combinations ranged from 0.21 to 0.37 for KB , and 0.32 to 0.63 for $\mathrm{KB}_{\mathrm{vzoo}}$. All the SFIC values of the combination between Tet and Dox or Vin were less than 1.0 when the 3 ratios of the 2 drugs in rombination were used, and the shapes of isobolic curves obtained from the combination were concave. CONCLUSION: The interac-

[^0]tion between Tet and Dox or Vin against the human cancer cells was markedly synergistic.

INTRODUCTION

Multidnug resistance (MDR) of carcinoma cells is one of the major factors leading to chemotherapeutic failure. Searching for potentiating agents, which can increase the antitumor efficacy of a drug, so much as to circumvent the resistance, may be another avenue to overcome MDR. Tetrandrine (Tet) exhibited a marked selective anticancer activity and remarkable reversal effects against doxorubicin (Dox) - or vincristine (Vin)-resistant human cancer cells MCF-7/Dox or $\mathrm{KB}_{\text {vi2o }}{ }^{(1)}$. This paper was to study the nature of the interaction between Tet and Dox or Vin against human breast cancer cells MCF-7 and MCF-7/Dox or human nasopharyngeal cancer cells $K B$ and $K B_{Y 200}$, respectively.

MATERIALS AND METHODS

Drugs and reagents Dox hydrochloride for injection ($10 \mathrm{mg} /$ vial, lot No 970203 . Zhejiang Haimen Pharmaceutical Factory) or Yin sulfate for injection ($1 \mathrm{mg} /$ ampoul. lot Vo 961101, Experimental Pharmceutical Factory of Beijing Medical Univensity) solutions were prepared using normal saline and filtered. Tet powder with a purity of 96.5%. a raw material for producing Tet tablets (Zhejiang Jinhua Pharmaceutical Factory) was dissolved in an acid solution and then pH was adjusted to 6.0 . A series of dilutions was prepared just before test.

Cell culture MCF-7 and MCF-7/Dox
(NCI, [IGA) were mutinely coltured in Thulteren) minirnal essential medium (LWMEM, (rilm) containing 15% bovine serum at $37^{\circ} \mathrm{C}$ in 95% air $+5 \% \mathrm{CO}_{2}{ }^{2 \prime} . \mathrm{KB}$ and KB_{4200} cells from Institute of Materia Medica, Chinese Acaldemy of Medical sciences were cultured in RPMI- 1640 medium (Gibo) containing 15% luwine sprume at 37% in 95% air $+5 \%$ $\mathrm{CO}_{2}{ }^{3}$

Measurement of anticancer activity The tetrazulium (MTT) assay system nsed here was essentially similar to the reported one ${ }^{[4]}$. Briefly, the cell suspension ($4 \times 10^{7}-1 \times 10^{8}$ r.olls $\cdot \mathrm{L}^{-1}$) was indded into 96 -well tissue culture plates ($100 \mu \mathrm{~L} /$ well) and incubated overnight. The cells were then exposed to $200 \mu \mathrm{~L}$ of various concentrations of a drug alone or a drug combination for 72 h . After that, an MTT assay was conducted in the same pattem ${ }^{[1]}$, and the $1 \mathrm{C}_{50}(95 \%$ confitlence limits) were calculated by weighted prohit analysis (Bliss and Finney).

Interaction of drug combination Bazed on I_{511} values of an individual drug and the ratio of the $I C_{51}$ values between thr 2 drugs in a preliminary experimem, Tet and Dos or Vin were mixed in fised ratior ${ }{ }^{(5)}$. For example, in a prelininary experiment, the ratios of the IC_{50} values of Tet is Dox against MCF-7/Dox was found to be about $1: 3$, therefore, a ratio of the 2 drugs in a mixture was selected as $1: 3$ usually referred to as Group 2, and thes the proportion of one drug in the combination was multiplied by 3.0, while that of the other remained unchanged. As a result, a total of 3 different ratios lor a certain drug-combination (for instance, $3: 3,1: 3$, and $1: 9$ for Tet^{+}Dox) were obtained. The 3 ratios were designated as ommination group 1,2 , and 3 . The IC_{51} values of rarli drug used alone and an individual drug in the combination group 1, 2, and 3 were calculated using probit analysis. Each combination gronp had $2 \mathrm{IC}_{50}$ values: one was for Tet,
and the other for Dox or Vin. Sum of fractional inhibitory concentration (SFIC) of the drug combination was calculated by the following equation: $S F I C=\mathrm{IC}_{50}$ of one drug in the combination/ $/ \mathrm{C}_{50}$ of the corresponding diug used alone $+\mathrm{C}_{50}$ of the other drug in the combination/ IC_{517} of the corresponding drug used alone. If the SFIC value was I-ss or more than 1.0, or equal to 1.0 , potentiating or antagonistic, or additive interaction was thought to occur. In addition the isobolograms were constructed ${ }^{(6)}$. Tet FIC ($\mathrm{IC}_{5 n}$ of Tet in the combination/ IC_{50} of Tet alone) was designated as a value on the abscissa of an isobolic figure, while FIC of the other drug (Dox or Vin) in the combination ($\mathrm{IC}_{5 n}$ of $\mathrm{Dox}_{\mathrm{on}}$ or Vin in the combination $/ \mathrm{lC}_{50}$ of Dox or Vin alune) as a value on the ordinate. When the isobolic curve was concaye or convex, the nature of the interaction between the 2 drugs in combination was considered to be synergistic or antagonistic.

Triplicate wells were used for each drug concentration. Experiments were triplicated.

RESULTS

Inhibition of cell growth by one drug alone
The $\mathrm{lC}_{\text {Sn }}$ values of Tet were much greater than thuse of Dox and Vin against the 2 sensitive cancer cell lines, MCF-7 and KB cells. The IC_{50} values of Tet against MCF-7/Dox and $\mathrm{KB}_{\mathrm{Y} 200}$ cells were Iess than those against MCF-7 and KB cells ($P>0.05$). (Tab 1, 2)

Inhibition of cell growth by drug com-

 bination When Dox or Vin was combined with Tet, lC_{50} values of Dox or Vin in the combination group 1, 2, and 3 were lower than that of Dox or Vin alone, regardless of which line of cancer cells was used. In general, $\mathrm{lC}_{\text {sn }}$ value of Dox or Vin was decreased with increasing dose of Tet in the combination. With the 4 human cancer cells userl in this study, the SFIC values of all the combinations between Tet and Dox or Vin were less than 1.0, and the shapes of isobolograms forTab 1. $\quad \mathrm{IC}_{50}$ of Tet or Dox or Tet + Dox against MCF-7 and MCF-7/Dox in vitro. The ratios of Tet vs Dox in group 1, 2, and 3, were $192: 1,64: 1$, and $64: 3$ in MCF-7, and $1: 1,1: 3$, and $1: 9$, in MCF-7/Dox, respectively. $n=3$ independent experiments. 95% Confidence limits are in parentheses.

Drug					
		MCF-7		MCF-7 Dr_{x}	
Tel		0 608)	(0.19)-11.4811)	5.010	(1142-10088:
$1 / \mathrm{mix}$		0.067	:0.155- 11.284	4150	(0.680-7.480)
lel + Itox					
Group 1	'ret	$\pm 110!$	-0723-4931	0.150	(0.104-0.15\%
	Tol	0.0111	-0.024-0.076	0.150	(0.04-0.15\%
Imup ?	Tet	0.845	:0.074-1.010:	0.151	(10.052- 0.250
	To.	0.013	:0.00]-0.005:	0.475	(0.163-10.87
Group 3	Spl	0.127	-11.004-0.358)	0.0773	-0.018-0.164
	Ind	0.1006	10-0.012)	1.6204	- $0.154-1.4000$

Tab 2. IC S_{50} of Tet $\left(\mu \mathrm{mol} \cdot \mathrm{L}^{-1}\right)$ or $\mathrm{Vin}\{\mathrm{nmol} \cdot$ \mathbf{L}^{-1}) or Tet + Vin againsi KB and $\mathrm{KB}_{\text {vzan }}$ in vitro. The ratios of Tet $v s$ Vin in group 1, 2, and 3, were $27000: 1,9000: 1$, and $3000: 1$, respectively in $K B$, and $6: 1,2: 1$, and $2: 3$, in $\mathrm{KB}_{\mathrm{Y} 200}$, respectively. $n=3$ independent experiments. 95% Confidence limits are in parentheses.

the combinations between Tet and $\mathrm{Dox}_{\mathrm{x}}$ or Vin were concave (Tab 3, Fig 1, 2).

DISCUSSION

Both the SFIC values and the shapes of isobolic curves indicated a potentiating interaction between Tet and Dox or Vin in the rombination against the 4 human rancer cells in vitro. This

Fig 1. Isobolograms of anticancer interaction between Tet and Dox against MCF-7 and MCF-7/ Dox in vitro.

Fig 2. Isobolograms of anticancer interaction between Tet and Vin against KB and KB_{210} in vitro.
synergistic interaction was also found in the combination of Tet and chluroquine against Plasmodium falciparum in nitro ${ }^{[7]}$.

The mechanism of Tet potentiating antitumor activity may be different from that of Tet reversal effect on the resistance. The latter pointed towards the resistant rancer cells and might he somehow related to operation of MDR, such as

Tab 3．Effects of Tet＋Box or Tet＋Yin on cancer cells MCF－7 and MCF－7／Dox or KB and KB van $^{\text {in }}$ vitro． $\bar{x} \pm s$ ．The ratios of Tet／Dox or Tet／Vin in group 1，2，and 3 are identical to those in Tab 1，2．S and R lines represent MCF－7 and MCF－7／Dox in the combination of Tet and Box，or KB and KB ${ }_{\text {vain }}$ in the combination of Tet and Vin，respectively．SFIC：a sum of fractional inhibitory concentration．

over－expression of P －gp ${ }^{[8]}$ ．However，Tet manifested the potentiating effects against the sensitive cancer cells as well as the resistant ones．The sensitive cancer cells have nothing to do with MDR．Therefore，involvement of MDR can not become a convincing explanation for the mechanism of Tet potentiating activity，at least for the sensitive cells．Once enhancement of antitumor potency of a drug by a potentiating agent like Tet dominated MDR of resistant cancer cells，MDR was overcome．In this case，the mechanism of the potentiating effect by the agent may be or may not be associated with MDR operation in the resistant cells．

In conclusion，the nature of the interaction between Tet and Dow or Yin is markedly synergistic．

REFERENCES

1 Ye ZG，Sun $4 X, L i L F$, Ca XF，Ye WH． Reversal of adnamycin or vincristine resistance by tetrandrine in human cancer cells in witro．
Chin J Chin Mat Med 1996；21：369－71．
2 Lu XY．Meng SN，Yang JX，Wang P．
Reversal effects of R_{3}（extract from a Chinese herb） $\mathrm{Bu}-\mathrm{Gu}-7 \mathrm{hi}$ ）on MDR of MCF－7 ${ }^{\text {Hit }}$ cell line． Chin J Clan Oncol 1997；24：325－30．
3 Zhang XH，Zhang FR，Ji XJ，Li ZY． Vincristime－resistant human KB cell lime and
mechanism of multidrug resistance．
Acta Pharm Sin 1994；29：246－51．
4 Mosmann T．Rapid colorimetric assay for cellular growth and survival：application to proliferation and cytotoxicity assay．
J Immunol Methods 1983；65：55－63．
5 Martin SK，Oduola AMJ，Milhous WK．
Reversal of chloroquine resistance in Plasmodium faliziparum by verapamil．
Science 1987；235：899－901．
6 Berenbaum MC．A method for testing synergy with any number of agents．
J Infect Dis 1978；137：122－30．
7 Ye ZG，Van Dyke K，Castranova V．The poten－ tiating action of tetrandrine in combination with chloroquine or qinghaosu against chloroquine－sensi－ tive and resistant falciparum malaria．Biochem Biophys Res Commun 1989；165：758－65．
8 Kartner N，Riordan JR，Ling V ．
Cell surface P－glycoprotein is associated with multidrug resistance in mammalian cell lines．
Science 1983；221：1285－8．
69－73
粉防己碱与阿雪素或长春新碱联合用药的
体外抗癌增效作用 ${ }^{1}$ 隹 979.1
孙愛续，叶祖光 $2 \sqrt{2}$ 李春英，餢宝云，李兰芳，
曹秀芳，杨 庆，戴宝强（中国中医研究院
中药研究所药理室，北京 100700 ，中国）
关键词 粉防己碱；阿霉素；长春新碱；

多种抗药性；培养的肿瘤细胞：药物协同作用；台半用药；四唑钴盐

目的：研究粉防已研（Tet）和阿霉素（Dox）或长春新碱（Vin）联合用药在体外分别对人乳腺癌细胞 MCF－7 及其抗 Dox 细胞 VCF－7／Dux 或人山腔上皮样癌细胞 KB 及其抗 V in 细胞 KB_{220} 的相互作用的性质。方法：MTT 法测定Tet 和 Dox 或 Vin 单独用药或联台用药的抗癌活性。抑制浓度的分数之和
（SFIC）值及等效剂量分析方法（Isobcolugram）评价 Tet 和 Dox 或 Vin 联台用药的相互作用的性质，结果：Tet 和 Dox 或 Vin 联台用药时分别以二种不同比例配伍，其 SFIC 值均小于 1 。由此联合用药得到的等效剂量曲线图形均为凹形。结论：Tet 和 Dox 或 Vin 体外联台用药抗癌相互作用的性质为明显的增效作用。

Papers are welcome

Acta Phamacologica Sinica publishes monthly original researches on all life sciences，both experimental and clinical．Manuscripts in English of full－length articles from any part of the world are welcome．

The article should be prepared in accordance with the＂Information for authors＂in Acta Phamacologica Sinica 1999 Jan；20（1）：I－晒 or the＂Uniform requirements for manuscripts submitted to biomedical journals＂in Amm Intern Med 1997 Jan 1；126（1）：36－47．

KEY WORDS（3－10）should be selected from the latest Medical Subject Headings（MeSH）list of Index Medicus when possible．A structured abstract（no more than 250 words）contains 4 parts （AIM，METHODS，RESULTS，and CONCLUSION）．Mean values must be accompanied by s（SD， not SEM）．Body weights are expressed in actually measured $\bar{x} \pm s$ ．Do not include more digits in the data than are justified．Use Système Internationale d＇Lnités（SI units）．The statistical significances are indicated by ${ }^{a} P>0.05,{ }^{h} P<0.05,{ }^{4} P<0.01$ ．

Reviews based primarily on the author＇s own research of internationally important topic with 3－10 key words are also welcome．

Send manuscripts to Acta Pharmacologica Sinica， 294 Tai－yuan Road，Shanghai 200031，China．
http：／／www．simm．ac．en
http：／／www．chinainfo．gov，en／periodical／zgylxb
E－mail aps＠server．shenc．ac．cn
Fax 86－21－6474－2629 or 86－21－6437－0269
Phn 86－21－6474－2629（direct）or 86－21－6431－1833，ext 200.

[^0]: ${ }^{1}$ Proyect supperted by the \ational Satural Science Foundation of Chuna. W 39570871.
 2Cortespundence tu Pnof YE Zu-Guang.
 Pton 86-11)-6401-4411. pxt 2895. Fax 86-10-6401-3996.
 E-mail rzys@ mal. cirtetn.ac.cn
 Rectired 1998-02-15
 Accepted 1998-08-14

