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ABSTRACT

AIM: To investigate the mechanisms of intracellular
calcium concentration ([ Ca?* 1;) oscillations in freshly
isolated neonatal rat cortical neurons. METHODS:
Cortical neurons were isolated from neonatal rats 6 — 7 d
after birth by enzymatic digestion. [ Ca?* ]; changes
were measured in a microscopic calcium measurement
system with Fura-2 as indicator. RESULTS: In a total
of 82 neurons recorded, 47 showed spontaneous [ Ca®* J;
oscillations. ‘The spontaneous [ Ca* ]; oscillations were
dependent on [Ca?* ],. Removal of [Ca®* ], complete-
1y abolished spontaneous oscillations. Tetraethylammo-
nium 1 mmol/L increased both the amplitude and
frequency of calcium oscillations, whereas the frequency
was increased by Cs* 1 mmol/L. Ba** 1 mmol/L, in
contrast, induced [Ca?* |, oscillations superimposed on a
sustained phasic increase. CONCLUSION: Sponta-
neous [ Ca2* ], oscillation is an intrinsic property of
neonatal rat cortical neurons. Potassium channels play
an important role in the control of both the amplitude and
frequency of [Ca®* ]; oscillations in cortical neurons.

INTRODUCTION

Intracellular calcium ([ Ca?* };) is a ubiquitous
intracellular signal which by way of calmodulin, C22*/
calmodulin-dependent protein kinases, and corresponding
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substrates, modulates multiple cellular functions in
different types of cell. At the single cell level, [Ca®* ];
increases are by the form of oscillations, being subject to
both amplitude and frequency modulation ( AM and FM) .
AM and PM medulation confers complex encoding of
Ca’* signaling, to ensure specificity of modulation. The
mechanism of Ca?* oscillation occupies a pivotal position
in cell physiology .

It has been shown that phospholipase C signaling
pathway plays a critical role in the generation of Ca**
oscillation in non-excitable cells such as the pancreatic
acinar cells!). But in electrically excitable cells,
voltage-dependent ionic channels are very important, eg,
the cyclic opening of the ATP-sensitive potassium channel
Kurp is crtical for C22* oscillations in pancreatic f
cells'?), In cultured neuronal cells, spontaneous Ca®*
oscillations are frequently observed. In these cases,
neurctransmitter release and synaptic connection was
found to play an important role in the generation of
spontaneous Ca?* oscillation™’. But whether sponta-
neous Ca’* oscillation occurs in synaptically disconnected
peurons is not known.

In this work, we found that freshly isolated (with no
synaptic connection} and perfused neonatal rat cortical
neurons showed spontaneous Ca’* oscillations, indicating
that Ca®* oscillation may be an intrinsic property of
neurons. 1t was also found that potassium channels
played an important role in the encoding of calcium
osciltatory signal .

MATERIALS AND METHODS

New bomn Sprague-Dawley rats of 6 — 7 d old were
killed by cervical dislocation. Brain slices (400 pm)
were cut in artificial cerebrospinal fluid solution { ACFS)
at 4 C on a vibroslicer (ZQP-86, China). The slices
were held at 2225 T in oxygenated ACFS for 51 — 60
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min before and 40 min after digestion in Pronase E
(0.04 %, 20 min). A piece of brain tissue was
mechanically dissociated by gentle trituration with fire
polished pipettes with decreasing diameters ($ 700 = 100
pm) in Sykus-Moore chamber with the bottom of
coverslip treated with Cell-Tak ( Becton Dickinson,
Bedford, MA, USA). Dissociated neurons were
allowed to attach for 15 min before perfusion with
oxygenated perfusion buffer.

ACFS used in this work had the following com-
position (mmol/L): NaCl 126, KCl1 5, NaH,PO, 1.25,
C«Cly 2, MgS0, 2, NaHCO; 26, and glucose 10.
Perfusion buffer had the following composition ( mmol/
L): NaCl 138, KC1 5, CaCl, 2, MgCl, 1, glcose 20,
and N-[ 2-hydroxyethyl | piperazine- N'- [ 2-ethanesulfonic
acid] (HEPES) 10, pH 7.4. Freshly isolated cortical
neurons were incubated in perfusion buffer comtaining
Fara2 AM 3 umol/L for 40 min at room temperature
with gentle shaking by the hand every 10 min. After
loading, neurons were perfised with buffer for 20 min to
remove unloaded Fura-2 AM. Sykus-Moore chamber
containing Fura-2 loaded cells was positioned on the
microscope stage of an inverted fluorescence microscope
(Olympus IX70) coupled to a microfluorometric calcium
measurement system (M40, PTI, USA). Fura-2 was
excited at 340 nm/380 nm and fluorescence recorded at
510 nm (1 x 10* ~ 1 x 10° counts per second), [C2* ,
changes being recorded as changes in fluorescence ratio
Fan/ Fagy. Neurons were continuously perfused (1 ml./
min), and stimulating chemical was introduced to the
neurons by a change of perfusing buffer.

Fura2 AM and Cell-Tak were purchased from
Molecular Probes ( Bugene, Oregan, USA) and from
Becton Dickinson {Bedford, MA, USA) respectively.
Pronase E, tetracthylammonium ( TEA ), BaCl,, and
CsCt were from Sigma (St Louis, MO, USA). Al
other chemicals were of analytical grade.

RESULTS

The dissociated cortical neurons ( >90 % viable by
Trypan Blue exclusion) readily attached to Cell-Tak
treated cover-slips, and maintained at least one nerite.
After Fura-2 loading, the neurons remained alive for
>2h.

In a total of 82 untreated neurons, 47 showed
spontaneous [ Ca2* |; oscillations (57.3 % ). These
oscillations were rather sporadic, the frequency and

amplitude showed some variation (Fig 1, n =47).
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Fig 1. Spontaneous [Ca’* ], oscillations in freshly
isolated rat cortical neurons. Similar escillations were
observed in 46 other cells (n=47).

In the oscillating cells, it was found that extra-
cellular calcium was important for the maintenance of
oscillations. Removal of [ Ca?* ], ( omission of Ca’*
from the medium) completely abolished these [ Ca®* ],
oscillations (Fig 2, n=8).
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Fig 2. Removal of extracellular calcium abolished

spontaneous Ca’* oscillations. [Ca?* ], was removed

during the period indicated by the herizontal bar,

Similar effects were observed in 7 other cells {n=8).

To determine the effects of potassium channels in the
generation of caicium oscillations, a number of potassium
channel inhibitors were used. These include inhibitors
for the outward current (TEA), the inward rectifiers
(Cs*), and both the outward current and inward rectifier
(Ba®* ). When TEA | mmol/L was added to the
perfusion medium, the amplitude of oscillations increased
markedly, the frequency also showed significant increase.
The TEA effect was reversible (Fig 3, n=6) . In non-
oscillating cells, TEA could also induce oscillations (not
shown). It is interesting to note that in comparison with
Cs* and Ba?*, the onset of TEA effect was significantly
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tions in freshly isolated rat cortical neurons. TEA was
added during the period indicated by the horizontal
bar. Similar effects were observed in 5 other cells
{n=6).

delayed (5 min) .

In comparison, when Cs* 1 mmol/L was added to
the perfusion medium, the frequency of oscillations
increased (Fig 4, n =6). The effect was reversible
upon wash-out of Cs*. Ba®* 1 mmol/L, a dual
inhibitor for both outward current and inward rectifier
current, induced bursting [ Ca®* ]; oscillations
superimposed on a long-lasting phasic increase in
[Ca®* ]; (Fig 5, n=7). This latter increase was long-
lasting ot quite permanent, in this particular cell, a
secondary burst also occurred at 2 later time.
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Fig 4. Effect of Cs* on spontaneous [ Ca®* ]; oscilla-
tions in freshly isolated rat cortical neurons. Cs* was
added during the period indicated by the horizomtal
bar. Similar effects were observed in 5 other cells
(n=6}.

DISCUSSION

In this work, it was found that spontancous calcium
oscillations occurred in freshly isolated neonatal mat
cortical neurons (Fig 1). The percentage of oscillating
cells was 57 % (47 out of 82), significantly higher

Fig 5. Effect of Ba>* on spontaneous [ Ca®* ]; oscilla-
tions in freshly isolated rat cortical neurons. Ba’* was
bar. Similar effects were observed in 6 other cells
{(n=7).

than primary culture of the same neurons. Shimizu er @/
(1992), using primary cultured embryonic rat cortical
neurons, found that about 30 % of the cultured neurons
showed spontaneous calcium oscillations. It was also
determined that synaptic connections and NMDA receptors
were important in the generation of these spontaneous
calcium oscillations®’ .

In a more recent report, it was found that in primary
cultured embryonic rat cortical neurons, both removal of
Mgt from extraceliular medium and addition of
4-aminopyridine (4-AP) induced synchronized calcium
oscillations.  These synchronized oscillations were
triggered by release of glutamate, and subsequent NMDA
(Mg* induction) and AMPA/KA (4-AP induction )
receptor activation. Synapse formation was essential in
the generation of synchronized oscillations, both in the
initiation and propagation phases. These authors
speculated that spontaneous or constitutive synaptic vesicle
fusion and glutamate release were particularly important in
the initiation of this process™”. The freshly isolated
neurons do not form synaptic connections, therefore these
oscillations must be of a different mechanism.

Spontaneous electrical activities are a common
feature for many types of excitable cells. Spontaneous
action potentials are routinely observed in gonadotropin-
releasing hormone (GnRH) neurons™®), smooth muscle
cells'"®), cerebellar Purkinje cells®, and anterior and
intermediate pituitary cellst®""},  Spontaneous EPSP are
routinely observed in all cortical neurons''?’, and neurons
in the cortex are known to show intrinsic electrical
oscillations(23), Membrane depolarization leads to the
opening of voltage-dependent calcium channels (L, N,
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T, and P/Q) which have been shown to exist in isolated
rat cortical neurons'®, apd this leads to subsequent
calcium influx. Spontaneous action potential is a direct
cause for increases in {Ca?* ];. The fact that omission
of calcium from the extraceliular solution abolished
[Ca®* ]; oscillation {Fig 2} confirmed that calcium influx
was important for the maintenance of spontaneous
[ Ca** ], oscillations. Therefore bursts of action
potentials will account for the generation of spontaneous
[Ca?* ]; oscillations in the freshly isolated neonatal rat
cortical neurons.

Potassium channel inhibitors madified both the
frequency and amplitude of calcium oscillations (Fig 3 —
5). The outward potassium current had been identified
before in isolated rat cortical neuronst™’ . TEA induced
increase in the amplitude of [ Ca®* ]; oscillations was due
to its effect to prolong the duration of action potential and
subsequently increased action potential-carried calcium
influx. But it also increased the frequency of calcium
oscillations, indicating that increased calcium entry may
have some positive effect on the neuron itself for
subsequent ability to fire action potentials in oscillating
neurons ( which may also make non-oscillating neurons
tend to oscillate). The inward K* rectifier current is
known to oppose depolarizing influences'™ , to dampen
neuronal excitability!™, and to slow heart rate or be
involved in GABA-mediated inhibition in CNS
neuronst*®},  Inhibition of the inward K* cument
increases the likelihood of action potential bursts.
Therefore inhibition of the inward K* current by Cs*
increased the frequency of calcium oscillations.  Similar
effects of potassium channel inhibitors on spontaneous
calcium oscillations have been observed in the anterior
pituitary lactotrophes also'™.  Ba?* inhibited both
inward and outward K* currents and subsequently induced
a phasic increase in [ Ca** ]; upon which bursting
oscillations occumred.  The sustained elevation in
[C2* ]; also led to secondary burst of calcium
oscillations. Ba®* induced phasic or sustained increase
in Fay/ Fay was probably due to a lack of efficiency of
the calcium pump to handle Ba’* .

In contrast to the regular, synchronized [ Ca?* |;
oscillation observed in cultured neurons, the spontaneous
calcium oscillations in the freshly isolated cortical neurons
were rather sporadic or stochastic, with much less
consistency both in frequency and amplitode. Some
excitable cells are known to generate spontanecus
electrical impulses at random®’, The opening and

21]_

closure of individual ion channels occur randomly[
Single channel currents are known to trigger action
potentials®’.  Action potentials drive calcium influx,
sporadic or stochastic bursts of action potentials thus lead
io sporadic or stochastic [ Ca#* )i oscillations. The
identities of the oscillating and non-oscillating neurons
remain to be clarified. These spontaneous activities
may, however, play a role in CNS development and
maturation.  The potassium channels seemed very
important in damping or clamping the occurence of
[Ca®* ]; oscillations. In organized neuron network,
synaptic connection leads to a lower percentage of
spontaneously oscillating cells.
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