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ABSTRACT

Modeling of molecular interactions is increasingly used in life science research and biotechnology development.
Examples are computer aided drug design, prediction of protein interactions with other molecules, and simulation of
networks of biomolecules in a particular process in human body.  This article reviews recent progress in the related
fields and provides a brief overview on the methods used in molecular modeling of biological systems.

INTRODUCTION

Interactions between biomolecules are fundamen-
tal to numerous biological processes[1].  Based on these
interactions, living organisms maintain complex regula-
tory and metabolic interaction networks that together
constitutes the processes of life.  Understanding of
biomolecular interactions is therefore the key in solving
the mystery of life.  The development of modeling tools
for molecular interactions is also essential for rational
design of therapeutic drugs and new synthetic proteins
that can cure diseases and improve the quality of life
for all of us.

Revolution in molecular biology has laid the foun-
dation for the development of molecular modeling into
a meaningful weapon in the study of biomolecular
interactions.  Crystallography and NMR have provided
and are continuing to provide the 3D structure of a large
number of macromolecules.  Such knowledge is es-

sential for realistic modeling of biological systems at
molecular level.  Advances in the understanding of vari-
ous biological and disease processes have provided in-
formation about the targets of modeling investigation
and served to guide and test the modeling algorithms.

The extensive application of molecular modeling
in the study of biological systems is also possible by the
rapid advances in computer technology.  The increase
of computer power and the decrease of its cost have
provided powerful facilities for the simulation of large
and complex systems.  As a result, we have witnessed
a rapid growth in the development and application of
computer algorithms and software tools for modeling
molecular interactions in various biological systems and
in drug discovery studies.  This article intends to give
an overview on the recent progresses in modeling ligand-
protein, ligand-nucleic acid, protein-protein, and pro-
tein-nuclei acid interactions.  A brief description to the
methodologies for modeling each of these interactions
is also given.

MOLECULAR  MODELING  AND  DRUG DESIGN

With specific aim at rational drug design, tremen-
dous effort has been made in the development of algo-
rithms and softwares for modeling ligand-protein inter-
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actions[2-9].  Until recently, drugs that exert therapeutic
effects on human body were discovered exclusively by
slow and chance-dependent random screening
processes.  The average design cycle for a drug was 6-
12 years[10].  Such a rate is too slow to meet today’s
ever increasing and urgent demand to combat various
illness such as cancer, AIDS, and heart diseases.  In
addition to the cost of 359 million US dollar per mar-
keted drug[11] is too expensive to supply affordable
medicines.  Thus a rational approach to drug design
needs to be developed.  Modeling of ligand-protein in-
teractions is widely considered as the best approach to
accomplish this task.

Rapid advance in molecular biology has provided
insight into molecular aspects of disease processes.
Proteins involved in many diseases have been identified.
Some of these proteins are candidates as target for new
drug development (Moreover some genes and RNA re-
lated to disease causing proteins are also used as drug
targets).  A drug compound is designed to bind to its
protein target to either directly block its active site (where
biochemical reactions take place) or to change its 3D
shape (protein function is shape-dependent).  In this
way the designed drug can inhibit the function of the
targeted protein and thus stop the disease process.

While several strategies can be employed to de-
sign drugs, the most rational approach is based on the
3D structure of the receptor of to be designed drug.
This can be understood from the mechanism of drug
binding.  Drug binding is similar to inserting a key to a
lock.  The target protein acts as a lock with one or a
few cavities.  A drug can bind to it only if the 3D shape
of the drug matches that of one of its cavities, and fa-
vorable chemical interactions results in the cavity.
Hence given the 3D structure of a protein target, com-
pounds can be designed to fit to a cavity, which is called
ligand-protein docking.  As the shape of both ligand
and protein can adjust upon binding (induced fit), this
needs to be taken into consideration in an accurate dock-
ing study.  The best docked compounds can be used as
leads to further design drugs by testing and optimizing
their therapeutic effect.

Rapid advances in modeling techniques and com-
puter technology have made it possible to do fast speed
automated docking on computers.  Newly developed
softwares are capable of docking 80 000 compounds
to a protein in several days on commonly available com-
puter systems[12], which shows its potential in saving
time and cost in drug design process.  Computer inter-

active graphics and modeling has played an important
role in the successful design of such drugs as HIV-1
inhibitors[4,13] and a host of antihypertensive, anticancer,
antiarthritis, immunosuppressants, and other drugs[2,4].

INTERACTIVE  GRAPHICS  APPROACHES

Molecular interactions generally involve surface
van der Waals contact, hydrogen bond linkage, ionic
interaction, and hydrophobic packing.  Molecular sur-
face analysis and computer graphics algorithms have
been developed to display these important features[2,4].
Algorithms for molecular surface profile were solved
in the early 1980s by Connolly and others[14-16].  A smooth
three-dimensional contour about a molecule can be gen-
erated by rolling probing spheres on the surface atoms
represented by a group of spheres of van der Waals
radii (Fig 1).  The molecular surface envelope can be
drawn on either color raster computer displays or real-
time vector computer graphics systems.  Molecular areas
and volumes can also be computed analytically from
this surface representation.

In the mid to late 1980s Honig and colleagues had
developed accurate numerical methods for calculating
the total electrostatic energy of molecules of arbitrary
shape and charge distribution[17].  These methods ac-
count for both Coulombic and solvent polarization terms.
In addition to the solvation energies of individual
molecules, these methods can be used to calculate the
electrostatic energy associated with conformational
changes in proteins as well as changes in solvation en-
ergy that accompany the binding of charged substrates.
Parallel to this development, the linearized Poisson-

Fig 1.  Molecular surface envelope (light blue lines) gener-
ated by rolling a probing ball on the surface of atoms repre-
sented by a group of spheres of van der Waals radii.
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Boltzmann equation was also used to derive electro-
static interactions between pairs of atoms in proteins[18].
This equation can be solved accurately by a method
that takes into account the detailed shape of the protein.
Methods for computing electron density[19] and hydro-
phobic potential[20] had also been developed in the early
1990s.

The surface quantities are represented by a smooth
multi-color three-dimensional contour[20] and they can
be displayed in popular softwares such as SYBYL and
InsightII etc.  In addition to other features  hydrogen
bonds in a molecular system can also be displayed.  The
hydrogen bonds are detected by scanning the distance
between each of potential hydrogen donor and accep-
tor pairs.  Any pair whose separation is less than 3.5 Å
is regarded as forming a hydrogen bond. 

LIGAND-PROTEIN  DOCKING 

With the increasing computer power, efforts have
been directed towards the development of automated
and effective programs for docking a ligand to its re-
ceptor sites[21-23].  The first work started in 1982 by
Kuntz group[24].  They used a geometric approach to
place and orient a ligand in a cavity on a protein.  Algo-
rithms based on shape complementarity were designed
to examine many binding geometries and evaluate them
in terms of steric overlap.  This strategy has since been
improved and applied to various problems such as sys-
tematic screening and drug lead optimization[12,25-27].  The
methodology can be described as follows.

In a real ligand-protein binding process, a ligand
binds at a site in a cavity of protein.  This binding is
similar to inserting a lock to a key, except that both
parties can adjust its shape upon binding (induced fit)
(Fig 2, 3).

This binding process can be simulated by a 3-step
procedure (Fig 4):

1. Creation of a model of cavity by a cluster of
overlapping spheres that fills the cavity.

2. Matching and orient the ligand to the cavity
model through comparison between ligand atom posi-
tion and individual spheres.  The best matched ones are
selected.

3. The selected ones are rated for chemical as well
as geometric complementarity within the cavity.

In Fig 4, to give a better view of the sphere cluster,
each sphere is shown as a much smaller sized ball.

The sphere cluster is generated based on the sur-

face feature of a cavity.  The program SPHGEN, from
DOCK suit of programs[25,27], can generate sphere clus-
ters using surface points derived from the software MS
(available from Quantum chemistry program exchange)
or MidusPlus[28,29].

To evaluate chemical complementarity of docked
ligand-protein systems, various scoring schemes have
been created[25,27,30-33].  In these schemes, ligand-protein
interaction is evaluated by a grid-based and often simple
energy function which ensures the speed for screening
large number of compounds to find potential lead com-
pounds that can be docked to a particular receptor.

In view that ligand-protein interaction involves in-
duced fit, much effort has been paid throughout the
1990s to the development of algorithms for flexible
docking.  One approach has been to use Monte Carlo
simulation and simulated annealing to sample ligand flex-
ibility[29,30].  In this approach, a molecular mechanics
force field is used to orient the ligand and search for its
low energy conformation.  The protein pocket is either
held rigid or allowed with limited flexibility.  The disad-
vantage of this approach is that it is slow to identify
global minima and it can spend significant time in ex-
ploring local minima.

In an alternative approach, fragment or incremen-
tal construction algorithms have been developed[34-36].
This method divides a ligand into modular pieces and
then dock them separately.  These pieces are then joined
together in the cavity.  Applications of this method[12,35-37]

showed that this method was relatively efficient and
accurate.  A drawback is that the initial docking of frag-
ments necessarily reduces the amount of information
for fitting the whole ligand to the cavity.  In addition the
division of the fragments is not unique and it can sig-
nificantly influence the final docking result[37].

Genetic algorithm has also been applied to flexible
docking[38,39].  In this approach, ligand conformations
and orientations are represented as populations.  Using
a series of operations resembling genetic crosses and
mutations, followed by selection according to a scor-
ing function, increasingly favorable populations of pos-
sible binding structures are propagated.  The quality of
the result depends on the starting genes, number of
mutations and crossover operations, and the quality of
scoring function.  This approach gives fairly accurate
results and there is progress in improving the speed of
genetic algorithm computation[32] .

A ligand-protein inverse docking method
INVDOCK[40] was recently introduced by Chen et al as
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a computer method for identification of potential pro-
tein targets of a drug.  It has been shown the potential
of this approach in: (1) identification of unknown and
secondary therapeutic targets of a drug, (2) prediction
of potential toxicity and side effect of an investigative
drug, (3) probing molecular mechanism of bioactive
herbal compounds such as those extracted from plants
used in traditional medicines[41-43].

There are other methods that exploit various chemi-
cal properties to do efficient docking.  The program
Hook uses the potential ligand-protein hydrogen bond-
ing sites as a guide to orient and dock a ligand[44].  The
software LUDI positions molecules into a cavity so that
hydrogen bonds are formed and hydrophobic pockets
are filled with hydrocarbon groups[45].  GenStar gener-
ates chemically reasonable structures from sp3 carbons
to fill the binding site[46].  The distribution of partial
charges is also used in a Poisson-Boltzmann approach

for flexible docking[47].

MODELING OF LIGAND-NUCLEIC ACID
INTERACTIONS

Interactions of small molecules with DNA have
been studied for several decades in the hope of learning
the principles for targeting specific DNA sequences to
control gene expression and design better anticancer

Fig 2.  A cavity in an enzyme within which its inhibitor
binds.

Fig 3.  The inhibitor of this enzyme fits into this cavity by a
lock and key mechanism.

Fig 4.  The three steps of ligand-protein docking.
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drugs[48].  More recently attention is being paid to the
modeling of ligand-RNA interactions with the realiza-
tion that RNA is a promising therapeutic target[49,50].

Early work was concentrated on the study of the
interaction of intercalating drugs with DNA.  In later
1970s several groups used empirical potential functions
to compute the interaction energy between a DNA
minihelix and cationic intercalators such as ethidium,
profavin, and 9-aminoacridine[51].  In mid 1980s,  Kai-
xian CHEN et al conducted a series of studies to inves-
tigate the structural and energetic factors involved in
the sequence selective binding of daunomycin to vari-
ous double stranded hexanucleotides[52].  They were able
to obtain accurate interaction energies and conforma-
tional energy changes by employing the SIBFA
procedure, which uses empirical formulas based on ab
initio SCF computations.  Since then, molecular me-
chanics with improved force fields has been used to com-
pute interaction energy between DNA and various drugs
including both intercalators and groove binders[53,54].

The modeling of the thermodynamics of ligand-
DNA binding has received a lot of attention in the 1990s.
Kollman and colleagues employed a free energy pertur-
bation/molecular dynamics approach to compute the free
energy differences between ligand-DNA complexes
having different base pair sequences[55].  The results on
acridine and daunomycin generally reproduce the se-
quence dependent binding preference observed experi-
mentally.  Chen and Prohofsky applied a modified self-
consistent phonon approach of a harmonic lattice dy-
namics algorithm to compute the equilibrium binding
constant of daunomycin and netropsin to DNA[56,57] and
the effect of drug binding on DNA melting[58].  In their
approach, drug motions are decomposed into individual
group motions involving bond breaking, bond rotation
and translational displacement.  These motions can be
modeled at atomic level by a harmonic oscillations and
the thermodynamics can be solved based on lattice dy-
namics theory originally introduced in condensed mat-
ter physics.  In addition, normal mode computation was
also used to probe the dynamics and interpret experi-
mental findings of ligand-DNA binding[59,60].

Aimed at the design of novel RNA binding thera-
peutic agents, attention has recently been focused on
the extension of ligand-protein docking algorithms to
solve ligand-RNA docking problems.  Although still in
an early stage, some useful results have been developed.
For instance, in 1998 Leclerc and Cedergren combined
3D-SAR with a docking protocol to determine bound

conformations of aminoglycosides which associate with
the Rev-binding element (RBE) RNA[61].

PROTEIN-PROTEIN  AND  PROTEIN-DNA  INTER-
ACTIONS 

Protein-protein and protein-DNA interactions play
central roles in regulatory and metabolic processes in
living systems.  Structural information for macromo-
lecular binding is the key in understanding these inter-
actions and the effect on function.  Given the disparity
between the number of solved protein structures and
that of protein-protein and protein-nucleic acid
complexes, development of predictive protein docking
methods has become a focus in the field[62].  A major
development of the past few years has been two blind
trials of protein docking methodologies as well as other
protein modeling methodologies.  One is the Alberta
challenge which includes the binding of beta-lactamase
and its inhibitory protein[63].  The other is the Compara-
tive assessment of protein structure prediction 2
(CASP2) which involves a hemagglutinin-antibody com-
plex[64].

A widely used approach for rigid docking between
proteins is the DOCK algorithm[65], which is essentially
similar to that of ligand-protein docking.  To facilitate
the determination of potential binding regions, several
algorithms have been designed for quickly finding the
contacting surfaces of the two binding proteins[62].
These algorithms are based on a sparse critical points
method or a grid based representation of molecular sur-
face representation[66].

Simplified representations of protein geometry
have also been used by several groups to reduce sensi-
tivity to small perturbations in conformation[62].  Janin
and coworkers replaced amino acids with spheres of
various radii and performed docking to maximize the
buried surface[67].  This is followed by structural re-
finements using Monte Carlo simulated annealing and
energy minimization.  Duncan and Olson used spheri-
cal harmonics to describe the protein surface and opti-
mizes the geometric complementarity of docking based
on genetic algorithm and Monte Carlo simulated anneal-
ing[63].  Webster and Rees applied graph theory to mo-
lecular docking whereby the core of a molecule is en-
closed in an ellipsoid and the remaining parts are pos-
sible binding sites[68].  Docking is facilitated by the graphs
connecting the ellipsoid surface and the surfaces of the
binding proteins followed by evaluation of nonbonded
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energy.  These methods were used in the two docking
challenges[62-64].

Another method that has generated substantial in-
terest is Fourier correlation algorithm[69].  This method
uses a grid-based molecular representation strategy.
Each grid node is assigned a numerical value corre-
sponding to molecular surface, protein core or empty
space.  Surface complementarity is determined by cal-
culating the Fourier correlation of two grids.  The rela-
tive orientations are changed and the process repeated
until rotational space has been completely searched.
This approach has since been improved and applied in
the Alberta challenge[62,64].

Efforts have also been directed towards the inclu-
sion of molecular flexibility in protein-protein docking.  For
instance, energy minimization has been introduced to pu-
tative docked structures to relieve the steric clashes[64,66].
Monte Carlo and simulated annealing has also been used
to dock proteins[61].  In this approach, a flexible protein
ligand moves within a precalculated grid of atomic
potentials, while the protein receptor is kept stationary.
This limits the otherwise enormous search space.  Fur-
ther along this line, a global optimization method was
introduced which involves a combined Brownian and
Monte Carlo followed by an energy minimization[70].

Protein-nucleic acid interactions generally involve
highly charged groups and substantially more flexible
conformation changes than that of protein-protein
interactions.  As a result, there has been few attempts
in protein-nucleic acid docking.  Knegtel and colleagues
developed the MONTY algorithm to study protein-DNA
docking[71].  In their approach, Monte Carlo simulations
are used to explore binding space.  Both sidechain and
DNA helix flexibility are taken into consideration.  Pos-
sible binding complexes are selected based on a simpli-
fied energy scoring function.  Sternberg and colleagues
extended their FTDOCK algorithm to repressor-DNA
docking[62].  They adopted a Fourier correlation algo-
rithm combined with modified parameters for charge
specificity in protein-DNA binding.  The unbound form
of the protein was docked to a model DNA containing
the target sequence.  Possible complexes are ranked by
an empirical protein-DNA pair potential.

CONCLUSION

Computational methods for biomolecular interac-
tions are important tools in facilitating the understand-
ing of the mechanism of biological processes and in

rational design of drugs and novel proteins.  We have
witnessed tremendous growth in this field as evidenced
by a large number of publications and new software
algorithms developed in the last few years.  Molecular
modeling is widely used in the study of the mechanisms
of drugs[72-77] and has contributed to the design of sev-
eral drugs and lead compounds[2,4,13].  New modeling
methods are emerging along with other new develop-
ments in biomedical science and biotechnology.  Appli-
cations of combinatorial chemistry and high-through-
put screening in drug discovery processes[78,79] are now
pushing the development of tools for molecular diver-
sity and the design of diverse libraries[80].  Accumula-
tion of functional information has begun to reach the
level that makes it possible to model biomolecular sys-
tems in the cellular and tissue environments[81].  The
human genome project and the generation of more and
more structural and functional information from other
experimental means will further demand and accelerate
the development of molecular modeling.
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