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ABSTRACT

Urocortin and other hypothalamus corticotropin-releasing factor (CRF) polypeptides play biologically diverse
roles in the stress, cardiovascular and inflammatory responses by acting on central and peripheral CRF receptors.
Urocortin shows a significantly high sequence homology to CRF, and the concurrent expression of type-2 CRF
(CRF2) receptors with urocortin in the heart suggests that urocortin may play a physiological role in the cardiac
function.  Urocortin is thought to be the endogenous agonist producing the cardiovascular actions previously
attributed to CRF.  This review highlights the current novel findings on the molecular and cellular mechanisms by
which urocortin may exert its cardiovascular protective action.

UROCORTIN  AND  CRF RECEPTORS

Urocortin, a 40 amino acid peptide belongs to the
hypothalamic CRF family, which also include CRF,
urotensin and sauvagine.  CRF polypeptides play bio-
logically diverse roles in the stress responses by acting
on central neurons expressing CRF receptors.  CRF
receptor agonists acting on the peripheral CRF recep-
tors contribute to the regulation of cardiovascular and

inflammatory responses.  Abnormal CRF receptor-me-
diated cellular signaling might be closely associated with
the pathophysiology of stress-related centrally controlled
disorders such as anxiety, depression and impaired car-
diovascular function.

Urocortin, first identified in rat[1] and later in man[2,3],
is the second mammalian member of the CRF family to
be found and displays 45 % amino acid sequence ho-
mology to CRF.  Urocortin is more conserved than CRF
across species.  The CRF and urocortin precursor genes
consist of two exons with the entire precursor protein
encoded within the second exon[3].  The search for new
members of CRF family has led to the cloning of
stresscopin and stresscopin-related peptide from hu-
man cDNA[4] and urocortin II and urocortin III from
mouse cDNA[5,6].  These new peptides containing 38
amino acids share high degree of sequence homology.
The human myocardium is immunohistochemically
positive for urocortin and immunoreactive intensity is
greater in the failing heart[7].  A recent study on the hu-
man heart obtained at autopsy reported that urocortin-
like immunoreactivity was detected in all four cham-
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bers with the highest intensity in the left ventricle[8].  In
contrast, CRF-like immunoreactivity or CRF mRNA is
basically undetectable in the human heart[8].  These re-
sults suggest that urocortin can be endogenously syn-
thesized in the human heart and may exert its cardiac
action in an autocrine and/or paracrine manner, even
though the cellular location of urocortin is not known.
Urocortin but not CRF has been proposed to act as an
endogenous ligand mostly for CRF2 receptor in the
mammalian cardiac myocytes[8,9].

The physiological actions of CRF polypeptides are
believed to be mediated through G protein-coupled seven-
transmembrane receptors (CRF1 and CRF2) derived from
two distinct genes[10,11].  Urocortin selectively binds to
CRF2 receptors with over 100-fold greater affinity than
CRF[9].  CRF2 receptor mRNA is widely expressed in
peripheral tissues including cardiac myocytes[12,13].  Two
subtypes of CRF2 receptors are cloned from cardiac
tissues, CRF2(α) receptors in human and CRF2(β) recep-
tors in the rat[14,15].  CRF2(α) receptor mRNA is detected
in the human heart and CRF2(β) receptor mRNA is pre-
dominantly expressed in the left atrium[8].

Activation of CRF2 receptors elevates the cellular
contents of cyclic AMP through the Gs protein-adeny-
late cyclase pathway[16].  Urocortin also stimulates the
phosphorylation of cyclic AMP response element-bind-
ing protein (CREB) in cells expressing CRF2 receptors,
and the cyclic AMP-dependent protein kinase (PKA)
inhibitor blocks formation of phosphorylated CREB[17].
Like β-adrenoceptor agonists, urocortin exerts its
iontropic or chronotropic effects likely via a PKA-de-
pendent mechanism.

VASODILATATION

Urocortin produces a potent and long-lasting hy-
potensive action in conscious rats[1], probably due to
reduced peripheral vascular resistance.  Its vasodilator
effect was also reported in the human perfused pla-
centa and saphenous veins[18,19], in the rat cerebral, tail
and coronary arteries in vitro[20-22], and in the sheep coro-
nary arteries in vivo[23].  The non-selective CRF recep-
tor antagonists such as α-helical CRF (9-41) and
astressin inhibit the vasorelaxant effects of urocortin,
suggesting that CRF receptors mediate the vascular
response of the peptide.  With development of more
selective antagonists for CRF receptor subtypes, the
relevant contribution of CRF2(a) and CRF2(b) receptors
to urocortin-mediated vasodilatation ought to be

revealed.  CRF2(b) receptors are expressed in blood ves-
sels of both non-pregnant and pregnant rats, which may
mediate the vasorelaxant effect of the CRF polypep-
tides[24].  The potent hypotensive effect produced by
urocortin in wild-type mice is completely lost in CRF2

receptor knockout mice[25].  Nevertheless, the physi-
ological role of urocortin in vascular function has not
been established.

The endothelium appears to play varied roles in
urocortin-induced relaxation in some vascular beds.
Removal of endothelium does not affect the relaxant
response to urocortin in the isolated rat tail and basilar
arteries[20,21].  In contrast, the reduced relaxant response
to urocortin was observed in the endothelium-denuded
rat coronary arteries[22].  Removal of endothelium also
blunts CRF-induced relaxation of the pregnant rat uter-
ine artery[26] and the non-pregnant rat aorta[27].  Endo-
thelial cells express predominantly CRF(2b) receptors in
the rat aorta with low expression in the smooth muscle
layer[24], implicating a role of endothelium in CRF-me-
diated vasorelaxation.  Treatment with inhibitors of ni-
tric oxide synthase (NOS) or guanylate cyclase reduces
relaxations to urocortin in the rat coronary artery[22] or
to CRF in the rat aorta and uterine artery[26,27].  NG-nitro-
L-arginine, a NOS inhibitor attenuates the vasodilator
effect of CRF in the isolated rat heart[28] and in human
foetal-placental vessels[29].  These data suggest a
NO-mediated cyclic GMP-dependent mechanism in-
volved the vasorelaxation to CRF polypeptides.
However, in the isolated rat heart NOS inhibition does
not diminish the urocortin-induced reduction in coro-
nary perfusion pressure at a constant flow rate[30].  In
contrast,urocortin-induced NO-mediated relaxation can
be achieved at concentrations below 30 nmol/L in the
rat coronary artery[22].  However, whether coronary va-
sodilatation is also a consequence of metabolic relax-
ation due to an increased cardiac contractility remains
to be investigated.

CRF2 receptors, also expressed in vascular smooth
muscle[24] may mediate urocortin-induced endothelium-
independent vasodilatation.  Upon stimulation of CRF2( )

receptors, cyclic AMP and subsequent PKA-dependent
cellular process are proposed to mediate the cardiovas-
cular effects of the CRF polypeptides[1,13].  Urocortin
increases intracellular cyclic AMP production in a rat
aortic cell line, A7r5[31].  The PKA inhibitors (Rp-
cAMPS, KT 5720 or SQ22536) reduce urocortin-in-
duced relaxation in isolated rat tail, basilar and coronary
arteries[20,21,32].  In contrast, the cyclic GMP-dependent
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mechanism is unlikely involved since KT 5823 (an in-
hibitor of cyclic GMP-dependent protein kinase) has
no effect[32].  A markedly reduced vasorelaxant effect
of urocortin or CRF in elevated extracellular potassium
was observed in the rat uterine[26], coronary[22], cere-
bral[20], and pulmonary arteries (unpublished observa-
tion).  This raises a possibility that urocortin may hy-
perpolarize vascular smooth muscle cells via activation
of K+ channels.  Urocortin-induced relaxation is attenu-
ated to a similar extent by iberiotoxin, a potent blocker
of large-conductance Ca2+-activated K+ (BK) channels
and by tetraethylammonium ion (TEA+) at concentra-
tions that inhibited single arterial BK channels[33].  In the
human saphenous veins the relaxation to urocortin is
also reduced by TEA+ [19].  These new results support
the notion that urocortin may activate BK channels, and
subsequent membrane hyperpolarization inhibits Ca2+

influx via arterial voltage-gated Ca2+ channels.
Both ATP-sensitive (KATP) and BK channels are

activated by PKA stimulation in porcine or rabbit coro-
nary artery smooth muscle cells.  Urocortin-induced
coronary relaxation is unaffected by glibenclamide[32] at
a concentration that blocks vascular KATP channels[34],
indicating a negligible role of KATP channels.  Similar
results were reported in the rat cerebral[20] and uterine
artery[26].  It appears that a larger portion of urocortin-
induced relaxation is mediated by stimulation of recep-
tor-coupled adenylate cyclase, which results in activa-
tion of BK channels.  Similarly, both TEA+ and iberio-
toxin reduced the relaxant response to forskolin, which
relaxes vessels through a cyclic AMP-dependent mecha-
nism[32].  In single non-vascular smooth muscle cells,
urocortin elicits PKA-dependent increases in Ca2+-acti-
vated K+ currents[35].

Urocortin plasma concentration is around 1 pmol/L
in humans[36].  Urocortin relaxes blood vessels with var-
ied effectiveness.  The rank order of relaxing potency
(indicated by the IC50 values) is human placental artery
(about 0.03 nmol/L) > human saphenous vein (about
0.1 nmol/L) > rat basilar artery (about 0.5 nmol/L) >
rat coronary artery (about 2.3 nmol/L) > rat tail artery
(about 2.6 nmol/L)[18-22].  It is apparent that vascular
sensitivity to urocortin is different among vessels or
species with more potent vasodilator effect in human
vessels.  The vasodilator and inotropic effects of
urocortin seem to occur at pharmacological concentra-
tions since the plasma levels of urocortin used in animal
studies are far greater than that circulating in blood.
However, it is difficult to determine the actual concen-

tration of urocortin at the receptor sites, which may be
much higher than its circulating levels.  Nevertheless,
the exact physiological role of urocortin in control of
vessel tone and blood pressure is yet to be established.
No information has so far been available on the mecha-
nisms by which urocortin is metabolized.

Intravenous injection of urocortin produces va-
sodilatation[1], an effect more potent than that of CRF[18],
which is accompanied by flushing and itching[37], indi-
cating that CRF polypeptides may be also involved in
the inflammatory response to stressful stimulation.
Urocortin is one of the most potent triggers of rat mast
cell degranulation and skin vascular permeability[38].
This in situ effect is not mediated through the periph-
eral nervous system, but histamine seems to account
mostly for the vasodilating effect of urocortin via vas-
cular H1-histaminergic receptors[38].  The notion that
urocortin can act as an immune-inflammatory mediator
is further supported by the findings that the expression
of urocortin mRNA is detected in synovium of patients
with rheumatoid arthritis and osteoarthritis[39].

CARDIAC  PROTECTION

Urocortin exerts both positive chronotropic and
inotropic actions in the heart and elevates coronary blood
flow[23,30].  These effects are associated with elevated
formation of cyclic AMP in the cardiac tissue[40].
Urocortin, when administered intravenously to the rats,
produces a slowly developing decrease in mean arterial
blood pressure, which parallels with a rise in heart rate
and cardiac output.  A more significant increase in car-
diac contractility is seen with intravenous administra-
tion of urocortin to sheep as reflected by greater eleva-
tion in both maximal aortic blood flow and aortic dF/dt [41].
Urocortin is more potent than CRF in enhancing the
cardiac performance[30,41] and α-helical CRF 9-41, a non-
selective CRF receptor antagonist diminishes the car-
diac effects of urocortin[30].  The difference in the car-
diac action between CRF and urocortin may reflect the
difference in the binding affinity of the two peptides for
CRF receptors, as previously described[1].  Systemic
administration of urocortin fails to enhance cardiac per-
formance and to reduce blood pressure in CRF2 recep-
tor-knockout mice.  This supports a central role of CRF2

receptors in mediating urocortin-induced peripheral
haemodynamic effects[42].  CRF2 receptors may also
contribute to cardiovascular homeostasis because the
CRF2 receptor-knockout mice have elevated basal blood
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pressure[42].  Urocortin mRNA is detected in both cul-
tured neonatal cardiac myocytes and the adult heart of
rats and urocortin protects the intact rat heart against
the damaging effects of ischemia/reperfusion injury[43,44].
A most recent study demonstrates that urocortin exerts
profound and sustained cardiovascular, hormonal, and
renal effects in experimental heart failure of sheep and
these effects include reduced peripheral resistance, car-
diac preload and afterload, and augmented cardiac
output.  This hemodynamic alteration is associated with
inhibition of vasoconstricting/volume-retaining factors
(vasopressin, angiotensin II, endothelin-1 and aldoster-
one) and with persistent increase in natriuresis, diuresis
and glomerular filtration[45].  All these indicate a consid-
erable importance of urocortin in the (patho)physiol-
ogy of the cardiovascular system.

CRF receptors, widely expressed in mammalian
brain and pituitary might contribute to generation of the
human stress response and the pathophysiology of
stress-related disorders such as increased anxiety,
depression, and decreased appetite[16].  However, it is
yet to be determined what role of the central CRF re-
ceptors may play in the cardiovascular action produced
by systemic CRF polypeptides.  Intravenous CRF-in-
duced peripheral vasodilatation in rats consistently leads
to a fall in mean arterial pressure and subsequent reflex
tachycardia[46].  This centrally mediated chronotropic
effect is also observed at relatively high doses in hu-
mans[47] and monkeys[48].  The onset of increased car-
diac contractility precedes any change in blood pres-
sure or central venous pressure in sheep, indicating that
the positive inotropic action of urocortin is unlikely a
result of a reflex response to cardiac preload or afterload [41].
It is likely that urocortin increases cardiac contractility
via a direct mechanism which is not secondary to an
enhanced coronary vasodilatation[30,49].

The positive inotropic effect of CRF polypeptides
may be related to elevated cardiac cyclic AMP
production.  CRF elicits a significant rise in the intrac-
ellular concentration of cyclic AMP in isolated neonatal
rat cardiomyocytes, which was inhibited by α-helical
CRF (9-41)[40].  Urocortin stimulates increase in car-
diac cyclic AMP content with an EC50 of 0.1 nmol/L[7]

and the rat heart may contain 1 nmol/L of urocortin[50],
a concentration that produces a maximal rise in cellular
cyclic AMP content in cardiomyocytes in vitro[7].  It is
proposed that urocortin binds predominantly to CRF2

receptors, leading to an increased production of cyclic
AMP which exerts a positive inotropic effect.  Immu-

noreactivity of urocortin is also detected in the human
hearts[7].  Given the high affinity of urocortin for CRF2

receptor, urocortin at concentrations in picomolar and
nanomolar ranges should have an important role as a
local regulator of cardiac function.  However, little is
known about the exact cellular source of urocortin in
the physiological conditions and additional second mes-
sengers that may have been also involved.

The expression of urocortin mRNA in a rat car-
diac cell line or in primary cultures of cardiomyocytes
is increased 12-18 h after thermal injury.  Urocortin
protected cardiac myocytes from cell death induced by
hypoxia.  It is suggested that urocortin is an endogenous
cardiomyocyte peptide which modulates the cellular
response to stress[51].  Urocortin exerts a protective ef-
fect in primary cardiac myocyte culture exposed to le-
thal simulated hypoxia/ischemia and this effect is rapid,
occurring 30 min after urocortin administration[44].  Uro-
cortin is also cardioprotective when added at the point
of reoxygenation[44].  In isolated perfused rat hearts ex
vivo, urocortin reduces infarct size of the intact rat heart
when administered before or after a simulated ischemic
injury[44].  This protection may be in part mediated by
activation of extracellular signal-regulated kinase (ERK)
1/2-p42/44 signaling pathway, as previously demon-
strated for CRF since it can be abolished by the MAP
kinase kinase (MEK)1 inhibitor, PD98059.  MEK1/2 is
the upstream activator of the p42/44 MAP kinase
(MAPKs) and its activity is inhibited by PD98059[52].
Activation of p38 MAPKs induces apoptosis in neona-
tal rat cardiac myocytes against ischemia and a specific
inhibitor of p38 MAPK, SB 203580 suppresses activa-
tion of caspase-3, a key enzyme involved in an apoptotic
process[53].  However, SB 203580 does not inhibit the
cardioprotective effect of urocortin, suggesting that the
p38 MAPKs signaling pathway play little role.

Hypoxia/ischemia is probably the main physiologi-
cal stress to the heart and increased expression of heat
shock proteins, hsp27 and hsp70, is related to the car-
diac protection against hypoxic stress.  Hsp70 expres-
sion triggered by thermal or ischemic preconditioning
results in reduction in infarct size in animal hearts[54,55].
In transgenic mice models over-expression of hsp70
improves functional recovery and decreases infarct size
in vitro after myocardial ischemia and reperfusion[55-57].
Urocortin-stimulated hsp90 expression is inhibited by
PD98059 and cycloheximide.  Both inhibitors are found
to reduce urocortin-induced cardioprotection[58].  These
studies demonstrate a direct positive correlation between
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the amount of heat shock protein and the degree of
myocardial protection, thus indicating that activation of
MEK1/2 initiates several signaling pathways to mediate
the cardioprotective effect of urocortin.

Ischemia induces cardiac cell death, which is ac-
companied by phosphorylation and increased expres-
sion and transcriptional activity of signal transducer and
activator of transcription-1 (STAT-1)[59].  Induction of
STAT-1 demonstrated by immunofluorescence in
cardiomyocytes co-localizes with TUNEL-positive
apoptotic cells[59], indicating that STAT-1 may partici-
pate in promoting ischemia/reperfusion-induced cardiac
cell apoptosis[60].  However, urocortin has no stimula-
tory effect on STAT pathway since STAT-1 and STAT-
3 tyrosine phosphorylation is undetectable in cardiomyo-
cytes in the presence of urocortin at the same concen-
tration range that up-regulates MAPK-dependent path-
way [44].  It is however unknown whether urocortin
could inhibit the ischemia-induced stimulation of STAT-
1 pathway.

Additional to MEK1/2 and p42/p44 MAPK, acti-
vation of phosphatidylinositol 3-OH kinase (PI3K) plays
a crucial role in the regulation of cardiac cell survival
and apoptosis.  For example, a PI3K-dependent mecha-
nism mediates the survival-promoting and anti-apoptotic
effect of cardiotrophin-1 on cultured ventricular myo-
cytes[61].  Insulin prevents neonatal rat cardio-myocytes
from oxidative stress-mediated apoptosis via activation
of both PI3K and the putative downstream effector,
the serine-threonine kinase Akt.  Akt activation preserves
cardiac function and prevents injury after transient is-
chemic insult in vivo[62].  Wortmannin, a specific PI3K
inhibitor or over-expression of dominant negative mu-
tant of PI3K abolished the cardioprotective effect of
insulin[63].  Urocortin-induced cardiac protection against
hypoxia/reoxygenation is also mediated through activa-
tion of protein kinase B/Akt since blockade of the PI3K
pathway by chemical inhibitors, wortmannin and
LY294002 attenuates the cardioprotective effect of
urocortin in both neonatal and adult cardiomyocytes[64].
Akt induces increased myocardial contractility and cell
size in vivo in transgenic mice without directly altering
ß-adrenoceptor signaling capacity[65].  Both Akt and pro-
tein kinase B, the important downstream targets of PI3K,
increase heart size, which is associated with a compa-
rable increase in single myocyte cell size in constitu-
tively active Akt transgenic mice as compared with the
non-transgenic mice[66].  These new findings support a
role of PI3K/Akt, in addition to the p42/44 MAPK path-

way in mediating urocortin-induced cardioprotection,
eg, preventing ischemia/hypoxia-induced cardiomyocyte
apoptosis ex vivo and in vivo, and preserving cardiac
function against ischemia/reperfusion injury.

In vivo, loss of ventricular myocytes by apoptosis
leads to heart failure and down-regulation of anti-
apoptotic (survival) signals or over-expression of pro-
apoptotic signals is closely involved in disease processes.
Any endogenous substances such as urocortin that could
enhance survival or prevent cell death in cardiomyocytes
possess potential therapeutic usefulness in the treatment
of heart failure.  The endogenous level of urocortin is
increased in cardiomyocytes after ischemia/reperfusion
injury[51], which may involve the preconditioning effect.
Urocortin promotes metabolic recovery by partial res-
ervation of intracellular ATP and creatine phosphate levels
at the end of ischemia or reperfusion, suggesting that
urocortin may preserve mitochondrial function by main-
taining the respiratory transport chain[67].  Amounting
evidence implicates that activation of mitochondrial KATP

channels protects the cardiac cell death against ischemia/
hypoxia[68,69].  It is unknown whether endogenous
urocortin, like K+ channel openers, could stimulate the
activity of mitochondrial KATP channels.  A most recent
study demonstrates that urocortin specifically increases
gene expression of the Kir 6.1 cardiac K+ channel sub-
unit and urocortin-induced cardioprotection can be
blocked by mitochondrial KATP channel blockers[70].  A
role of enhanced mitochondrial KATP channel activity is
further supported by the increased ischemia-mediated
apoptosis after inhibition of the Kir 6.1 channel subunit
in cardiomyocytes[70].

Urocortin and cardiotrophin-1 utilize similar cellu-
lar mechanisms underlying cardiac protection.  They
include MEK1/2, p42/44MAPK, PI3K, and Akt signal-
ing pathways[44,64,71,72].  The molecular and pharmaco-
logical evidence indicates that urocortin may act as an
endogenous cardioprotective agent in response to car-
diac injury, and therefore may possess potential thera-
peutic activity in the treatment of myocardial infarction
and heart failure.

Urocortin mRNA expression is higher in the hy-
pertrophic hearts as compared to normal hearts,
whereas CRF-R2β mRNA expression is reduced in ven-
tricular hypertrophy[7], suggesting that urocortin may
have a negative regulatory effect on mRNA expression
of CRF-R2β in the hypertrophic hearts.  It appears that
urocortin can induce myocardial hypertrophy as evi-
denced by the ability of the peptide to increase protein
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and DNA syntheses at concentrations that stimulate
cyclic AMP production[7].  Urocortin also potentiates
endothelin-1-induced increase in protein synthesis in
neonatal rat cardiomyocytes[73].  Although it is becom-
ing clear that multiple signaling pathways participate in
the cardioprotective response to ischemia/hypoxia insult,
there is little information on the role of these signals in
the hypertrophic effect of urocortin.  Possible crosstalk
between these pathways and PKA remains to be
elucidated.

CONCLUDING  REMARKS

Amounting evidence suggest that urocortin plays
a significant role in the control of cardiovascular func-
tion and may become one of the primary factors in-
volved in the cardiovascular response to stressful
stimulation.  Both CRF2 receptor and the proposed natu-
rally occurring agonist, urocortin are expressed in the
cardiovascular system.  The potent vasodilator effect
of urocortin is probably mediated through activation of
PKA-dependent vascular K+ channels.  Immunoreac-
tivity of urocortin detected in the endothelial cells of the
rat arteries[22] suggests that urocortin may be locally
synthesized in blood vessels.  If this occurs in the en-
dothelial cells, urocortin may act as a new candidate as
an endothelium-derived relaxing factor.  Urocortin has
now emerged as a potentially important hormone in the
regulation of cardiac function, and urocortin acts di-
rectly on the cardiomyocytes via binding to CRF2 re-
ceptors and subsequent activation of multiple intracel-
lular signal transduction pathways that result in the posi-
tive inotropic and cardioprotective actions.  The coro-
nary vasodilatation together with the potential benefits
in the cardiac system may highlight a potential of devel-
oping urocortin and CRF-related peptides into thera-
peutic agents against the damaging effect of ischemia/
reperfusion injury to the heart if these effects were to
be confirmed in primates and humans (Fig 1).

In addition to the positive inotropism, the hyper-
trophic effect of urocortin may represent a compensa-
tory mechanism by which cardiac function could be
increased in response to the failing heart.  However,
this adaptive mechanism may eventually impair ventricu-
lar performance when sustained with increasing oxy-
gen demand.  Therefore, the hypertrophic response, if
it ought to occur in the human hearts, could reduce the
potential usefulness of urocortin in the treatment of is-
chemic heart disease.  Another potential undesirable ef-
fect of urocortin is cardiac fibrosis since the peptide

released by both cardiac non-myocytes and myocytes
acts as an autocrine/paracrine growth factor to prolif-
erate both cell types[74].  With increasing understanding
of the intracellular transduction pathways involved in
the cardiovascular protective effects of urocortin, fur-
ther studies may lead to the development of new ana-
logues of urocortin, which do not initiate a hypertrophic
response.
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