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ABSTRACT

AIM: To make programs for population pharmacokinetic
analysis and to assess the ability of this method in phar-
macokinetic parameter estimation and in the prediction of
serum concentrations. METHODS: Data of amikacin
as a model drug were collected from 42 neonates with 142
serum samples. A one-compartment open model was
used to describe the kinetics of amikacin after the intra-
Following Sheiner’s idea of population
pharmacokinetics, we made the programs to evaluate
population parameter and individuat parameter. The tar-
get function minimality was obtained from Monte Carlo
algorithm. The validation of the population analysis was
performed using classic pharmacokinetic program 3p87 for
antitheses. The predictability of the developed method
was evaluated by computing precision and accuracy of
serum concentration predicted using the parameter esti-
mates. RESULTS: The stability of our self-made pro-
gram was good. The population parameters obtained
from this approach were in conformity with those from
3p87, and the interindividual variability was relatively
small. For the learning sample and the validation sam-
ple, predicted and observed concentrations were all close
with correlation coefficient 0.995 and 0.990, respective-
ly. Most of predicted emors were found < +1 mg/L,
and RMSD and BIAS were 0.58 and —0.07 for the vali-
dation sample, respectively. The choice of blood sam-
pling time was an important factor for the predictive per-

venous infusion.
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formance. An early sampling time after the infusion was
observed to be the best sampling time. CONCLU-
SION: The estimation program of population parameter
and individual parameter made by us ran stably, and ai-
lowed us to use sparse data to estimate population phar-
macokinetic parameters. It provided accurate estimates
of these parameters and satisfactory ability of serum con-
centration prediction. ‘Therefore, it can be used for the
population pharmacokinetic analysis and individualization
of dosage regimen.

INTRODUCTION

Dosage adjustment based on individual pharmacoki-
netic parameters is of considerable importance for effec-
tive and safe use of drugs with narrow therapeutic range.
In routine clinical therapy, taking multiple blood samples
from a patient is always difficult not only due o econom-
ic restriction but also on ethical grounds. To overcome
this practical problem, numerous studies have been per-
formed. The Bayesian feedback method allows us to es-
timate individual parameters using a very limited number
of measurements such as one or two points, and has been
reported o be more vseful than other non-Bayesian meth-
ods using a small number of samples’’. The perfor-
mance of such methods depends on good estimates of the
distributions of the population parameters (mean and vari-
ances)?) | Up to now the more currently available popu-
lation software package for this purpose has been the non-
linear mixed-effect model (NONMEM) . Successful ap-
plication of this approach has been described for several
drugs, zidovudine'® , cisplatin™ , lamotrigine'®!
darone'®) | terfenadine!” , vancomycin'®’, perfloxacin
and so on. But, NONMEM program is very expensive
to use. Al present there is no suitable program for popu-
lation pharmacokinetics analysis. The purpose of this
study was, using the Monte Carlo algorithm, to creat an
estimation program for population and individual pharma-
cokinetic parameters. Amikacin was used as a model
drug to validate the accuracy of this method.

, amio-
0
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MATERIALS AND METHODS

Data The data comes from the neonates hospital-
ized in our hospital. All patients received amikacin for
severe infections at a dosage of 7.5 — 10 mg/kg by a sin-
gle intravenous infusion. During the trials, 2 -4 serum
samples were collected for each patient at different inter-
vals from the time of administration. Concentration of
amikacin collected from the samples was measured by flu-
orescence polarization immunoassay { FPIA) method using
TDX from Abbott Comp. Analyses of quality control
samples showed a constant coefficient of variation of
<5 % and recovery of 100.3 % £2.5 % for this ana-
Iytical method.

The subjects were randomized into 2 groups: the
first, the leamning sample, constituted of about two third
of the samples (30 subjects totaling 34 concentrations )
and was intended for the estimation; the second, the vali-
dation sample, constituted of about one third of the sam-
ples (12 subjects totaling 48 concentrations) and was in-
tended for the validation,

With respect to the demographic characteristics of
the subjects, Tab 1 displays the distribution of genders
and descriptive statistics of body weight, gestational age,
and postnatal age, in both samples. The 2 groups were
very similar in terms of demographic characteristics ( the
independent sample ¢ test; P >0.05).

Tab 1. Distribution of characteristics of the neonates.
L: Learning Sample, n=30, V: Validation Sample, n=
12.

Variables Sample x Minimal - Maximal
value value
Body weight L 2.9 0.9 1.25 4.30
(kg) v 2.5 0.9 140 3.74
Gestational age L 38 1 3l 2
( weeks) v a7 4 31 42
Postnatal age L 10 7 25
(days) v 11 7 1 27
Percentage of neonates
Male Female
Gender L 5.7 % 3.3 %
v 58.3 % 41.7 %

Method for population analysis The popula-
tion analysis of amikacin was performed using the Monte
Carlo method. This approach requires one to assume a

pharmacokinetic (PK) model and a statistical model in-
cluding a residual error model.

The mathematical model describing the kinetics of
amikacin after intravenous infusion is a one-compartment
open model., This model includes two kinetic parameters
constituting a vector 0: the volume of distribution ¥, and
the elimination rate constant X,. Afier administration of
an infusion rate K, and time 7, the equations of the mod-
¢l describing the concentration C as a function of the time
t are

Ko
K.V,
In the target population, the kinetic parameter f is as-
sumed to be random, and the concentrations of two dif-
ferent subjects are considered independent. For a subject
i, with vector of kinetic parameters 6;, the jth concentra-
tion y; measured al time ¢;; was written as the sum of the
concentration predicted for this subject by the PK model

(1 —e” Ke't) e~ Kel

C(t) =

at the time for the corresponding dose, f(y;, 0), and
for a residual error g;
yij=f('ijv é) +e;

where j varies from 1 to n;, and n; is the number of con-
centrations from subject {. The residual error &; was as-
sumed to arise from a zero mean normal distribution. In
this analysis, the variance model for the residual error e
was fully specified as follows. The residual error in-
cludes three kinds of errors: measurement error due to the
analytical method, error of the PK model with respect to
the data, and error in sampling or in recording of the dos-
ing history .

Pharmacokinetic parameters typically exhibit skewed
population distributions with constant coefficients of vari-
ation and thus a common approach is to assume lognormal
population distributions for PK parameters. We modeled
interindividual error variability assuming:

In 6 =In 6 + .
where f) are the kinetic parameters for subject i, 0y are
population pharmacokinetic parameters, v are nomal er-
rors with mean zero and variance of .

From the PK and residual error models, the likeli-
hood of the concentrations of an individual can be de-
duced for a given vector of kinetic parameters 6. The
likelihood of the vector y; of concentration of subject i is
the product of the likelihoods of each measurement. The
maximum likelihood estimates of the population parame-
ters are those values of the objective function 0(8,0,%)
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0(8,0,3) = %[ln 1V.(6,0,3)

+(yi= f (3.0 Vil6,0,2)(y; - f (5. 0]
where the variance matrix (X is a diagonal matrix, de-
%, 0

scribed as follows: (1= .

0 a%P
the error in parameter estimates is associated with in-
terindividual variability, X is the variance-covariance ma-
trix  of intaindividual random error,  symbol
1V, (8,0,5)1, V7'(6,0,5), (3 - Fly, ) de-
note Jacobian matrix, inverse matrix and transposed ma-
trix, respectively.

With a nonlinear f()@,é) the integrals cannot be e-
valvated analytically and hence some form of approxima-
tion is required, even before the maximization issue is ad-

dressed. We took a one-order Taylor series expansion.
The objective function was then numerically minimized

, it implies that

with respect to §,0,Z. Within our program the mini-
mization routine was the Monte Carlo algorithm. This
procedure was repeated until convergence of the mini-
mization routine.

Founded on the vector evaluation of population pa-
rameters, the least squares method based upon the
Bayesian feedback estimates the individual parameter val-
ues which minimize the following sum of squares.

[yy = flgg. 80P | o (I —1nB)?

e %,
where y; is an observed drug concentration in serum,
fx.8:) is a predicted drug concentration, o is the
variance of measured concentration, n is the number of
measurements, p is the number of parameters, 8“.- is the

—a N 2
Olgi:E +E
1=1 k=1

value of parameter k for an individual, and 6, and of are

the mean and variance of population pharmacokinetic pa-
rameters, respectively.

Validation method Traditional pharmacokinetic
program 3p87 ( Two-Stage method) for collation was
used, to evaluate the individual parameter, the means and
the corresponding standard deviation, and to detect the
consistency of population pharmacokinetic parameter.
Staiistical comparisons were performed using SPSS 8.0
for Windows.

The validation of the population analysis was per-
formed in two stages. The first stage consisted of evalu-
ating the adequacy of the PK model and the relevance of
the residual error model on the data of the leaming sam-

ple. In the second stage, the predictability of the popu-
lation model was studied on the validation sample. In
the leamning sample, the observed concentrations y; were

compared to predicted concentrations f( ;. 8,) through
the residuals R; with

Ry=y; - f(xy, 67 (m

In the validation sample, the predicted and observed con-
centrations were compared through the same expressions
as in Bq(1) but these were called prediction errors PE;;.
Under the assumption that the population model is cor-
rect, the standardized prediction errors obey a distribution
with a zero mean and a variance equal to 1. The mean
and variance of standardized prediction errors were thus
computed and compared, respectively, to O and 1.

Bayesian forecast The individual pharmacoki-
netic parameters of amikacin were estimated using one
serum coneentration measurement at a time for each pa-
tient. For example, when 4 data points were available
for a subject, the Bayesion estimation was executed 4
times using a different point, then the predictive perfor-
mance was discussed in relation to the blood sampling
time .

Precision and accuracy of serum concentration pre-
dicted using the parameter estimates were described as the
root mean squared different (RMSD) and BIAS

RMSD = /- 3 ( Cprea = Cae)?

BIAS =L £ (Cpea= CarV?

where Cpq represents the serum concentrations at time
predicied by the Bayesian analysis using one-point data
measured at time 7; and Cgy is the observed concentra-
tions, n is the number of measurements.

RESULTS

The Monte Carlo method in our program { MCMPK)
resulls in variability in the parameter estimates. That is,
if the same set of data are analyzed a number of times
with MCMPK, different estimates will result. To show
the extent of this variability the leaming sample was ana-
lyzed 4 times and the results are shown in Tab 2.  Where
the product of K, and X, is the variance of K., the prod-
uct of V, and K, is the variance of Vy, and K is the
residual error, respectively. We see that there is very
little “between-run” Monte Carle variability .

Comparison of the three parameter sets identified
with the Monte Carlo method and two-stage method is
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Tab 2. Results from 4 repeated analyses of the learning
sample using MCMPK to illustrate Monte Carlo
variability.

P . Operational nurmber

1 2 3 4
O 203.7364  203.7365  203.7364  203.7364
K, 0.1%6 0.1%6 0.1946 0. 1916
Vy 0,5482 0,5481 0.5480 0.5480
K, 0.3983 0.3981 0.3980 0.3982
K, 0.2011 0.2907 0.2907 0.2906
K, 0.9022 0.9019 0.9021 0.9027

summarized in Tab 3. The 13 neonates with two serum
determinations were not included in the two-stage
method. The two methods of analysis resulted in the
similar estimates for K, and V of amikacin ( P >0.05).
In addition, the extrapolated values for CI from popula-
tion parameters and those estimated from two-stage meth-
ods were comparable. These results indicaie the consis-
tency of the findings between the Monte Carlo method
and two-stage methods of analysis.

Tab 3. Compearison of the population parameter values
identified with Monte Carlo method (n# = 30) and two-
stage methods (n=17).

. Estimated value

Parameter Analysis (x5, CV %)
K.(h~D Monte Carlo method 0.19x0.08, 42.1 %
Two-Stage method 0,15+ 0.07, 46.7 %
Vy(L-kg™!) Monte Carlo method 0.55+0.16, 29.1 %
Two-Stage method  0.64+0.22, 4.4 %
¢l {mL-h~'-kg™!) Monte Carlo method  103+25, 24.3 %
Two-Stage method 100+£30, 30.0 %

K., climnation rate constant; V4, volume of distribution;
1, clearance; CV, coefficient of variation.

The intersubject variability of K, and V; estimated
from the base model was 42.1 % and 29.1 %, respec-
tively. The CV for K, (46.7 %) and V4 (34.4 %)
estimated using the two-stage analysis was consistent with
that estimated by MCMPK; however, the CV by two-
stage method was slightly greater. The reason for this is
overestimation of variability by the two-stage analysis be-
cause residual error can not be calculated separately as it
can be using Monte Carlo analysis.

For the learning sample, predicted and observed
concentrations were close since the plot of the 94 predict-

ed vs observed concentrations was around the line of unit
slope (Fig 1A). No trend was observed in the plot of
the residuals vs predicted concentrations (Fig 1B}. The
mean and variance of the residuals were 0.102 and
0.552, respectively. These results indicate the good ad-
equacy of the model.

For the validation sample, the plot of the 48 predict-
ed vs observed concentrations also showed points around
the fine of unit slope, and conformed with the leaming
sample (Fig 1C). The plot of the prediction errors vs
predicted concentrations was satisfactory since most of
predicted errors were found < =1 mg/L (Fig 1D).
The mean and variance of the prediction errors were
0.068 and 0.581, respectively, which are close to a zero
mean and a variance equal to 1.

From all these results, we considered that the pre-
dictability of the population model was satisfactory.

Tab 4 rtepresents the influence of blood sampling
time on the precision and accuracy for the prediction of
serum amikacin concentrations in the validation sample.
“All” means that predicted concentration was calculated
by the Bayesian feedback using all the concentration data
for the patient, “The sampling time: 0.5, 4, 8, 12"
denotes that those values were estimeted through single
serum levels. The precision was the best when blood
was taken shortly after the infusion {r=0.5), further-
more the dependency of RMSD on sampling time was ob-
vious in other periods. At the same time, BIAS also
showed a dependency on the sampling time. The down-
ward BIAS was observed when the sampling was made at
t =4 h whereas an upward BIAS was observed at later
sampling time. Providad that 1 mg/L might be an ac-
ceptable threshold for RMSD and BIAS, taking into ac-
count the therapeutic range of amikacin (peak level: 20—
25 mg/l., trough level; <5 mg/L), the number of
points that exceeded 1 mg/L was 8.3 % for “all” and
14.6 %, 22.9 %, 37.5 %, 45.8 % for the sampling
time “0.5, 4, 8, 12 h”, respectively.

Tab 4. Precision and accuracy of serum concentration
predicted in relation to the blood sampling time.

All The sampling time/h

0.5 4 8 12
r 0.9904 0.9834 0.9606 0.9556  0.9368
RMSD 0.5786 0.7748 1.2060 1.2973 1.6270
BIAS —0.0684 0.1244 -0.4343 0.4278  0.7359
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Fig 1. Predicted concentrations as a function of ob-

served concentrations of amikacin in the learning sam-
ple (A) and in the validation sample {C). Residuals of
the learning sample (B) and prediction errors of the
validation sample (D) as the function of predicted con-
centrations of amikacin.

DISCUSION
The results from this study demonstrated that the es-

timated and extrapolated population pharmacokinetic pa-
rameters of amikacin obtained in neonates were in agree-
ment with those calculated by two-stage analysis, sug-
gesting that the Monte Carto method provided accurate es-
timates for these parameters. The Monte Carto method is
not only equal to the two-stage method in identifying
pharmacokinetic parameters but is more efficient in utiliz-
ing clinical data, is mathematically superior, and is sble
1o include sparse data sets that the two-stage method can
not use.

A review of the predicted and observed concentration
profiles (Fig 1) shows the superimposability of these da-
ta. It appears, however, that the predicted concentra-
tions of amikacin in the lower measurement were slightly
overestimated. In fact, as concentrations of amikacin
fall, their detectability is also reduced. Nevertheless,
for concentration of amikacin less than 0.18 mg/L, the
model estimated these “undectable” levels to predict the
population concentrations of amikacin at the specified
times. Therefore, the predicted amikacin concentrations
were not overestimated .

A central purpese of the pharmacokinetic analysis is
the prediction of individual concentration. The more the
data, the more accurate the results can be, but the time
of sampling can affect the result.
pendency of the precision of estimated concentrations was
also observed as shown in Tab 4. The results indicate
that the choice of blood sampling time was an important
factor for the predictive performance of the one-point
Bayesian method. The best sampling time for estimating
parameters would be optimal for the prediction of individ-
ual concentrations, Because the serum-drug concentra-
tion decreases with time and consequently the assay error
becomes larger at a lower concentration, an early time
{such as 0.5 h) of sampling afier cessation of the infu-
sion would be the best, and it would agree with Garraffo
et ™. These findings imply that measuring trough
levels is not always the best sampling strategy in the indi-
vidualization of dosage regimen as well as the design of
clinical trials!"’. The best time of sampling for different
models deserves further study. Also, the choice of ap-
propriate population parameters is one of important factors
for estimation of individual parameters since the Bayesian
feedback relies on previous estimates of population pa-
rameters. We shouid determine these population values
for different groups of patients, which is similar to indi-
vidual cases, in order to improve the predicted accuracy .

In addition, the Monte Carlo method is now widely

A sampling time-de-
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used for biomedicine research, such as molecule biolo-
gy[m,l:ﬂ [14)

environmental  contamination™’,  nuclear
medicine!™), biomimetic recognition'™®. We have ap-
plied the Monte Carlo method to population pharmacoki-
netics in order o obtain a more accurate estimation for
population and individual pharmacokinetic parameters.
The method is able to obviate the problem of selecting the
proper starting conditions from which to initiate the fitting
procedure.
and runs on an even keel.

In conclusion, our study provided accurate estimates
of the above mentioned parameters and satisfactory ability
of serum concentration prediction. Simultaneously, it
allowed us to use sparse data to estimate population phar-
macokinetic parameters. It made it possible to obtain the
different or even particular population pharmacokinetic
parameters according to patient characteristics.  After the
population parameter is obtained, this program will spend
only several seconds by using Bayesian feedback to get
the individual parameter in combination with a few serum
concentration measurements from the concemned individu-
al. Therefore, it can be used for the population pharma-
cokinetic analysis and pharmacokinetics-assisted individu-
alization of dosage regimen using routine monitoring
data.

It requires very low calculating original data
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