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ABSTRACT

AIM: To investigate whether 7-hydroxystaurosporine (UCN-01) affects cell cycle progression in arabinosylcytosine
(ara-C) treated human colon carcinoma HT-29 cells.  METHODS: Cytotoxicity, DNA synthesis, cell cycle distribution,
protein level, and kinase activity were determined by clonogenic assay, flow cytometry, DNA synthesis assay,
immunoblotting, and kinase assays, respectively.  RESULTS: UCN-01 abrogated an S/G2-phase checkpoint in HT-
29 cells treated with ara-C.  When UCN-01 was added after treatment with ara-C, the rate of recovery of DNA
synthesis was enhanced and colony-forming ability diminished.  Thus, premature recovery of DNA synthesis was
associated with increased cytotoxicity.  Measurements of cyclin A and B protein levels, Cdk2 and Cdc2 kinase
activities, Cdc25C phosphorylation, and Chk1 kinase activity were consistent with UCN-01-induced abrogation of
the S/G2-phase checkpoint in ara-C treated cells.  CONCLUSION: The abrogation of the S/G2 checkpoint may be
due to inhibition of Chk1 kinase by UCN-01. The enhanced cytotoxicity produced when UCN-01 was combined with
ara-C suggested a rationale for the use of this drug combination for tumors that might be susceptible to cell cycle
checkpoint abrogation.

INTRODUCTION

Cell cycle checkpoints prevent premature initia-
tion of cell cycle events and allow time for repair of
DNA damage prior to replication or mitosis[1,2].  Many
anticancer drugs induce DNA damage and activate cell

cycle checkpoints.  Abrogation of cell cycle checkpoints
tends to sensitize cells to DNA damaging agents[3-8].

7-Hydroxystaurosporine (UCN-01) was initially
described as a protein kinase C inhibitor[9,10].  UCN-01
inhibits the growth of human and murine tumor cell
lines in vitro and exhibits antitumor activity in animal
models[9,11].  At lower dose, UCN-01 has been reported
to enhance cell killing by ionizing radiation and to
synergize with cisplatin to preferentially kill cells with
defective p53 function[3,4].  This enhancement has been
related to an abrogation of the G2 checkpoint and acti-
vation of Cdc2 kinase.  Bunch and Eastman[6] reported
that UCN-01 abrogated the G2 arrest induced by cisplatin
and enhanced cisplatin-induced cytotoxicity in CHO
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cells.  UCN-01 also been shown to abrogate the S phase
arrest and to potentiate the cytotoxicity of cisplatin or
camptothecin[5,7].

As an inhibitor of DNA synthesis, arabino-
sylcytosine (ara-C) has the greatest cytotoxic effects
during the S phase of cell cycle.  The duration of expo-
sure of cells to ara-C is directly correlated with cell kill
because the longer exposure period allows ara-C to be
incorporated into the DNA of a higher percentage of
cells as they pass through S phase.  The present study
investigated the influence of UCN-01 on cell responses
to ara-C in a p53-mutant background.

MATERIALS  AND  METHODS

Drugs, chemicals, and antibodies  UCN-01 was
provided by the Drug Synthesis Chemistry Branch, NCI.
Aliquots were stored frozen at 10 mmol/L in dimethyl-
sulfoxide, and further diluted in water immediately prior
to each experiment.  GST-Cdc25C (residues 200 through
256 fused to GST) was prepared as described previ-
ously[12].  Other drugs and reagents, unless otherwise
mentioned, were purchased from Sigma.

Anti-cyclin A, B1, D1, Cdc2, Cdc25C monoclonal
antibodies and anti-Chk1 polyclonal antibody were pur-
chased from Santa Cruz Biotechnology (Santa Cruz,
CA).  Anti-cyclin E and Cdk2 antibodies were purchased
from PharMingen (San Diego, CA).  [32P]ATP,
[14C]thymidine, and [methyl-3H]thymidine were pur-
chased from New England Nuclear (Boston, MA).

Cell culture  Human colon carcinoma HT29 cells
were grown at 37 ºC in the presence of 5 % CO2 in
RPMI-1640 medium supplemented with 5 % fetal bo-
vine serum (GIBCO-BRL), 2 mmol/L glutamine, 100
kU/L benzyl penicillin and 100 mg/L streptomycin.

Clonogenic assays  Cells were treated with ara-
C to be tested in association with UCN-01 for 8 h.
Drugs were removed by rinsing the cultures once in
drug-free medium, and UCN-01 was added for the next
16 h.  Cells were then washed in drug-free medium and
trypsinized.  Two hundred and fifty cells were seeded
in triplicate in T-25 tissue culture flasks.  Colonies were
grown for 2 weeks, then washed with phosphate-buff-
ered saline (PBS), fixed with methanol and stained with
methylene blue (0.04 %)[5].  Cloning efficiency of un-
treated cells was 78 %.

Flow cytometry  Briefly, cells were harvested and
fixed in 70 % ethanol.  Before analysis by flow
cytometry, cells were washed with PBS, treated with 8

g/L RNase and stained with 50 mg/L of propidium
iodide for at least 30 min.  DNA content was deter-
mined by FACScan flow cytometry (Becton Dickinson
Immmmcytometry System).

DNA synthesis assays  Briefly, cells were pre-
labeled with 1.85×105 Bq/L of [14C]thymidine for 48 h.
The rate of DNA synthesis was measured by 10 min
pulses with 3.7×107 Bq/L of [methyl-3H]thymidine.
[3H]incorporation was stopped by washing cells twice
in ice-cold HBSS (Hanks’ balanced salt solution), and
then by scraping cells into 4 mL of ice-cold HBSS.  One
mL aliquots triplicate were then precipitated after addi-
tion of 100 µL of trichloroacetic acid.  Samples were
vortexed and centrifuged at 12 000×g at 4 ºC.  The
precipitates were then dissolved overnight at 37 ºC in
0.5 mL of 0.4 mol/L NaOH.  Samples were counted by
dual label liquid scintillation and [3H]-values were nor-
malized using [14C]-counts.

Immunoblotting  Cells were pelleted, washed
once in PBS, and lysed at 4 ºC.  Protein detection was
performed using a protein assay kit according to the
manufacturer’s instructions (Bio-rad).  Samples were
separated by SDS-PAGE and electrophoretically trans-
ferred to Immobilon membranes (Millipore, Bedford,
MA).  Membranes were blocked overnight in PBS con-
taining 0.1 % Tween-20 and 5 % nonfat dried milk,
probed for 1 h with primary antibody and for 1 h with
secondary antibody, and visualized by enhanced
chemiluminescence.  Representative data from an indi-
vidual experiment shown in Fig 4 were reproducible at
least twice.

Cdk and Chk1 kinase assays  Cells were wash-
ed once in cold PBS, and lysed on ice as described
previously[5].  Cell lysates (500 mg of total cell proteins
per sample) were immunoprecipitated with anti-Cdk2,
Cdc2 or Chk1 antibodies.  For Cdk kinase assay, im-
mune complexes were resuspended in kinase buffer (20
mmol/L Tris-HCl, 10 mmol/L MgCl2, pH 7.5 containing
5 µmol/L unlabeled ATP and 3.7×105 Bq [32P]ATP, with
3 µg of histone H1), and incubated at 37 ºC for 20 min.
For Chk1 kinase assay, immune complexes were re-
suspended in reaction buffer (50 mmol/L Tris-HCl, pH
7.5, 10 mmol/L MgC12, 1 mmol/L DTT, 10 µmol/L ATP
and 3.7×105 Bq [32P]ATP, with 2 µg of the GST-
Cdc25C), and incubated at 30 ºC for 30 min.  Reac-
tions were stopped by adding loading buffer and boiling
samples for 5 min.  Samples were loaded onto SDS-
PAGE and electrophoresed at 120 V for 2 h.  For
quantitation of cyclin/Cdk kinase activity of
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immunoprecipitates, gels were dried, and histone H1
phosphorylation was measured using a phosphorImager
(Molecular Dynamics).  Representative data from an
individual experiment shown in Fig 5 were reproduc-
ible at least twice.

RESULTS

UCN-01 potentiated the cytotoxicity of ara-C
Because previous studies indicated that UCN-01 poten-
tiated the cytotoxicity of ionizing radiation, cisplatin and
camptohecin, and abrogated cell cycle checkpoints[4,5,7],
we tested whether UCN-01 would potentiate the cyto-
toxicity of ara-C.  Ara-C is DNA synthesis inhibitor that
arrest cells in S and G2 phases.  Human colon carci-
noma HT29 cells that are mutated for p53[13] were treated
with ara-C in the presence or absence of UCN-01.
Clonogenic assay showed that UCN-01 0.1 µmol/L
markedly potentiated the cytotoxicity of ara-C (<1
µmol/L) (Fig 1), while UCN-01 or ara-C alone was not
cytotoxic.  The IC50 values of UCN-01 and ara-C were
28.1 and 15.3 µmol/L, respectively.  The results indi-
cated that UCN-01 potentiated the cytotoxicity of the
DNA synthesis inhibitor.

UCN-01 antagonized the S/G2-phase arrest in-
duced by ara-C  The above result raised the question
whether the potentiation of cytotoxicity of ara-C by
UCN-01 might be associated with abrogation of the
drug-induced cell cylce arrest.  Flow cytometry analy-
sis showed that UCN-01 reduced the S/G2-phase ac-

cumulation induced by ara-C, and decreased S phase
population from 64.3 % to 29.1 % and G2 phase popu-
lation from 18.9 % to 8.2 % (Fig 2).  To determine
whether the effect of UCN-0l was due to an inhibition
of ara-C-induced S/G2-phase arrest or to G1 phase ar-
rest[14], experiments were carried out in the presence of
the mitosis inhibitor nocodazole to follow cell cycle pro-

Fig 1.  UCN-01 potentiates the cytotoxicity of ara-C.  HT29
cells were treated with ara-C at the indicated concentra-
tions for 8 h, after which cells were washed in drug-free
medium and incubated with or without 0.1 µmol/L UCN-01
for 16 h.  Ce11 survival was determined by clonogenic assays.
n=3.  Mean±SD.

Fig 2.  UCN-01 reduces the ara-C-induced slowing of progress through S-phase.  H29 ce11s were treated with 1 µmol/L ara-C for
8 h.  Following ara-C treatment, cells were washed in drug-free medium and treated with or without 0.1 µmol/L UCN-01 in the
absense or  presense of 0.4 mg/L nocodazole for 16 h.  Cells were harvested and analyzed for cell cycle distribution by flow
cytometry.
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gression in the presence or absence of UCN-01 after
ara-C treatment.  Fig 2 showed that ara-C caused
S/G2-phase accumulation both in the absence or pres-
ence of nocodazole, indicating an S/G2-phase arrest in
the first cell cycle following ara-C treatment.  Com-
bined treatment of ara-C-treated cells with UCN-01 and
nocodazole resulted in a large fraction of the cells being
arrested in M phase.  This indicated that cells were able
to exit G1 and traverse S-phase unimpeded.  UCN-01
alone did not significantly affect cell cycle progression.

UCN-01 accelerated DNA synthesis recovery
in ara-C-treated cells  We next investigated the ef-
fects of UCN-01 on the recovery of DNA synthesis
following an 8-h treatment with ara-C.  UCN-01 was
added at the time of removal of ara-C.  [3H]thymidine
pulses were performed at various times after ara-C treat-
ment in the presence or absence of UCN-01.  As
expected, DNA synthesis was strongly suppressed by
ara-C (approximately 90 %).  This inhibition was only
slowly reversible after removal of ara-C.  UCN-01 ac-
celerated the restoration of the ara-C-induced inhibition
of DNA synthesis (Fig 3).  Together, the results of Fig
2 and 3 indicated that UCN-01 antagonized ara-C-in-
duced DNA synthesis inhibition and S/G2 phase delay.

Alteration of cyclin levels associated with ara-C
treatment in the absence and presence of UCN-01
To examine whether the cell cycle effects of ara-C and
UCN-01 were associated with changes of cyclin/Cdk

protein levels and activities, Western blotting and ki-
nase assays were performed.  Fig 4 showed that cyclin
A and B1 proteins were increased in ara-C-treated cells
and that UCN-01 partially prevented the increase of
cyclins A and B1 induced by ara-C.  Neither ara-C nor
UCN-01 by themselves or in association affected Cdk
2 protein levels.

Activation of Cdc2 kinase by UCN-01 in ara-
C-treated cells was associated with Cdc2 dephos-
phorylation and Cdc25C activation  Cdc2 kinase is
regulated and inhibited by hyperphosphorylation on ty-
rosine 15 and threonine-14[15].  The inactive phospho-
rylated form (on threonine-14 and tyrosine-15) migrates
more slowly than dephosphorylated Cdc2 or the active
form of Cdc2 (phosphorylated on threonine-161)[7].  Fig
4 showed that Cdc2 was hyperphosphorylated after ara-
C treatment and that UCN-01 reduced ara-C-induced
Cdc2 phosphorylation.

The Cdc2 inhibitory phosphorylation on threonine-
14 and tyrosine-15 can be removed by the dual specific
phosphatase, Cdc25C[15].  Cdc25C is also regulated by
phosphorylation.  In interphase cells Cdc25C is
hypophosphorylated and inactive.  As Cdc25C becomes
hyperphosphorylated at the G2/M transition, its activity
increases[15].  We assayed Cdc25C by Western blotting.
The active form of Cdc25C migrates more slowly than
the unphosphorylated inactive form of Cdc25C[16].  No

Fig 3.  Effect of UCN-01 on DNA synthesis reactivation af-
ter ara-C- treatment.  Cells were treated as described in
Fig 1 (1 µmol/L ara-C) and harvested at the indicated times.
[3H]thymidine incorporation into DNA was measured by 10
min pulse- labeling.  n=3.  Mean±SD.

Fig 4.  Western blot analysis of cyclins, Cdks and Cdc25C in
cells treated with ara-C and/or UCN-01.  Cells were treated
as described in Fig 1 and cell lysates were prepared 16 h
after ara-C (1 µmol/L) removal.  The slow migrating Cdc2
and Cdc25C bands correspond to the inactive form of Cdc2
phosphorylated on threonine-14 and tyrosine-15, and the
active hyperphosphorylated form of Cdc25C, respectively.
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detectable hyperphosphorylation of Cdc25C occurred
in ara-C treated cells.  By contrast, UCN-01 treatment
resulted in Cdc25C hyperphosphorylation in the absence
or presence of ara-C (Fig 4).  Thus, activation of
Cdc25C is consistent with Cdc2 activation in UCN-01-
treated cells.

Ara-C and UCN-01 changed cyclin/Cdk kinase
activities  Because cyclin levels regulate Cdk activities,
we measured Cdc2 and Cdk2 activities after
immunoprecipitation.  Cdk2 kinase activity was in-
creased in cells treated with ara-C but was within con-
trol values after UCN-01 treatment.  By contrast, UCN-
01 increased Cdc2 kinase activity in ara-C treated cells
(Fig 5).  These results indicate that the S/G2-phase de-
lay induced by ara-C is not related to an inhibition of
cyclin A/Cdk2 kinase activity.

UCN-01 inhibited Chk1 protein kinase activa-
tion in ara-C-treated cells  It has been shown that
Cdc25C was negatively regulated by phosphorylation
at serine-216 by the Chk1 kinase (see Fig 4).  This
phosphorylation induces Cdc25C binding to 14-3-3 pro-
tein and inactivation[11,17,18].  To test Chk1 activity in
HT29 cells, immunoprecipitation was performed with
anti-Chk1 polyclonal antibody and kinase activity was
measured using a polypeptide containing the GST-
Cdc25C (residues 200 through 256 fused to GST).  Fig 5
showed that Chk1 activity was increased in ara-C-

treated cells and that this activation was reduced in UCN-
01-treated cells.

DISCUSSION

UCN-01 is a potent abrogator of the S and G2
checkpoints and potentiates the cytotoxicity of
camptothecin, cisplatin and ionizing radiation with great-
est efficiency in p53-mutant cells[4,5,7].  Our first goal
was to determine whether this effect of UCN-01 was
specific for anticancer agent ara-C.  Our results indi-
cated that UCN-01 was effective in association with
ara-C and that UCN-01 had less or no effect when it
was combined with the M-phase specific microtubule
inhibitors (data not shown).  This observation suggests
that UCN-01 can interfere with cellular pathways asso-
ciated with replication alteration[8].

UCN-01 markedly reduced S/G2-phase accumu-
lation in ara-C-treated cells.  The experiments in cells
treated with nocodazole with UCN-01 and/or ara-C
(Fig 2) demonstrated that UCN-01 exerted this effect
by decreasing ara-C-induced S-phase arrest.  This re-
sult suggests that S/G2-phase delay in ara-C-treated cells
is an active cellular process possibly related to an
S-phase checkpoint.

Consistent with this possibility, we found that the
persistent DNA synthesis inhibition after an 8-h expo-
sure to ara-C was reversed by UCN-01.  These data
suggest that cell cycle progression through S/G2- phase
is regulated by checkpoints designed to slow cell cycle
progression and allow time for recovery from pertur-
bations such as ara-C.  We propose that UCN-01 blocks
this S/G2-phase checkpoint and as a result enhances
cell death induced by ara-C.

Cyclin A/Cdk2 is essential for S-phase progression.
Cyclin A binds to and acts as a positive regulator for
both Cdk2 and Cdc2.  Cyclin A increases during
S-phase and drops at the end of the G2-phase.  Our
data show that ara-C can induce S/G2 arrest in spite of
high cyclin A levels and the presence of active Cdk2.
Abrogation of the ara-C-induced S/G2 arrest by UCN-
01 was associated with a decrease of cyclin A/Cdk2
kinase activity.  It is possible that the reduction of cyclin
A/Cdk2 activity in UCN-01-treated cells is secondary
to cells having progressed out of S-phase.

Formation and activation of cyclin B/Cdc2 com-
plexes are required for mitotic entry[15] and DNA
damage-induced G2 arrest is associated with Cdc2 ki-
nase inactivation.  Phosphorylation of Cdc2 on both
threonine-14 and tyrosine-15 contributes to this inacti-

Fig 5.  Effects of ara-C and UCN-01 on cyclins/Cdks and
Chk1 kinase activities.  Cells were treated as described in
Fig 1 and kinase activities were measured 16 h after ara-C
(1 µmol/L) removal.  Immunoprecipitates were collected from
cell extracts with anti-Cdc2 or anti-Cdk2 antibody,
respectively.  The kinase activity was measured using a
PhosphorImager.
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vation[15].  Our data indicate that Cdc2 is hyperphospho-
rylated and inactive in ara-C-treated cells (Fig 3).  We
also found that UCN-01 markedly enhanced the kinase
activity of Cdc2 in ara-C-treated cells, perhaps because
more cells were entering mitosis.  It was interesting to
note  that Duneker et al[19] reported that cyclin B/Cdc2
kinase could stimulate semiconservative plasmid repli-
cation in yeast nuclear extracts through both a modifi-
cation of the origin-bound complex and stimulation of
elongation events.  Thus, it is possible that activation of
cyclin B1/Cdc2 by UCN-01 is involved in abrogating
the S/G2 checkpoint elicited by ara-C.

Our data suggested that activation of Cdc2 by UCN-
01 was related to activation of the dual specificity
phosphatase, Cdc25C, that removed the two inhibitory
phosphates on threonine-14 and tyrosine-15[20].  Graves
and his colleague[21] reported that Cdc25C could be regu-
lated by the Chk1 kinase.  Chk1 is a key element of the
DNA damage-induced S and G2 checkpoint[22-24].  Chk1
is activated in response to DNA damage and phospho-
rylates Cdc25C on serine-216.  Cdc25C phosphoryla-
tion on serine-216 then promotes the formation of a
complex between Cdc25C and 14-3-3 protein that re-
sults in Cdc25C inactivation[15,20].  Fig 5 showed that
ara-C enhanced Chk1 kinase activity and that UCN-01
treatment prevented Chk1 activation.  Thus, we pro-
pose that DNA replication altertions induced by are-C
activate Chk1 kinase guarding against mitotic entry from
S- and G2-phase.  By inhibiting Chk1, UCN-01 blocks
Cdc25C inactivation.  Cdc2 can then be activated by
dephosphorylation on threonine-14 and tyrosine-15.  Our
data indicate that Cdc2 kinase is negatively regulated by
Chk1 in ara-C-treated cells and that Chk1 inhibition is
involved in the abrogation of the S/G2 checkpoints.

The model for the ara-C-induced checkpoint sig-
naling and modulation by UCN-01 is described in Fig 6:
1) ara-C-induced replication alterations activate Chk1
kinase, which in turns inhibits Cdc25C, and Cdc2 re-
mains in its inactive form; 2) UCN-01 inhibits Chk1
kinase and prevents checkpoint activation.  The S/G2
checkpoint target of UCN-01 appears to be Chk1.  Con-
sidering the remarkable synergy conferred by UCN-01
in cells treated with ara-C, the observations have po-
tential implications for the design of further clinical tri-
als of Chk1 kinase inhibitor such as UCN-01 and drug
combinations.
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