摘要 间硝苯地平(m-Nif)预防性和逆转性给药, 可使肾性高血压大鼠肥厚左室二氢吡啶类(DHP) 受体总量明显降低, m-Nif 也降低左室及大脑皮质 DHP 结合位点的解离常数(K₄), 等量的硝苯地平作 用与m-Nif 相似, 提示; m-Nif 具有预防和逆转肾性 高血压大鼠左室肥厚作用,并可减少肥厚左室 DHP 受 体总量-

关键词<u>间相苯地平</u>,硝苯地平,肥厚;<u>肾血管高血</u> 压<u>,</u>心室;二氢吡啶类;<u>受体</u>

BIBLID: ISSN 0253-9756 中国两理学报 Acta Pharmacologica Sinica 1993 Sept 14 (5): 409-413

Effects of hydrochlorothiazide on contraction and ⁸⁶Rb efflux in rat aorta

WANG Gui-Song, LI Yun-Shan, FU Shao-Xuan (Department of Pharmacology, Hebei Medical College, Shijiazhuang 050017, China)

ABSTRACT Hydrochlorothiazide (HCT) (0.1, 0.3 mmol $\cdot L^{-1}$) inhibited the contraction of rat aortic strips induced by low (<40 mmol·L⁻¹), not higher concentrations of KCl. HCT (0.3 mmol·L⁻¹) did not inhibit the CaCl₂-induced contraction of the aortic strips depolarized with high K^+ (KCl 80 mmol · L⁻¹). The inhibitory effect of HCT (0.1 mmol·L⁻¹) on KCl (20 mmol $\cdot L^{-1}$)-induced contraction was markedly antagomized by BaCl₂ (0.1 mmol \cdot L⁻¹) and tetraethylammonium (TEA) (0.3 mmol· L^{-1}), but not by glibenclamide (Gli, 0.01 mmol·L⁻¹). With norepinephrine (NE) or 5-HT as agonists, HCT (0.3 mmol·L⁻¹) also inhibited the contractions of rat aortic strips. In the 2 components of NE-induced contraction, HCT inhibited only the tonic component depending on Ca²⁺ influx, but not the phasic component elicited by the release of intracellular Ca²⁺. The inhibitory action of HCT was endothelium - independent -That the HCT (3 mmol ·L⁻¹) increased the ⁸⁸Rb efflux rate coefficient was antagonized by $BaCl_4$ (0.1 mmol $\cdot L^{-1}$), but not by Gli (0.01 mmol $\cdot L^{-1}$). The results indicated that the inhibitory effect of HCT on the contraction of rat aorta was attributable to the opening of membrane potassium channels.

KEY WORDS hydrochlorothiazide; barium; tetraethylammonium compounds; glyburide; rubidium; radioisotopes; thoracic aorta

Hydrochlorothiazide (HCT) has long been

Received 1992-07-16 Accepted 1993-04-21

used in the treatment of hypertension, although its mechanism remains controversial. The central issue of the controversy is whether HCT lowers the blood pressure through volume depletion or by vasodilation⁽¹⁾. A new class of vasodilators termed 'potassium channel openers' has been identified, and the opening of membrane K⁺ channels underlies the vasodilatory effect of diazoxide, a classical antihypertensive agent structurally simillar to HCT⁽²⁻⁵⁾. In order to determine whether HCT shares with diazoxide a common mechanism of action, we studied the effect of HCT on the mechanical activity and ⁸⁶Rb efflux in isolated rat aorta.

MATERIALS AND METHODS

Drugs The Krebs-Henseleit (K-H) solution consisted of NaCl 118, KCl 4.7, MgSO₄ • 7H₂O 1.2, CaCl₂ 2.5, KH₂PO₄ 1.2, NaHCO₅ 25, EDTA 0.03, glucose 11 mmol •L⁻¹. In Ca²⁺-free K-H solution, CaCl₂ was precluded. High K⁺-depolarized solution was prepared from Ca²⁺-free solution with KCl 80 mmol • L⁻¹. HCT (Changzhou Pharmaceutical Factory) was dissolved in K-H solution (100 ml) containing N, N²-dimethylformamide (5 ml), polysorbate 80 (3 ml), and tartaric acid 1 mol •L⁻¹(2 ml) to prepare a stock solution (20 mmol •L⁻¹). Tetraethylammonium chloride (TEA) and BaCl₂ (Beijing Chemical Factory) were dissolved in distilled water. Glibenclamide (Gli) (Tianjin Institute of Medical and Pharmaceutical Industry) was dissolved in dimethylsulfoxide (final concentration of $Me_2SO < 0.2\%$). ³⁶RbCl solution (370 MBq · ml⁻¹) was purchased from Institute of Atomic Energy, Chinese Academy of Sciences.

Preparation of isolated rat aortic strips Sprague-Dawley rats, \updownarrow , weighing $280\pm s$ 35 g, were killed by stunning and bleeding. The thoracic aorta was cut into spiral strips about 15 mm $\times 2$ mm. The strip was mounted for isometric recording in organ hath containing 20 ml of K-H solution under a resting tension of 1.5 g. The solution was bubbled with 95% O₂+5% CO₂ (pH 7.3-7.4 at 37°C) and renewed every 15 min. Tension changes were measured with electromechanical transducers and recorded on a XWT-204 model potentiometric recorder.

Effects of KCl, norepinephrine (NE), and 5-HT on aortic contraction After a equilibration period of 2 h, 3 cumulative concentration-response curves in each aortic strip were formulated for KCl, NE, or 5-HT according to the order of pre-control. HCT or its solvent, and post-control. The strips were equilibrated in K-H solution containing HCT or its solvent for 30 min. The response of each strip to a spasmogen was expressed as a percentage of the maximal response to that spasmogen obtained during the time period of first concentration-response curve⁽⁶⁾.

Effects of K⁺-channel blockers on mechanoinhibitory action of HCT Three K⁺ channel blockers were used. After the equilibraition, a control contraction in each strip was first induced with KCl 20 mmol $*L^{-1}$. The strip was subsequently washed and equilibrated in K-H solution containing the solvent for 30 min or pre-incubated with BaCl₂, Gli, or TEA for 15 min before the addition of solvent. The second contraction was then elicited by the re-addition of KCl 20 mmol $*L^{-1}$. The experiment was repeated except that the solvent was replaced by HCT.

CuCl₂-induced contraction After an equilibration period of 1.5 h in normal K-H solution, the strip was washed with Ca^{2+} -free K-H solution for 30 min, then equilibrated in high K⁺, Ca^+ -free K-H solution for 45 min before the addition of $CaCl_2$ 2.5 mmol·L⁻¹. The experiment was repeated and the strip was pre-treated with HCT or its solvent for 30 min before the $CaCl_2$ response was re-examined.

The two components of NE-induced contraction

After equilibration in K-H solution for 2 h, a control contraction was first induced with NE 0.01 μ mol·L⁻¹. The strip was washed with normal K-H solution and equilibrated in a Ca²⁺-free K-H solution for 45 min. The equivalent NE was added to the bath, and a rapid and transient contraction (phasic contraction) was produced. Towards the end of this contraction, CaCl₂ 2.5 mmol·L⁻¹ was restored and a slow and sustained contraction (tonic contraction) was seen. The experiment was repeated and the strip was pretreated with HCT for 30 min prior to the final NE contraction.

Preparation of rat aortic strips with endothellum removed Two aortic strips from the same rat were used. One strip was denuded of endothelium by gentle rubbing with a moistened cotton bud; the other served as a control. A control contraction was first produced with NE 0. 01 μ mol·L⁻¹. At the plateau of contraction, acetylcholine 0.1 μ mol·L⁻¹ was added. Relaxation was elicited only when the endothelium was present, but failed when the endothelium had been removed⁽⁷⁷⁾. The strip was then washed and equilibrated in K-H solution containing HCT for 30 min, after which the NE contraction was re-examined. The third NE-induced contraction served as a post-control.

**Rb efflux Thoracic aorta was cut into 4 rings about 5 mm long and then cut longitudinally into flat sheets. Each aortic segment was impaled on a syringe needle attached to a perspex gassing manifold and inserted into a test-tube containing 5 ml K-H solution at 37°C bubbled with 95% $O_2 + 5\%$ CO₂ via the needle-After a 10 min equilibration period in K-H solution, the tissue was loaded with [™]RbCl (as a K⁺ tracer) 185 $MBq \cdot L^{-1}$ for 90 min, after which the ⁶⁶Rb was allowed to efflux from the tissue by transferring to tubes containing 2 ml K-H solution for 15 successive 2min periods. After 7 such periods, the tissue was exposed to K-H solution alone or to a solution containing HCT in varying concentrations for the next 5 collection periods. For the last 3 collection periods the tubes contained K-H solution alone. In some experiments, the K-H solution contained BaCl₂ 0.1 mmol ·L⁻¹ or Gli 0.01 mmol L^{-1} throughout the efflux period. At the end of the efflux, **Rb content remaining in the tissue was determined together with that in the collecting tubes using a FT-408 model gamma counter. The efflux data were expressed in terms of the rate coefficient (fractional loss of 86 Rb from the tissue standardized for a 1-min period expressed in %)^(5,6).

RESULTS

Effect of HCT on contractions elicited by KCI. NE, and 5-HT HCT $(0.1, 0.3 \text{ mmol} \cdot L^{-1})$ inhibited the contractions elicited by low concentrations (<40 mmol $\cdot L^{-1}$) of KCl, but had little or no effect on responses evoked by higher KCl concentrations (40-80 mmol $\cdot L^{-1}$) (Fig 1). With NE or 5-HT as agonists, HCT only at 0.3 mmol $\cdot L^{-1}$ inhibited the contractions of rat aortic strips (Fig 2).

Fig 1. Effect of hydrochlorothlazide (HCT) on contraction of rat aortic strips elicited by KCt. n=8, $\tilde{x}\pm s$.

Effects of K⁺ channel blockers on the mechano-inhibitory action of HCT The inhibitory action of HCT (0.1 mmol·L⁻¹) on KCl (20 mmol·L⁻¹)-induced contraction was attenuated by BaCl_z(0.1 mmol·L⁻¹) and TEA (0.3 mmol·L⁻¹), but not by Gli (0.01 mmol·L⁻¹) (Tab 1). The 3 K⁺ channel blockers had no effect on the basal tension or the response to KCl.

Effect of HCT on CaCl₂-induced contraction HCT (0.3 mmol·L⁻¹) had no inhibitory

Fig 2. Effect of hydrochlorothiazide (HCT) on contraction of rat aortic strips elicited by NE and 5-HT. n=6-8, $\overline{x}\pm s$.

effect on CaCl₂-induced contraction of the aortic strips depolarized with high K⁺ (KCl 80 mmol \cdot L⁻¹). The contractile responses to CaCl₂ before and after treatment with solvent were 535±43 mg and 523±54 mg, respectively (n = 6, P > 0.05); those before and after treatment with HCT were 514±55 mg and 497 ±62 mg, respectively (n=6, P > 0.05).

Tab 1. Effects of BaCl₂, glibenclamide (Gli), and tetraethylammonium (TEA) on inhibitory section of hydrochlorothiazide (HCT) 0.1 mmol·L⁻¹ in rat sortic strips contracted with KCl (20 mmol·L⁻¹). $\overline{x}\pm s$. **P* >0.05, **P*<0.05, **P*<0.01 τs control.

Treatment/ mmol •L ⁻¹	n	Contractility/mg	
		Solvent	HCT
Control	8	390±99	216±57
$BaCl_{2}$ (0.1)	6	$362 \pm 79^{\circ}$	$314 \pm 56^{\circ}$
Gli (0.01)	6	393±85*	211±62"
TEA (0.3)	6	375±78*	367±73°

Effect of HCT on NE-induced contraction In the 2 components of NE-induced contraction, HCT (0.3 mmol· L^{-1}) inhibited the second component (tonic contraction), while did not show any significant effect on the first one (phasic contraction) (Tab 2).

Tab 2. Effect of hydrochlorothiazide (HCT) 0.3 mmol·L⁻¹ on NE (0.01 µmol·L⁻¹)-induced contraction of rat aortic strips. n=6, $\overline{x}\pm s$. "P>0.05, "P<0.05, "P<0.05, "P>0.05, "P>0.05,"

	Contractility/mg		
	First component	Second component	
Pre-treatment	146±45	328±62	
Post-treatment	152±38	173±52 ^b	

Effect of endothelium on inhibitory action of HCT The contractile responses induced by NE (0.01 μ mol·L⁻¹) in strips with endothelium removed and those with an intact endothelium were 412±83 mg and 435±72 mg, respectively (n=6, P>0.05). After treatment with HCT (0.3 mmol·L⁻¹), the responses of the 2 groups were 245±50 mg and 266±44 mg, respectively. They did not differ significantly either (P>0.05).

Tab 3. Effect of hydrochlorothiazide (HCT) on ⁴⁴Rb efflux from rat aorta in the absence/presence of BaCl₂ or glibenclamide (Gli). $\overline{x} \pm s$. ⁴P > 0.05, ^bP < 0.05 us control; ⁴P > 0.05, ^bP < 0.05 us HCT (3.0 mmol·L⁻¹).

Treatment/ mmol·L ⁻¹	n	³⁶ Rb efflux rate coefficient/ %•min ⁻¹
Control	8	1.17±0.40
HCT (1.0)	6	1.28±0.33
HCT (3.0)	8	1.73±0.53⁵
HCT (3.0) +BaCl ₂ (0.1)	6	l.18±0.44"
HCT (3.0) +Gli (0.01)	5	1.62±0.37 ^d

Effect of HCT on *Rb efflux The basal ⁸⁶ Rb efflux rate coefficient measured between the 14th and 24th min of the efflux period was $1.17 \pm 0.40\% \cdot min^{-1}$. HCT (3) mmol \cdot L⁻¹) produced an increase in ⁸⁶Rb efflux which was antagonized by BaCl₂ (0.1 mmol \cdot L⁻¹), but not by Gli (0.01 mmol \cdot L⁻¹) (Tab 3).

DISCUSSION

Potassium channel openers constitute a new class of drugs with therapeutic potential in cardiovascular diseases⁽³⁾. The opening of K⁺ channels leads to the relaxation of vascular smooth muscles by hyperpolarizing the membrane and indirectly preventing the opening of voltage-dependent the Ca²⁺ channels (VDCS)^[2,3,8]. The present study showed that HCT inhibited the contractions of rat aortic strips induced by low, not high concentrations of KCl, which accorded with the features of K⁺ channel openers⁽⁹⁾. HCT had no inhibitory effect on the CaCl₂-induced contraction in high K⁺-depolarizing condition suggesting that this agent did not show direct blocking action on VDCS. HCT also inhibited the contractions of rat aortic strips elicited by receptor-agonists such as NE and 5-HT. Furthermore, it only inhibited the tonic contraction depending on Ca2+ influx through receptor-operated Ca²⁺ channels (ROCS), but had no effect on the phasic contractions elicited by the release of intracellular Ca²⁺. Such an effect suggested that the membrane hyperpolarization caused by K⁺ channel opening would also interfere with ROCS to a certain extent. In addition, our results showed that the inhibitory action of HCT on the contractions of rat aortic strips was endothelium-independent.

Potassium transport has frequently been assessed by measurement of ⁸⁶ Rb fluxes which has a more suitable half-life (18.8 d) than ⁴²K (12.4 h) does⁽¹⁰⁾. HCT did produce a significant increase in ⁸⁶ Rb efflux from rat aorta, but the concentration used was 10 to 30 times higher than those required for its

А

mechano-inhibitory action. This discrepancy was also seen in the known K^+ channel openers and can not yet be satisfactorily explained though the lower selectivity of K^+ channels for

 86 Rb compared with 42 K may be one of the contributing factors^(5.6).

Of the 3 K⁺ channel blockers, Ba²⁺ and TEA are both non-selective in that they block most K⁺ channels, while Gli has been shown to be a specific blocker of ATP-sensitive K⁺ channels^(2,11). The results that the effects of HCT were antagonized by BaCl₂ and TEA, but not by Gli, offered further support for the hypothesis that HCT possessed K⁺ channel opening properties, and suggested that the site of action of this agent may not be the ATP-sensitive K⁺ channels. The type of K⁺ channels which actually plays an important role remains to be determined.

ACKNOWLEDGMENT Thanks to Prof DING Xian-Yi for his direction in ⁸⁶Rb experiments.

REFERENCES

- 1 Freis ED. How diuretics lower blood pressure. Am Heart J 1983; 106 : 185-7.
- 2 Cook NS. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci 1988, 9: 21-8.
- 3 Quast U, Cook NS. Moving together: K⁺ channel openers and ATP-sensitive K⁺ channels. Trends Pharmacol Sci 1989; 10, 431-5.
- 4 Quast U, Cook NS. In vitro and in vivo comparison of two K⁺ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide.
 - J Pharmacol Exp Ther 1989: 250 ; 261-71.
- 5 Newgreen DT, Bray KM, McHarg AD, Weston AH,

Duty S, Brown BS, et al. The action of diazoxide and minoxidil sulphate on rat blood vessels, a comparison with cromakalim. Br J Pharmacol 1990; 100; 605-13.

8 Weir SW, Weston AH. The effects of BRL34915 and nicorandil on electrical and mechanical activity and on ⁸⁶Rb efflux in rat blood vessels. Re J. Browney in 2006 200 - 201 - 2

Br J Pharmacol 1986; 88 : 121-8.

- 7 Furchgott RF. Role of endothelium in responses of vascular smooth muscle. Circ Res 1983; 53 ; 557-73.
- 8 Weston AH. Introductory Remarks. Drugs 1988: 36 Suppl 7: 1-3.
- 9 Weston AH. Smooth muscle K⁺ channel openers: their pharmacology and clinical potential. *Pfluegers Arch* 1989: 414 Suppl 1: S99-105.
- 10 Smith JM, Sanchez AA, Jones AW. Comparison of rubidium-86 and potassium-42 fluxes in rat sorts. Blood Vessels 1986; 23, 297-309.
- 11 Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive K⁺ channels in arterial smooth muscle. Science 1989: 245, 177-80.

-4/3 (7) 氢氯噻嗪对大鼠主动脉收缩及"Rb 外流的影响

王贵桧,李蕴山,傅绍登 尺972 (河北医学院药理教研室,石家庄050017,中国)

摘要 氢氯噻嗪(HCT) 0.1, 0.3 mmol·L⁻⁺可抑制低 浓度 KCl (<40 mmol·L⁻⁻¹), NE 和5-HT 所致大鼠 主动脉条收缩,对高 K⁺ (80 mmol·L⁻⁻¹) 去极化时 CaCl₂所致收缩无影响. HCT 对低浓度 KCl 所致收缩 的抑制作用可被 BaCl₂和 TEA 拮抗,不被 Gli 拮抗. HCT 3 mmol·L⁻⁻¹可使⁶⁶ Rb 外流增加,此作用可被 BaCl₂拮抗,不被 Gli 拮抗. HCT 抑制大鼠主动脉收 缩的作用与开放钾通道有关.

关键词 <u>氢氯噻嗪</u>) 钡;四乙铵化合物;<u>格列苯脲;</u> 物;放射同位素;胸主动脉