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ABSTRACT

AIM: To study the regulating function and mechanism of insulin-like growth factor-I (IGF-I), granulocyte-mac-
rophage colony-stimulating factor (GM-CSF), and epidermal growth factor (EGF) on murine core binding factor
α1 (Cbfa1) gene expression.  METHODS: Luciferase reporter gene method and RT-PCR technique were used to
examine the effects of these growth factors on the promoter activity and mRNA expression of Cbfa1 gene in
MC3T3-E1 and C2C12 cells.  RESULTS: IGF-I (from 1 nmol/L to 1 µmol/L), GM-CSF (100 nmol/L), and EGF (1
µmol/L) increased the luciferase expression in MC3T3-E1 cells (P<0.05).  And mitogen-activated protein kinase
(MAPK) inhibitor, PD 98059 (10 µmol/L), completely blocked IGF-1, GM-CSF, and EGF-induced expression of
Cbfa1 promoter activity (P<0.01).  In C2C12 cells, IGF-I (from 1 nmol/L to 10 µmol/L), GM-CSF (100 nmol/L
and 1 µmol/L), and EGF (100 nmol/L) enhanced the expression of luciferase reporter plasmid driven by mCbfa1
promoter (P<0.05).  Addition of PD 98059 also blocked the stimulatory effects of these growth factors on Cbfa1
promoter activity (P<0.01).  Moreover, Cbfa1 mRNA expression was significantly increased after treatment with
IGF-I (1 nmol/L, 100 nmol/L), GM-CSF (100 nmol/L, 1 µmol/L), and EGF (1 µmol/L, 100 nmol/L) in MC3T3-E1
and C2C12 cells, respectively (P<0.05).  These stimulatory effects of IGF-I, GM-CSF, and EGF on Cbfa1 mRNA
expression were abolished by PD 98059.  CONCLUSION: IGF-I, GM-CSF, and EGF could increase the promoter
activity and the mRNA expression of murine Cbfa1 gene in MC3T3-E1 and C2C12 cells.  These stimulatory effects
might be mediated by activating the intracellular MAPK-dependent signaling pathway.

INTRODUCTION

Core binding factor α1 (Cbfa1), also known as

Runx2, is an osteoblast-related transcription factor that
is essential for bone formation[1].  In 1995, Ducy and
Karsenty[2] characterized osteoblast-specific element 2
(OSE2), a cis-acting sequence in the promoter of the
murine osteocalcin gene 2 (mOG2), which was required
for osteocalcin gene expression in osteoblastic cells[3].
The factor binding OSE2, initially termed osteoblast-
specific factor 2 (Osf2), was subsequently identified
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as Cbfa1, a member of the Cbf/Runt family of tran-
scription factors, which share a DNA binding motif that
is homologous to the Drosophila protein, Runt[1].  Cbfa1
is essential for the differentiation of osteoblasts from
mesenchymal precursors, since homozygous Cbfa1-1-
mice show a complete lack of functional osteoblasts[4,5].
Moreover, this transcription factor is required for bone
matrix synthesis by differentiated osteoblasts[6], indicat-
ing that it regulates osteoblast gene expression at mul-
tiple  levels.

Cbfa1 is an essential transcription factor for os-
teoblast differentiation and bone formation, however,
the signaling pathways regulating Cbfa1 have not been
clarified.  Cbfa1 was phosphorylated and activated by
the mitogen-activated protein kinases (MAPK) pathway[7].
MAPK pathway is a major point of convergence for a
variety of intracellular signals initiated by ECM-interin
interaction, mechanical stimulation and many growth/
differentiation factors binding to receptor tyrosine ki-
nases[8].  These studies led us to speculate that the
growth factors such as IGF-I, GM-CSF, and EGF
maybe regulate Cbfa1 gene expression through a path-
way requiring MAPK activity.  To test this hypothesis,
the actions of IGF-I, GM-CSF, and EGF on Cbfa1 gene
were examined in murine MC3T3-E1 preosteoblast cells

and C2C12 myoblast cells.

MATERIALS  AND  METHODS

Reagents  Recombinant murine IGF-I, GM-CSF,
and EGF were purchased from R&D Systems (Inc
Abingdon, UK).  PD 98059, a specific inhibitor of MAPK
pathway, was purchased from Sigma (St Louis, MO,
USA).  LipofectAMINE 2000 transfection reagent was
obtained from Invitrogen (Life Technologies, Carlsbad,
California).

Cell culture  Murine preosteoblastic cell line
MC3T3-E1 cells and myoblastic cell line C2C12 cells,
purchased from Riken cell bank (Japan), were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco-BRL, Life Technologies, Grand island, NY),
10 % fetal bovine serum (Hyclone Laboratories, Logan,
UT, USA), and supplemented with antibiotics (benzyl-
penicillin 100 kU/L and streptomycin 100 kU/L) under
a 5 % CO2-95 % air atmosphere at 37 ºC.

Plasmid construction  Mouse Cbfa1 promoter
luciferase reporter plasmid (named mP696-Luc) con-
tained 696 bp (-641–+55) murine Cbfa1 promoter re-
gion[9] and this region was cloned in PGL3-basic vector

(Promega Corp, Madison, WI).  To generate a target-
ing vector, genomic clones containing Cbfa1 promoter
(AB013129, nucleotides +6018/6713) region were iso-
lated from the genome of C57BJ mouse white blood
cells (Qiagen, Valencia, CA) by PCR.  PCR reaction
was amplified with the following primers: sense, 5'-
AGCACTGTTGCTCAGAACGCCACACACCT-3'; anti-
sense, 5'-TCCTGGAGAAAGTTTGCACCGCACTTG-3'.
The gel-purified blunt-ending PCR fragment was ligated
into T easy Vector (Promega Corp, Madison, WI),
named mP696-Teasy.  The PCR product and plasmid
mentioned above were confirmed by sequencing.  The
fragment of Cbfa1 promoter region was then gener-
ated by PCR from mP696-Teasy using a 5' primer with
MluI site (5'-ATAGacgcgtAGCACTGTTGCTCAGA 3')
and a 3' primer with XhoI site (5'GTACctcgag-
TCCTGGAGAAAGTTTGC-3').  After digesting with
MluI and XhoI, the fragment was ligated into the MluI/
XhoI sites of PGL3 Basic vector.  The resulting product,
mP696-Luc, contains nucleotides -641–+55 (696 bp)
of the reported Cbfa1 promoter.

Transfections and luciferase analysis  All cell
lines were plated in 24-well plates at a density of 1×105

cells/cm2.  After 24 h, cells were transiently transfected
with 0.5 µg mP696-Luc plasmid using the DNA-lipid
complex, LipofectAMINE 2000, according to the
manufacture’s protocol.  To assess transfection
efficacy, and to normalize the firefly luciferase signal
expressed by mP696-Luc plasmid, 20 ng of PRL SV40
(Promega Corp, Madison, WI), which encodes a Renilla
luciferase gene downstream of a minimal SV40
promoter, was systematically added to the transfection
mix.  In the positive and negative experiments, Cbfa1
constructs were replaced by pGL3-control plasmid
(Promega Corp, Madison, WI) and empty pGL3-basic
vector.  Sixteen hours after transfection, cells were
washed and culture medium was changed to serum free
medium, HyQ-CCM5 (Hyclone, Logan, Utah), then cells
were treated with growth factors and/or PD 98059 and
cultured for an additional 24 h.  Luciferase assays were
performed with the Dual Luciferase Assay Kit (Promega
Corp, Madison, WI), according to the manufacturer’s
instructions.  A 50 µL quantity of cell lysate was as-
sayed first for firefly luciferase and then for Renilla lu-
ciferase using a luminometer (Analytical luminoscencelab
corp, USA).  Firefly luciferase activity was normalized
to Renilla luciferase activity.  The mean corrected lu-
ciferase activity of the control group was defined as 1,
and the relative luciferase activity (RLA) of the treat-
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ment groups was obtained as compared to the control
group.

Reverse transcriptase-polymerase chain reac-
tion (RT-PCR)  MC3T3-E1 and C2C12 cells were plated
in 6-well plates at a density of 1×105 cells/cm2.  After
treatment with different growth factors and/or PD 98059
for 1-6 d, total RNA was isolated using Trizol reagent
(Gibco-BRL, Life Technologies, Grand island, NY) fol-
lowing the manufacturer’s instructions.  For RT, a  25-
µL reaction contained total RNA 2 µg, oligodT(15) primer
12.5 mg/L, each dNTP 500 µmol/L, 25 units of rRNasin
ribonuclease inhibitor, and 200 units of M-MLV reverse
transcriptase (Promega Corp, Madison, WI).

For PCR amplification, each 50-µL reaction con-
tained 4 µL of RT aliquot, each dNTP 200 µmol/L, each
primer 0.4 µmol/L, MgCl2 1.5 mmol/L, and 2.5 units of
Taq DNA polymerase (TaKaRa Biotechnology Co, Ltd
Dalian).  The PCR conditions were as follows.  After 5
min of preincubation at 95 ºC, amplification was per-
formed for 35 cycles consisting of 45 s of denaturing
at 95 ºC, 45 s of annealing at 60 ºC, and 2 min of exten-
sion at 72 ºC.  The primers used for murine Cbfa1 were
as follows.  Sense: 5'-TTTAGGGCGCATTCCTCATC-
3' (NM009820, nucleotides +969/988); antisense: 5'-
TGTCCTTGTGGATTAAAAGGACTTG-3 (NM009820,
nucleotides +1046/1070).  As an internal control, the
PCR analysis was also performed with the glyceralde-
hyde-3-phosphate dehydrogenase gene (GAPDH) spe-
cific primers.  Sense: 5'-TCCACTCACGGCAAATTCA-
ACG-3' (M32599, nucleotides, +191/213); antisense:
5'-TAGACTCCACGACATACTCAGC-3' (M32599,
nucleotides, +314/335).  The RT-PCR products were
separated by electrophoresis on 3 % agarose gels and
the products of the expected size (102 bp of mCbfa1
and 145 bp of mGAPDH) were obtained and sequenced.
The mCbfa1 signals were normalized to the GAPDH
signals in the same reaction.

Statistical analysis  All data were expressed as
mean±SD of three wells per group.  Each experiment
was repeated at least three times.  Statistical analyses

were determined by Student’s t-test.

RESULTS

IGF-I, GM-CSF, and EGF stimulate Cbfa1 pro-
moter activity and the MAPK pathway is involved
The effects of IGF-I, GM-CSF, and EGF on the pro-
moter activity of murine Cbfa1 in MC3T3-E1 and
C2C12 cell lines were examined using a Cbfa1 promoter-

luciferase reporter vector (mP696-Luc) by transient
transfection assay (Fig 1, n=3).

Treatment of MC3T3-E1 cells with IGF-I (1 nmol/
L-1 µmol/L) resulted in 83 % (P<0.01), 59 % (P<
0.05), 48 % (P<0.01), and 43 % (P<0.01) increases in
Cbfa1 promoter activity over that found in control cells
(Fig 1A).  Compared with control group, the RLA of
GM-CSF (100 nmol/L, Fig 1B) group increased by
31 % (P<0.05).  Treatment of MC3T3-E1 cells with 1
µmol/L EGF resulted in a 51 % (P<0.05) increase in
Cbfa1 promoter activity (Fig 1C).

In C2C12 cells, these growth factors had similar
effects with MC3T3-E1 on the expression of luciferase
reporter plasmid driven by the mp696-Luc.  IGF-I
(1 nmol/L-10 µmol/L) enhanced the RLA by 48 %
(P<0.05), 68 % (P<0.01), 166 % (P<0.01), 55 %
(P<0.05), and 46 % (P<0.01) compared with that of
control group(Fig 1D).  Treatment with GM-CSF (100
nmol/L and 1 µmol/L) resulted in 34 % (P<0.01) and
29 % (P<0.01) increases in Cbfa1 promoter activity
over that found in control cells (Fig 1E).  Compared
with control group, the RLA of EGF (100 nmol/L) en-
hanced by 65 % (P<0.05, Fig 1F).

Treatment of PD 98059 (10 µmol/L), a specific
inhibitor of MAPK, resulted in 20 %-30 % decreases in
Cbfa1 promoter activity compared with that of control
group (P<0.05).  The RLA levels of growth factor+
PD 98059 groups were significantly lower than those
of growth factor groups, respectively.  These results
indicated that PD 98059 suppressed basal and com-
pletely blocked IGF-I, GM-CSF, and EGF-induced ex-
pression of Cbfa1 promoter activity not only in MC3T3-
E1 cells but also in C2C12 cells.

Induction of Cbfa1 gene expression by IGF-I,
GM-CSF, and EGF and the MAPK pathway is in-
volved  To assess the expression of murine Cbfa1 gene
in response to growth factors, MC3T3-E1 and C2C12
cells were treated with IGF-I (1 nmol/L, 100 nmol/L),
GM-CSF (100 nmol/L, 1 µmol/L), EGF (1 µmol/L, 100
nmol/L) respectively, and/or PD 98059 (10 µmol/L)
from 1 to 6 d, then the mRNA levels of Cbfa1 gene
were detected by RT-PCR at different time points (Fig
2, n=3).  There were no significant differences in basal
mRNA expression of Cbfa1 gene from 1 to 6 d both in
MC3T3-E1 and C2C12 cells.

In MC3T3-E1 cells, Cbfa1 expression was induced
significantly by IGF-I treatment from 1 to 6 d (d 1:
101±3; d 2: 176±14; d 3: 217±29; d 4: 191±19; d 5:
120±6; d 6: 112±12, P<0.01 vs d 0: 69±0.4, respec-
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tively).  GM-CSF caused increases of Cbfa1 mRNA at
d 4 and d 5 compared with d 0 (d 4: 87±7, P<0.01; d 5:
88±5, P<0.01 vs d 0: 68±2).  Treatment with EGF re-
sulted in increase of Cbfa1 gene expression at d 2 (d 2:
96±8 vs d 0: 70±2, P<0.01).  These significant differ-
ences at each time points of those groups mentioned
above were found not compared with d 0, but also with
the control group (Fig 2 A, B, C, and Fig 3).

In C2C12 cells, Cbfa1 expression was increased
significantly by IGF-I treatment from 1 to 6 d (d 1:
121±6; d 2: 194±7; d 3: 110±5; d 4: 108±5; d 5: 105±2;
d 6: 106±5, P<0.01 vs d 0: 30±3, repectively).  GM-
CSF enhanced the Cbfa1 mRNA level from 1 to 6 d (d

1: 85±5; d 2: 73±5; d 3: 71±7; d 4: 67±4; d 5: 69±6; d 6:
69±9, P<0.01 vs d 0: 30±4, respectively).  Treatment
of EGF resulted in increases in Cbfa1 gene expression
at d 2 and d 3 (d 2: 40±2; d 3: 39±1, P<0.05 vs d 0:
30±5).  The Cbfa1 mRNA levels of these groups men-
tioned above were significantly higher than those of
control group (Fig 2 D, E, F, and Fig 4).

Treatment with PD 98059 alone resulted in de-
creases of murine Cbfa1 gene expression both in
MC3T3-E1 cells (d 1: 44±5; d 2: 50±8; d 3: 49±10; d 4:
47±9; d 5: 46±7; d 6: 46±10, P<0.05 or P<0.01  vs d 0:
69±0.4) and in C2C12 cells (d 1: 19±2; d 2: 22±3; d 3:
22±5; d 4: 21±4; d 5: 20±3; d 6: 20±4, P<0.05 or P<0.01

Fig 1.  Relative luciferase activities (RLA) of Cbfal pomoter (mP696-Luc) in MC3T3-E1 and C2C12 cells treated with different
concentrations of growth factors (GF) and/or PD 98059 (10 µmol/L).  MC3T3-E1 (A, B, C) or C2C12 (D, E, F) cells were
transfected with the mP696-Luc reported plasmid and PRL-SV40 expression plasmid.  Sixteen hours after transfection, cells
were cultured in various concentrations of IGF-I, GM-CSF, and EGF with or without PD 98059 for additional 24 h.  Forty
hours after transfection, cells were harvested and reported activities were measured.  Values normalized for transfection
efficiency are shown as fold induction relative to basal promoter activity as described in materials and methods.  n=3.
Mean±SD.  bP<0.05, cP<0.01 vs control group (the cells without any treatment).  fP<0.01 GF+PD 98059 groups vs GF groups.
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vs d 0: 30±3) compared with d 0.  Moreover, The Cbfa1
mRNA levels of growth factors plus PD 98059 groups
were significantly lower than those of growth factors
groups.  These results indicated that PD 98059 blocked
IGF-I, GM-CSF, and EGF-induced Cbfa1 gene expres-
sion not only in MC3T3-E1 cells but also in C2C12

cells.

DISCUSSION

Osteoblasts originate from common progenitors,
which are capable of differentiating into other mesen-
chymal cell lineages such as chondrocytes, myoblasts,

bone marrow stromal cells, etc[10-13].  And various hor-
mones and cytokines participate this process[14-18].
Among those, IGF-I, GM-CSF, and EGF are the most
potent inducers and stimulators, since they are synthe-
sized by osteoblast lineage and present in substantial
concentration in bone tissue [19-21].  Because none of these
growth factors is specific for cells of the osteoblast
lineage.  Therefore, mechanisms to induce skeletal tis-
sue specificity might be mediated by some specific in-
tracellular molecules.

During the past several years, our molecular un-
derstanding of osteoblast biology has made rapid
progress due to the characterization of the function of

Fig 2.  The mRNA expression of Cbfa1 gene in MC3T3-E1 and C2C12 cells treated with growth factors (GF) and/or PD 98059
(10 µmol/L).  MC3T3-E1 (A, B, C) or C2C12 (D, E, F) cells were cultured in DMEM (2 % FBS) with or without IGF-I, GM-CSF,
EGF, and PD 98059 for 0-6 d.  Then total RNA was isolated using Trizol reagent and the mRNA expression levels of Cbfa1 gene
were detected by RT-PCR. The RT-PCR products were separated by electrophoresis on 3 % agarose gels and mCbfa1 signals
(102 bp) were normalized to the GAPDH signals (146 bp) in the same reaction.  bP<0.05 vs d0 of GF or PD 98059 groups.     eP
<0.05 vs control groups.  iP<0.05 vs GF groups.  lP<0.05 vs PD 98059 groups.
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one molecule, Cbfa1.  This member of the runt/Cbfa
family of transcription factors was first identified as
the nuclear protein binding to an osteoblast-specific cis-
acting element activating the expression of osteocalcin,
the most osteoblast-specific gene[2].  Cbfa1 was then
shown to regulate the expression of all the major genes
expressed by osteoblasts, such as osteocalcin, alkaline
phosphatase (ALP)[22], α1 and α2(I) collagen[23],
osteopontin[1], and osteoprotegerin ligand[24,25].  Indeed,
Cbfa1 is a critical molecule not only for osteoblast dif-
ferentiation but also for osteoblast function.  However,
The regulation of Cbfa1 gene expression and Cbfa1
protein activity by systemic hormones and local fac-
tors are just beginning to be understood.  It has been
shown that Cbfa1 expression and activity are regulated
by PTH[26], 1,25-(OH)2-vitamin D3

[27], dexamethasone[28],
bone morphogenetic protein (BMP)[29], transforming

growth factor-beta (TGF-β)[30], and inflammatory
cytokine tumor necrosis factor alpha (TNFα)[31], etc.

Considering of the stimulatory effects of IGF-I,
GM-CSF, and EGF on osteoblast differentiation, we
speculated that Cbfa1 might play an important role in
osteoblast differentiation regulated by these growth
factors.  So Cbfa1 promoter activity and mRNA ex-
pression induced by IGF-I, GM-CSF, and EGF were
determined in the present study.

To investigate whether IGF-I, GM-CSF, and EGF
regulate the promoter activity of Cbfa1 gene, we firstly
cloned a mouse Cbfa1 promoter-luciferase reporter
vector, mP696-Luc.  Using the mP696-Luc vector, we
provided evidence that Cbfa1 promoter activity was
stimulated by IGF-I, GM-CSF, and EGF in both pre-
osteoblastic (MC3T3-E1) and myoblastic (C2C12) cells
by transient transfection assay.

Fig 3.  mRNA Expression of Cbfa1 gene in MC3T3-E1 cells treated with growth factors (GF) and/or PD 98059 (10 µmol/L).
MC3T3-E1 cells were cultured in DMEM (2 % FBS) with or without IGF-I, GM-CSF, EGF, and PD 98059 for 0-6 d.  Then total
RNA was isolated using TriZol reagent and the mRNA expression of Cbfa1 gene was detected by RT-PCR.  The RT-PCR
products were separated by electrophoresis on 3 % agarose gels and mCbfa1 signals (102 bp) were normalized to the GAPDH
signals (146 bp) in the same reaction.  M: marker.
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To confirm the stimulatory effects of IGF-I, GM-
CSF, and EGF on Cbfa1 gene expression, we next ex-
amined the mRNA expression of murine Cbfa1 gene in
response to these growth factors.  RT-PCR analysis
indicated that these three growth factors could increase
the levels of Cbfa1 mRNA respectively.

The skeleton is both a source and a repository for
many growth factors, including IGF-I, which plays a
key role in skeletal growth and remodeling.  IGF-I plays
an essential role in longitudinal bone growth in response
to growth hormone exposure[32,33].  Moreover, IGF-I is
mitogenic for less differentiated bone cells, whereas it
increases the synthesis of collagen and perhaps other
matrix proteins by osteoblasts[34,35].  Our results showed
that treatment with IGF-I resulted in increases of Cbfa1
promoter activity and mRNA levels in both MC3T3-E1
and C2C12 cells.  These findings suggest that the Cbfa1

may be involved in the process of osteoblasts differen-
tiation induced by IGF-I.  In contrast to our results
with MC3T3-E1 and C2C12 cells, Ducy et al[1] showed
that IGF-I had no effect on Cbfa1 gene expression in
the rat osteoblast-like osteosarcoma cell line, ROS17/2.8.
These inconsistent results can be attributed to the use
of different osteogenic cell lines at different stages of
osteoblast differentiation.  ROS17/2.8 cells are pheno-
typically more mature than MC3T3-E1 and C2C12 cells,
which both require inductive signals provided by ECM
before they will express osteoblast marker genes.

The other two growth factors, GM-CSF and EGF
had similar effects with IGF-I on the expression of lu-
ciferase reporter plasmid driven by the mP696-Luc and
the levels of Cbfa1 mRNA.  Many studies have shown
that GM-CSF is a stimulating factor of osteoclast[36,37].
However, the stimulatory effect of GM-CSF on osteo-

Fig 4.  mRNA expression of Cbfa1 gene in MC3T3-E1 cells treated with growth factors (GFs) and/or PD 98059 (10 µmol/L).
C2C12 cells were cultured in DMEM (2 % FBS) with or without IGF-I, GM-CSF, EGF, and PD 98059 for 0-6 d.  Then total RNA
was isolated using Trizol reagent and the mRNA expression of Cbfa1 gene was detected by RT-PCR.  The RT-PCR products
were separated by electrophoresis on 3 % agarose gels and mCbfa1 signals (102 bp) were normalized to the GAPDH signals
(146 bp) in the same reaction.  M: marker.
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blast differentiation has not been widely accepted.
Postiglione et al[38] found that SaOS-2 cells expressed
GM-CSF receptor, in vitro treatment of SaOS-2 cells
with recombinant human GM-CSF caused a decreased
cell proliferation and an increased production of
osteopontin, ALP and most but not all ECM components.
But Modrowski et al[39] reported that GM-CSF promoted
the proliferation of human osteoblastic cells.  Our re-
sults showed that GM-CSF stimulated Cbfa1 gene pro-
moter activity and increased Cbfa1 mRNA levels, indi-
cating that GM-CSF maybe regulate osteoblast differ-
entiation through induction of Cbfa1 gene expression.
The expression of EGF receptor on osteogenic cells
indicates that EGF maybe regulate osteoblast differen-
tiation directly.  In vitro studies have demonstrated that
treatment with EGF stimulates the proliferation of
osteoprogenitor cells, inhibits collagen synthesis, down-
regulates ALP activity of matured osteoblasts[21].  In
our study, two well-characterized cell lines of early dif-
fering stage of differentiation were chosen as experi-
mental cell models.  We found that EGF enhanced Cbfa1
gene expression in MC3T3-E1 and C2C12 cells.
However, additional experiments should be done to gain
further insight into the role of EGF on fully differenti-
ated osteoblastic cells.

The present study showed that IGF-I, GM-CSF,
and EGF stimulated Cbfa1 promoter activity and in-
creased Cbfa1 mRNA levels.  But little is known about
the mechanisms regulating Cbfa1 gene expression by
these growth factors.  Cbfa1 protein was phosphory-
lated and activated by MAPK pathway[7,40].  Since Cbfa1
gene expression is up-regulated by Cbfa1 itself[1].  And
a major route for IGF-I, GM-CSF, and EGF receptor
signaling involves activation of the MAPK ERK kinases
(MEK)/ERK branch of the MAPK pathway.  We specu-
lated that MAPK pathway might be required for the
stimulatory effects of IGF-I, GM-CSF, and EGF on
Cbfa1 gene.  To test this hypothesis, PD 98059 was
used in our experiment.  PD 98059 is a potent, cell
permeable and selective inhibitor of MAPK.  It blocks
the activation of MEK1, therefore inhibiting the subse-
quent phosphorylation and activation of MAPK.  The
present study demonstrated that the cbfa1 promoter ac-
tivity and mRNA expression were both completely abol-
ished by supplement with PD 98059 both in basic or
after stimulation with IGF-I, GM-CSF, and EGF.  These
results raise the possibility that MAPK pathway is nec-
essary for stimulation of Cbfa1 gene expression by IGF-
I, GM-CSF, and EGF.  But two questions still remain

regarding the regulation mechanisms of MAPK on Cbfa1
gene expression.  Firstly, we do not yet know whether
MAPK-dependent phosphorylation cascade regulates
Cbfa1 gene expression directly.  Further experiments
should be done for resolving this question.  For example,
MAPK stimulator may be used, or we can examine di-
rectly whether Cbfa1 mRNA and promoter activity will
be increased after transfection of cells with constitu-
tively active MEK1, the kinase immediately before ERK1/
2 in the MAPK cascade, thus more evidence can be
obtained.  Secondly, it is not currently clear whether
the other subfamilies of MAPK are also involved in regu-
lating Cbfa1 gene.  Multicellular organisms have three
well-characterized subfamilies of MAPK that control a
vast array of physiological processes[41].  These MAPK
include the ERK, the c-Jun NH2-terminal kinases (JNK),
and the four p38 enzymes, p38α, p38β, p38γ, and p38δ.
In the present study, only a specific MEK1/ERK
inhibitor, PD98059, was used.  So further studies should
be conducted to clarify the role of JNK and P38 MAPK
in regulating Cbfa1 gene expression.

All the data together, our results indicated that IGF-
I, GM-CSF, and EGF could increase the promoter ac-
tivity and the mRNA expression of murine Cbfa1 gene
both in preosteoblastic cells (MC3T3-E1) and myoblas-
tic cells (C2C12).  And the MAPK pathway might be
responsible for these growth factors’ stimulatory
effects.
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