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Abstract 
The polycomb repressive complexes 2 (PRC2) complex catalyzes tri-methylation of histone H3 lysine 27 (H3K27), a repressive 
chromatin marker associated with gene silencing.  Overexpression and mutations of PRC2 are found in a wide variety of cancers, 
making the catalytic activity of PRC2 an important target of cancer therapy.  This review highlights recent structural breakthroughs 
of the human PRC2 complex bound to the H3K27 peptide and a small molecule inhibitor, which provide critically needed insight into 
PRC2-targeted drug discovery.
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Introduction
Epigenetic regulation, including DNA methylation and 
demethylation, histone modification, chromatin remodeling, 
incorporation of histone variants and chromatin modulation 
by non-coding RNAs, plays a key role in modulating the chro-
matin state and gene expression without altering the DNA 
sequence[1–5].  Polycomb group proteins (PcGs) are important 
epigenetic regulators that form chromatin-modifying com-
plexes, whose composition may be cell-context-dependent.  
In mammals, two major PcG complexes, namely Polycomb 
repressive complexes 1 (PRC1) and 2 (PRC2), have been iden-
tified[1, 6, 7].  

PRC1 catalyzes the monoubiquitylation of histone H2A Lys 
119[1, 8].  Once thought of as a unique complex, it is now clear 
that human PRC1 exists as a modular subset of complexes 
with distinct functions and gene targets[8].  All PRC1 com-
plexes contain a common core — the RING-type E3 ubiquitin 
ligase composed of Ring1B (also known as RNF2) or Ring1A, 
and Bmi1 (also known as PCGF4) or one of six Polycomb 
group RING finger (PCGF) subunits, as well as additional 
subunits that define canonical PRC1 (CBX and PHC subunits) 
and noncanonical PRC1 (RYBP/YAP2)[8, 9].  The subunit com-
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position affects both PRC1 recruitment to target genes and 
the catalytic activity of the complex[8, 9].  PRC2 catalyzes the 
methylation of histone H3 lysine 27 (H3K27) through its EZH2 
subunit, a modification thought to mediate transcriptional 
silencing through chromatin compaction[1, 10].  Monoubiquity-
lation of histone H2A Lys 119 (H2AK119ub) by PRC1 recruits 
PRC2[1], while the PRC1 component Pc (known as CBX in 
mammals) binds specifically to the product of PRC2 catalysis, 
H3K27me3.  This results in a binding feed-forward loop and 
the spread of both the H2AK119ub and H3K27me3 repres-
sive marks[1].  Together, PRC1 and PRC2 silence critical target 
genes involved in fundamental cellular processes such as cell 
fate decision, cell differentiation, cell cycle regulation, senes-
cence and cancer[1, 6, 7, 11, 12].  

Dysregulation of PRC2 is involved in a wide variety of can-
cers, making the catalytic activity of PRC2 an important target 
of cancer therapy.  Here, we review recent structural break-
throughs of the human PRC2 complex bound to the H3K27 
peptide and a small molecule inhibitor, which could serve as a 
rational basis for drug discovery that targets PRC2.

Polycomb repressive complex 2: subunit composition
Human PRC2 consists of four core subunits (Enhancer of zeste 
homolog 2 [EZH2], embryonic ectoderm development [EED], 
suppressor of zeste 12 [SUZ12], and retinoblastoma suppres-
sor associated protein 46/48 [RbAp46/48]) and several aux-
iliary subunits including AE (adipocyte enhancer)-binding 

Review 



964
www.nature.com/aps

Shi Y et al

Acta Pharmacologica Sinica

protein 2 [AEBP2], Jumonji/AT-rich interactive domain 2 
[JARID2] and polycomb-like [PCL] proteins 1, 2, and 3[1].  
EZH2 is the enzymatic subunit of PRC2.  The 751-amino-acid 
EZH2 protein harbors six domains: a WD-40 binding domain 
(WDB), domains I–II, two SWI3-ADA2-N-CoR-TFIIIB [SANT] 
domains, a cysteine-rich CXC domain and the evolutionarily 
conserved carboxy-terminal Su(var) 3–9-enhancer of zeste-
trithorax (SET) methyltransferase domain.  However, EZH2 
lacks histone methyltransferase (HMTase) activity on its own 
and requires at least two other PRC2 core subunits, EED and 
SUZ12, for catalytic activity[1, 13, 14].

EED both recruits PRC2 to H3K27me3 and stimulates EZH2 
H3K27me3 HMTase activity.  Four EED isoforms are found 
in mammals, and these isoforms are thought to form through 
alternative use of four in-frame translation start sites in the 
EED mRNA[15].  All isoforms appear to be capable of facilitat-
ing PRC2-dependent histone methylation both in vivo and 
in vitro[15].  EED folds into a typical WD-repeat/β-propeller 
structure.  The WD40 motif is composed of an approximately 
40-amino-acid fold that forms four-stranded antiparallel 
β-sheets, with seven copies of the WD-repeat motif forming 
the seven-bladed β-propeller structure of EED[16].  A 30-residue 
peptide of EZH2 (aa39-68) is both necessary and sufficient for 
its interaction with EED[16].  The EED-EZH2(39–68) structure 
revealed binding of the EZH2 peptide to the bottom of the 
WD-repeat domain of EED[16].  This interaction is required for 
the HMTase activity of PRC2[16].  The carboxy-terminal domain 
of EED specifically binds the N-terminal tail of H3K36me3, 
which is required for allosteric activation of the HMTase activ-
ity of PRC2[13].  

SUZ12 is essential for the integrity of the PRC2 complexes, 
the stability of EZH2, and hence the HMTase activity of the 
complex[14, 17].  It contains a C-terminal Vrn2-Emf2-Fis2-SUZ12 
[VEFS] domain, a C2H2 zinc finger and an extended N-ter-
minal region with sequence blocks that are conserved from 
plants to humans[18].  The C-terminal VEFS domain mediates 
stable binding to EZH2, which promotes PRC2 assembly[14, 19].  
Beyond simply providing EZH2 contact, the VEFS domain 
plays an allosteric role in stimulating PRC2 HMTase activity[19].  
Furthermore, recent findings implicate the SUZ12(VEFS) 
domain in allosteric inhibition of EZH2 HMTase activity by 
H3K4me3, a modification that marks transcriptionally active 
promoters, to inhibit the spread of silenced chromatin into 
active gene regions[20].  Thus, the VEFS domain provides a key 
surface for EZH2 interaction to activate the PRC2 catalytic site 
and also mediates regulatory inputs that control enzyme out-
put.  

The region spanning residues 79–91 of SUZ12 provides 
a binding surface for the RbAp46/48 subunit[18, 20].  Besides 
its contributions to the core PRC2, there is also evidence 
that SUZ12 mediates interactions with the PRC2 cofactor 
JARID2[18, 21].  Moreover, SUZ12 is the PRC2 subunit with the 
strongest affinity for a set of noncoding RNAs (ncRNAs) from 
the 5′ ends of repressed target genes[18, 22].  

RbAp46 and RbAp48 (pRB-associated proteins p46 and p48, 
also known as RBBP7 and RBBP4, respectively) are highly 

homologous histone chaperones that play key roles in estab-
lishing and maintaining chromatin structure[23–25].  Although 
RbAp46/48 proteins are not required for the HMTase activ-
ity of EZH2 and do not appear to stimulate it, they have 
important PRC2-related function[26].  RbAp48 binds to histone 
H3–H4 heterodimers to recruit the PRC2 complex to nucleo-
somes[24, 26].  While both RbAp46 and RbAp48 are PRC2 com-
ponents, it remains unknown whether they have distinct func-
tions in the context of PRC2.  

AEBP2 is a zinc-finger protein that was identified as an aux-
iliary component of the PRC2 complex[1, 27].  It interacts with 
EZH2 and SUZ12 to enhance EZH2 enzymatic activity[1, 28] and 
co-localizes with PRC2 at a number of target genes[1, 27].  

JARID2 is a transcriptional repressor[29] and a member of the 
Jumonji C (JmjC) and ARID domain protein family of histone 
demethylases, yet it lacks the key residues necessary for cofac-
tor binding and is devoid of enzymatic activity[1, 21, 30].  The 
C-terminal half of JARID2 contains the conserved JmjC and 
JmjN domains, the ARID domain (a potential DNA-binding 
domain), and a zinc finger, while the N-terminal half con-
tains an allosteric effect domain, a PRC2-binding region and a 
nucleosome-binding domain[21, 30–32].  How JARID2 influences 
PRC2, in mechanistic terms, is less well defined.  Methylated 
JARID2 mimics methylated H3K27me3 to recruit and activate 
PRC2, and knockdown/loss-of-function experiments revealed 
a partial mutual dependence on JARID2 and core PRC2 sub-
units for target binding[21, 30–40].  JARID2 can bind to long non-
coding RNAs (lncRNAs), whose presence stimulates JARID2-
EZH2 interactions in vitro and JARID2-mediated recruitment 
of PRC2 to chromatin in vivo[33].  JARID2 can also modulate 
PRC2 histone methyltransferase activity in vitro; however, 
whether this influence is stimulatory or inhibitory is contro-
versial[21, 30–33, 37].  

PCL proteins were first identified as crucial factors in main-
taining normal body segmentation during differentiation in 
Drosophila[41].  Human PCL proteins include PHF1 (hPCL1), 
MTF2 (hPCL2) and PHF19 (hPCL3).  They all contain a Tudor 
domain and two plant homeodomain (PHD) finger domains, 
which are conserved across species[42–44].  PCLs participate 
in PRC2 recruitment to their genomic targets for high-level 
H3K27 trimethylation and Hox gene silencing by an unidenti-
fied mechanism.  PHF1, but not MTF2, can physically interact 
with EZH2 via its PHD domain and specifically stimulates 
EZH2 H3K27me3 activity over H3K27me2 activity[45, 46], sug-
gesting that PHF1 not only functions in site-specific PRC2 
recruitment but also enhances PRC2’s epigenetic repression 
activity.  In addition to its functions in PcGs, PHF1 also plays 
an important role in double-strand break (DSB) signaling 
and promoting non-homologous end-joining repair through 
interaction with Ku70/Ku80[47], thus playing a critical role in 
genome maintenance processes.  Another feature worthy of 
attention is the ability of PHF1 to bind and protect p53 from 
MDM2-mediated ubiquitination and degradation[48], impli-
cating PHF1 in regulating cell growth arrest and apoptosis.  
MTF2/PCL2 function has been mainly analyzed in ES cells, 
where it is a component of biochemically distinct PRC2 com-
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plexes that it recruits to HOX genes and other target loci to 
regulate transcriptional networks during axial development[49, 

50].  Paradoxically, MTF2 is also involved in activating the 
CDKN2A gene and promotes cellular senescence[49], suggest-
ing that MTF2 might locally suppress the catalytic activity 
of PRC2.  PHF19, the third PCL homologue identified, can 
form two PHF19 isoforms by alternative splicing, a long form 
with Tudor and both PHD domains, and a shorter isoform 
that lacks the C-terminal PHD2.  PHF19 binds EZH2 through 
the Tudor and PHD2 domains[51].  PHF19 specifically forms 
a complex with PRC2 lacking JARID2 in an inter-dependent 
way[52–54], indicating that it is a potential PRC2-recruting fac-
tor.  Both PHF19 and PHF1 are able to bind H3K36me3, a 
well-known marker of active chromatin, through their Tudor 
domains[53–55].  Stunningly, recognition of H3K36me3 is nec-
essary for H3K27me3 deposition and PRC2-colocalization 
with PHF19 and the specific H3K36 demethylases NO66 and 
KDM2B[53, 54], suggesting that PHF19 targets PRC2 to repress 
active gene loci.  Although much progress has been achieved 
in unraveling PCL protein functions in PRC2-mediated repres-
sion, further research is required to understand when and how 
PHF1 or PHF19 recognize the H3K36me3 marker and interact 

with PRC2 to activate its catalytic activity.  
Sequences enriched in CpG islands may play a widespread 

role in recruiting PRC2 complexes in mammals[1, 6, 7].  PRC2 is 
recruited indirectly to CpG islands via PRC1, whose accessory 
subunit KDM2B specifically recognizes un-methylated CpG 
islands to recruit PRC1; PRC2 is then recruited through ubiq-
uitylation of histone H2A lysine 119 by RING1B, which is part 
of the same variant complex that also contains KDM2B[56].

Several recent reports suggest that lncRNAs play an impor-
tant role in gene silencing and PRC2 recruitment to selective 
loci[22, 33, 38, 57–67].  For instance, PRC2 and H3K27me3 accumulate 
on the inactive X chromosome during X inactivation.  Subse-
quently, it was shown that the key regulator of X inactivation, 
the lncRNA Xist, can interact with PRC2 through the PRC2-
cofactor JARID2[34, 60].  HOTAIR is a lncRNA that recruits 
PRC2 to the HOXD locus101[68], whereas the lncRNA Kcnqot1 
is involved in imprinting the Kcnq1 cluster in a process that 
requires PRC2[69].  Moreover, RNA immunoprecipitation tech-
niques have identified several thousand RNAs associated with 
PRC2[70], but their functional significance remains unclear[1, 6, 7].

More recently, it has been shown that the pre-mRNA splic-
ing regulator RBFox directly interacts with PRC2, and RBFox2 

Figure 1.  The Polycomb repressive complex PRC2.  (A) Domain organization of each subunit in the human PRC2 complex.  aa, amino acid; SBD, 
SANT1-binding domain; EBD, the EED-binding domain; BAM, β-addition motif; SAL, SET activation loop; SRM, stimulation-responsive motif; MCSS, motif 
connecting SANT1 and SANT2; SANT, SWI3, ADA2, N-CoR and TFIIIB DNA-binding domain; CXC, cysteine-rich domain; SET, Su(var) 3–9, enhancer of 
zeste, trithorax domain; WD, WD-40 domain; WDB, WD-40 binding domain; Zn, Zn-finger region; VEFS, conserved among VRN2-EMF2-FIS2-SU(Z)12; 
JmjN, Jumonji N; ARID, AT-rich interaction domain; JmjC, Jumonji C; PHD, plant homeodomain.  (B) Model of the human PRC2 complex.  EZH2, EED, 
SUZ12, and RbA48 are core subunits, while JARID2, PCLs, AEBP2 are auxiliary subunits.  PRC2 complex catalyzes tri-methylation of H3K27, leading to 
compaction of nucleosome and transcription silencing.
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inactivation eradicates PRC2 targeting at the majority of biva-
lent gene promoters leading to transcriptional de-repression[71].

PRC2: biological function
A central function of PRC2 is to methylate histone H3 on K27.  
While PRC2 can perform each of the three successive methyl 
transfers that ultimately yield H3K27me3[7], the tri-methylated 
product (H3K27me3) is widely viewed as the oppressive 
chromatin mark that accompanies PcG-mediated silencing[7].  
While H3K27me2 is broadly distributed, H3K27me3 is more 
specifically localized at a number of silent genes, including 
key cell fate regulators[72].  Genome-wide mapping studies 
confirmed that PRC1 and PRC2 co-localize with H3K27me3 
at the promoters of 10%–15% of all genes[73, 74].  These genes 
include HOX and other developmental and cell fate determi-
nation genes, including BMP, WNT, NANOG and SOX[73, 74].  
More recently, PRC2 has been reported to support neuron 
specification during differentiation through silencing genes 
responsible for neurodegeneration[75], suggesting an important 
role for PRC2 in protecting neurons against degeneration.

Based on biochemical and structural data, a PRC2 gene-
silencing model was proposed in which PRC2 can either act 
independently or synergistically in response to different chro-
matin environments: when chromatin domains are targeted 
for repression, PRC2 is recruited to deposit the repressive 
H3K27me3 histone mark at nucleosome-associated regions 
of DNA.  Existing H3K27me3 marks are recognized by EED 
and the stimulation-responsive motif (SRM) of EZH2, which, 
in cooperation with the SET activation loop (SAL) of EZH2, 
stabilize the catalytic SET domain of EZH2 to stimulate its 
methyltransferase activity.  However, PRC2 enzymatic activity 
is inhibited by the active histone marks H3K4me3, H3K36me2, 
and H3K36me3, which in contrast to the unmodified H3 N-ter-
minus are not bound by the VEFS domain of SUZ12[13, 20, 28], to 
ensure that H3K27 trimethylation is limited only to repressed 
targets and does not spread into active regions.  

PRC2 and diseases
Since 2010, multiple cancer genome-wide studies have 
revealed that the function of the PRC2 complex and 
H3K27methylation are widely associated with tumorigen-
esis[4, 5, 12, 76, 77].  Several lines of evidence suggest that EZH2 
deregulation is an important driver of cancer development 
and progression and that inactivation of EZH2 may be thera-
peutically effective in many cancers[4, 5, 11, 12, 73, 76–89].  EZH2 is 
highly expressed in a wide range of cancer types, including 
lung, breast, colon, prostate, bladder and pancreatic cancer, as 
well as sarcomas and lymphomas[4, 5, 11, 12, 76, 77, 80, 82, 83, 85–88].  Cor-
respondingly, overexpression of EZH2 often correlates with 
advanced stages of human cancer progression and poor prog-
nosis[4, 12, 76].  Furthermore, somatic mutations and deletions of 
EZH2 are found in 22% of germinal-center diffuse large B-cell 
lymphomas, 7% of follicular lymphomas, and 12%–23% of 
patients with myelodysplastic and myeloproliferative disor-
ders[4, 12, 76].  Similarly, mutations in some epigenetic regulators 
that are functionally related to EZH2 are also associated with 

oncogenesis[4, 12, 76].  For example, inactivating mutations of the 
H3K27 demethylase ubiquitously transcribed tetratricopeptide 
repeat gene on X chromosome (UTX) recurrently occur in a wide 
range of malignancies, which may be functionally equivalent 
to up-regulation of EZH2 methyltransferase activity[88].

PRC2 has also been implicated in various immune functions.  
For instance, Gunawan et al found that EZH2 is involved in 
regulating lymphocyte activation through modulation of 
integrin signaling and adhesion dynamics of neutrophils and 
dendritic cells[90].  Bantug and Hess reported that glycolysis 
and EZH2 synergistically stimulate T cell responses against 
tumors[91], and Zhao et al showed that EZH2 activation stimu-
lates expression of T cell polyfunctional cytokines and pro-
motes T cell survival, resulting in enhanced patient survival[92].

PRC2 structure
Recently, three PRC2 structures were determined: PRC2 of 
the thermophilic fungus Chaetomium thermophilum (ctPRC2) in 
a stimulated and basal state[93], human PRC2 in a stimulated 
state[94] and a human/chameleon (Anolis carolinensis) hybrid 
PRC2 [Hs/AcPRC2] in complex with a pyridine-based PRC2 
inhibitor[95].  Although human and fungal PRC2 have low 
sequence conservation, they share a similar overall structure.  
The complex crystal structures of all three groups contain 
EZH2, EED and the VEFS domain of SUZ12.  They show that 
the PRC2 complex has at least two states: a basal state, as 
shown for PRC2 in the absence of a stimulatory peptide, and 
a stimulated state in which the same complex contains either 
the stimulatory H3K27me3 peptide or a stimulatory JARID2-
K116me3 peptide[93, 94].  These complexes were further stabi-
lized by binding of SAH cofactor and a substrate-trapping 
H3K27M peptide in the catalytic cleft.  H3K27M is an onco-
genic mutant histone that binds the EZH2 subunit and inhibits 
active PRC2 by blocking its methyltransferase activity[94].  

Overall, EZH2, EED, and the VEFS domain of SUZ12 
(SUZ12(VEFS)) associate intimately to form a compact struc-
ture, which is roughly divided into a regulatory module and a 
catalytic module.  The regulatory module is composed of the 
seven-bladed β-propeller fold of EED surrounded by a “belt” 
of the six N-terminal EZH2 domains consisting of the SANT1 
domain (in fungal PRC2 SANT1-like domain), the SANT1-
binding domain (SBD), the EED-binding domain (EBD), the 
β-addition motif (BAM), the SET activation loop (SAL) and 
the stimulation-responsive motif (SRM).  The catalytic mod-
ule is composed of SUZ12(VEFS) and the four C-terminal 
domains of EZH2, consisting of the motif connecting SANT1 
and SANT2 (MCSS), SANT2 (in fungal PRC2 SANT2-like 
domain), the cysteine-rich domain (CXC), and the Su(var)3-9, 
enhancer of zeste, trithorax domain (SET).  The SET domain is 
positioned above EED and SUZ12(VEFS) and adjacent to the 
SRM[93, 94].

Within the EZH2 N-terminal fragment, the N-terminal SBD 
forms a long helix that packs against the C-terminal SANT1 
domain to complete an interdomain four-helix bundle.  Thus, 
the first and last of the domains from the EZH2 N-terminal 
fragment interact to close the ring that EZH2 forms around 
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the EED subunit[94].  The EBD and BAM domains pack against 
the bottom and side of the EED.  SAL and SRM together link 
the catalytic SET domain to the H3K27me3-sensing EED to 
communicate H3K27me3 binding to the catalytic center of the 
SET domain to stimulate its HMTase activity[94].  The MCSS 
and SANT2 domains provide most of the contacts between 
EZH2 and the SUZ12(VEFS) domain.  SANT2 has a signifi-
cant proportion of basic residues and a zinc-coordinating site, 
suggestive of a role in nucleic acid recognition.  The HMTase 
activity of the SET domains requires two adjacent cysteine-
rich regions, the pre-SET (CXC) and post-SET domains.  The 
pre-SET domain is characterized by two zinc-binding motifs.  
In the first motif, three Zn2+ ions are coordinated by eight 
cysteines and one histidine (Zn3Cys8His1), and in the second 
motif, another three Zn2+ ions are coordinated by nine cyste-
ines (Zn3Cys9).  The motif interacts with SET, SUZ12(VEFS) 
and the MCSS domain of the catalytic module.  The largely 
disordered post-SET following the SET domain completes, 
with the SET domain, the lysine access channel and the active 
site[94].  The SET-I region of EZH2 in the human PRC2 complex 
adopts an anti-clockwise rigid-body rotation relative to its 
position in isolated structures.  Residues 112 to 121 of the SAL 
pack against the SET-I region to stabilize its conformation in 
the active complex, and the conserved acidic residues 584–588 
of SUZ12 in turn also pack against residues 112–121 of the 
SAL[94].  This SUZ12 region was previously reported to medi-
ate binding to histone H3 (31 to 42), resulting in stimulation of 
PRC2 activity[94].  

The EED structure is essentially identical to previously 
determined crystal structures.  Its H3K27me3 recognition site 
is at the center of the beta-propeller and interacts with the SET 
domain via SAL and SRM[94].

The N-terminal 29 residues (561–589) of the SUZ12(VEFS) 
form a random coil that is sandwiched between the EED 
and EZH2 SET domain, serving as the glue that holds them 

together[95].  Residues 590–685 of SUZ12(VEFS) form a heli-
cal bundle with exclusive interactions with different parts of 
EZH2[95].  The first four helices interact intimately with the 
EZH2 MSCC subdomain, and the C-terminal two helices pro-
vide an interaction surface for the two N-terminal helices of 
the EZH2 SANT2 subdomain[94, 95] (Figure 2).

Asp652, Gln648, Leu666, Asn668 and Tyr726 of human 
EZH2 interact with the H3 (22–31) K27M peptide (Figure 3A), 
while Ala622, Trp624, Ser664, Asn688, His689 and Asp725 
form hydrogen bonds with the co-factor SAH (Figure 3C).  
Therefore, the C-terminal loop is necessary for both SAH and 
H3K27 peptide binding.  The methionine 27 side chain in the 
H3K27M cancer mutant protein occupies the “lysine” access 
channel in the active site.  Importantly, the interaction with 
methionine is much stronger than with the wild-type lysine 
residue and, in the context of full-length PRC2 and H3K27M-
containing nucleosomes, is thought to inhibit PRC2 activity by 
almost irreversible binding of the complex to H3K27M[94].  In 
the stimulated state of PRC2, Asp362, Arg414 of human EED 
and Asp140 of human EZH2 respond to the binding of the 
JARID2K116me3 peptide (Figure 3B), while Glu337, Gln326, 
Glu39, Arg526, Phe327, Val325 and His326 of fungal EED and 
Asp329 of fungal EZH2 are involved in H3K27me3 peptide 
binding (Figure 3D).

More recently, Zhang et al point out that a flexible peptide 
from ctSUZ12 (aa533–538, LPGRGV) instead of oncogenic 
H3K27M peptide binds to the active pocket of the ctEZH2 
SET catalytic domain in the ctPRC2 structure, leading to mis-
identification of H3K27M-EZH2 SET interaction[96].  Jiao et al 
replaced the corresponding peptide with an H3K27M pep-
tide sequence in the context of the same EZH2-SUZ12(VEFS) 
fusion protein and solved the structure of the sequence-mod-
ified ctPRC2 in complex with SAM.  The renewed structure 
shows that a methionine but not an arginine residue in the 
replaced H3K27M sequence from a neighboring asymmetric 

Figure 2.  The structure of human PRC2 and fungal PRC2.  The structure of human PRC2 (PDB ID: 5HYN)[94] and fungal (C thermophilum) PRC2 
(PDB ID: 5CH1)[93].  (A) The structure of human PRC2.  Green: EZH2, cyan: EED, magenta: SUZ12 (VEFS), yellow: H3K27M peptide, orange: SAH, tint: 
JARID2K116me3 peptide, red: Zn2+.  (B) The structure of fungal PRC2.  Green: EZH2, cyan: EED, magenta: SUZ12 (VEFS), yellow: H3K27M peptide, 
orange: SAH, tint: H3K27me3 peptide, red: Zn2+.  (C) Alignment of human and fungal PRC2 structure.  Structural overlay of human PRC2 (PDB ID: 5HYN) 
and fungal PRC2 (PDB ID: 5CH1). Green: human EZH2, cyan: human EED, magenta: human SUZ12(VEFS), orange: fungal EZH2, gray: fungal EED, 
wheat: fungal SUZ12 (VEFS).
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unit inserts into the active pocket of the ctEZH2 SET domain, 
which suggests that H3K27M inhibits ctPRC2 catalysis via the 
same structural mechanism as for human PRC2[97].

Although fungal (C thermophilum) PRC2 has a similar overall 
structure as human PRC2, they have significant differences: 
first, the fungal EED has three helixes (α1, α2 and α3) and 
two β-sheets (β27 and β28) from Ile342 to Tyr501 that have 
unknown function and are not found in human EED.  Second, 
the SBD, SANT1L, SANT2L, CXC and SET domains of fungal 
EZH2 have different orientations compared to the correspond-
ing domains in human EZH2.  As shown biochemically, these 
structural differences do not affect PRC2 HMTase activity, but 
they may impact other functions of PRC2 such as RNA bind-
ing (Figure 2C).

The flexible SRM of EZH2 is absent in the electron density 
map of the PRC2 ternary complex in the basal state, suggest-
ing that it is highly flexible in the absence of the stimulat-
ing H3K27me3 peptide[93].  Comparison between the basal 
and stimulated states of fungal PRC2 visualizes a dramatic 
disorder-to-order conformational transition of the SRM upon 
binding of the H3K27me3 peptide and suggests an allosteric 
activation model for EZH2 HMTase activity[93, 94].  According 
to this model, binding of H3K27me3 or JARID2K116me3 pep-

tide induces an interaction with the SRM, through which the 
SRM becomes structured and binds the catalytic SET-I domain 
of EZH2.  This coupled interaction is associated with a rotation 
of SET-I and an opening of the substrate-binding cleft, which 
results in stimulation of PRC2 activity (Figure 4).

The structure of the chimeric human-ac PRC2 in complex 
with inhibitor is similar to that of fungal PRC2 in the basal 
state but has several differences relative to active PRC2.  The 
SRM in the absence of the stabilizing H3K27me3 or JARID-
2K116me3 peptides is not resolved, and inhibitor 1 competi-
tively binds to the co-factor SAH binding site in the pocket of 
the SET domain, leading to inactivation of EZH2.  In addition, 
the orientations of the SBD and SANT1 subdomains of PRC2 
in the inhibitor-bound state differ from active PRC2, although 
it is not known whether these changes affect PRC2 function 
(Figure 5).

Drug discovery targeting PRC2
Given the evidence for oncogenic activity of EZH2 mutations 
and overexpression, the protein has become an attractive 
drug target for cancer therapy.  Because EZH2 only possesses 
methytransferase activity when incorporated into PRC2, PRC2 
is always used for inhibitor screening.  In recent years, a series 

Figure 3.  Interaction of PRC2 and substrate.  (A) Interaction of human PRC2 with H3K27M peptide.  (B) Interaction of human PRC2 with 
JARID2K116me3 peptide.  (C) Interaction of human PRC2 with SAH.  (D) Interaction of fungal PRC2 with H3K27me3 peptide.  The specific interactions 
between PRC2 and peptide or SAH are indicated by blue lines.  The interactions were analyzed by LigPlus and graphed using PyMol.
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of potent inhibitors of PRC2 have been developed.  Our group 
summarized those reported inhibitors in 2014[98].  Since then, 
several new inhibitors have been developed (Table 1).  Current 
inhibitors can be classified into three groups.

Non-EZH2-targeted inhibitors: DZNep, a cyclopentanyl 
analog of 3-deazaadenosine, potently interferes with S-adeno-
syl-l-homocysteine (SAH) hydrolase, resulting in an increase 
in cellular SAH levels.  SAH is the methyltransfer product of 

SAM and a potent product inhibitor of methyltransferases[99].  
DZNep is therefore not selective for EZH2 but rather also 
decreases deposition of other histone methylation marks.  
Treatment with DZNep induces significant antitumor activ-
ity in various cancer types[99].  SAH can also be isolated from 
Streptomyces spp cultures as a natural inhibitor.  Sinefungin is a 
PRC2-inhibiting natural SAM and SAH analog[100].  

Direct small molecule inhibitors: GSK126, EPZ6438 and 
UNC1999 are SAM-competitive PRC2 inhibitors that share 
similar SAM-like scaffolds and have high potency and selec-
tivity[77, 101, 102].  According to a recent study, two novel EZH2 
inhibitors, DEC_42 and DEC_254, have been discovered using 
a combined in silico screening and experimental study[103].  
This class of inhibitors exhibits a new molecular structure that 
is different from other EZH2 inhibitors.  However, the activi-
ties of these two compounds are very low (IC50 values of 22.6 
μmol/L and 10.3 μmol/L, respectively)[103] and require further 
optimization.  JQEZ5 is the most efficacious compound in vitro 
and exhibits low toxicity and favorable pharmacokinetic prop-
erties in vivo, comparable to those of EZH2 inhibitors currently 
in clinical trials.  JQEZ5 demonstrated marked in vivo antitu-
mor activity in a faithful model of EZH2-mutant cancer[78].

Peptide inhibitors: Kim et al designed a stabilized α-helix 
of EZH2 (SAH-EZH2) peptide based on the EED-EZH2 com-
plex structure.  This peptide selectively inhibits H3 Lys27 tri-
methylation in a dose-dependent response by disrupting the 
EZH2–EED complex and reducing EZH2 protein levels [104].

The combination of different drugs or methods in cancer 
therapy can enhance the curative effect and reduce resistance 
to, and toxicity of, drugs; this strategy has therefore been 
widely used in cancer therapy.  Recently, several groups 
reported that PRC2/EZH2 inhibition shows strong synergism 
with other drugs in cancer treatments.  Fillmore et al reported 

Figure 4.  Allosteric regulation of PRC2 activity.  The flexible stimulation-responsive motif (SRM) of EZH2 is absent in the electron density map of the 
PRC2 ternary complex in the basal state[93].  The H3K27me3 peptide interaction with the SRM induces SRM structure and allows it to bind the catalytic 
SET-I domain of EZH2.  These coupled interactions are associated with a rotation of SET-I and opening of the substrate-binding cleft, resulting in 
stimulation of PRC2 activity[93].

Figure 5.  Overlay of the active and inhibitory states of human PRC2.  The 
structure of active (PDB ID: 5HYN)[94] and inhibited PRC2 (PDB ID: 5IJ7)[95].  
Green: active PRC2, magenta: inhibitory PRC2, red: JARID2K116me2 
peptide, cyan: H3K27M peptide, orange: SAH, wheat: Inhibitor 1 from 
structure 5IJ7.
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Table 1.   Chemical structures and biochemical data for PRC2 inhibitors.  

Compound 	            Structure	                   Mechanism and potency                   Selectivity                       Indication	     Clinical status   Ref
 

(To be continued)

DZNep

SAH

Sinefungin

GSK126

EPZ005687

EI1

UNC1999

GSK343 

SAH hydrolase inhibitor

Product of the reactions 
catalyzed by PMTs, IC50 is 0.1 
to 20 µmol/L

Natural product analogue of 
SAM and SAH, IC50 is 0.1 to 
20 µmol/L

SAM-competitive inhibitor of 
PRC2, Ki=0.5–3 nmol/L

SAM-competitive inhibitor of 
PRC2, Ki=24 nmol/L

SAM-competitive inhibitor 
of PRC2, IC50=15 nmol/L, 
Ki=13 nmol/L

IC50<10 nmol/L

IC50=4 nmol/L

Non-selective

Non-selective

Non-selective

>1000-fold over 20 other 
HMTs; ~150-fold over 
EZH1

>500-fold over 15 other 
HMTs; ~50-fold over EZH1

>10 000-fold over other 
HMTs; ~90-fold over EZH1

Non-selective for EZH1, 
~10-fold

EZH2 selective, 
>1000 fold selectivity 
against other histone 
methyltransferases 

Various cancers

NHL or potentially
other solid tumors

NHL or potentially
other solid tumors

DLBCL

Breast cancer and 
prostate cancer 

Preclinical

Preclinical

Preclinical

Clinical
Phase I

Preclinical

Preclinical

Preclinical

[99]

[99, 
110]

[100]

[77]

[111]

[112]

[101]

[113]
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that EZH2 inhibition by DZNep or GSK126 sensitizes BRG1 
and EGFR mutant lung tumors to topoisomerase II inhibi-
tors[105].  Bitlers et al reported that EZH2 inhibition by GSK126 
acts in a synthetic lethal manner in ARID1A-mutated ovarian 
cancer cells and that ARID1A mutational status correlates with 

response to the EZH2 inhibitor[81].  Souroullaso et al reported 
an exquisite specific cooperation between activating genetic 
events of EZH2 and BRAF, which predicts synergistic activity 
for a combined therapy with RAF inhibitors and EZH2 inhibi-
tors for B cell lymphomas and melanomas that harbor the 

Compound 	            Structure	                   Mechanism and potency                   Selectivity                         Indication	      Clinical status   Ref
 

NHL, Non-Hodgkin lymphoma; DLBCL, Diffuse large B-cell lymphoma.

EPZ6438
(EPZ7438,
Tazemetostat)

CPI360

GSK503

DCE_42

DCE_254

JQEZ5

SAH-EZH2

Ki=2.5 nmol/L

IC50=0.5 nmol/L for wtEZH2
IC50=2.5 nmol/L for Y641N 
EZH2

IC50=8 nmol/L

IC50=22.6 µmol/L

IC50=10.3 µmol/L

IC50=11 nmol/L

Disrupt EZH2–EED 
interaction
Kd=320 nmol/L for EED

EZH2 selective, ~35-fold 
versus EZh1>4 500-fold 
relative to other HMTs 
tested

EZH2 selective

EZH2 selective

Not determined

Not determined

EZH2 selective

EZH2 selective

Advanced solid tumors 
or B-cell lymphoma

NHL

DLBCL

DLBCL

DLBCL

B-cell lymphoma

B-cell lymphoma

Clinical
Phase II

Preclinical

Preclinical

Preclinical

Preclinical

Preclinical

Preclinical

[102]

[114]

[115]

[103]

[103]

[78]

[104]FSSNRXKILXRTQILNQEWKQRRIQ
PV
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oncogenic EZH2 Y641F mutation[78].  Pharmacological inhibi-
tion of EZH2 in combination with other drugs therefore pro-
vides a promising novel anti-cancer treatment strategy.

PRC2-inhibitor interaction
The recently solved structures of PRC2 with the pyridone-
based inhibitor 1 or H3K27M substrate peptide provide mech-
anistic insights into PRC2-inhibitor versus PRC2-substrate 
binding.  EPZ6438, GSK126 and UNC1999 are other pyridonyl-
containing SAM-competitive inhibitors that have high affinity 
and selectivity for EZH2 over a range of unrelated HMTases 
(Kd from 0.1–10 nmol/L).  We docked these compounds into 
the PRC2/Compound 1 structure (5IJ7) to investigate the 
PRC2-inhibitor binding model.  

The pyridonyl group of inhibitor 1 occupies the same posi-
tion as the homocysteine moiety of SAM and forms two 
hydrogen bonds with W624 of SUZ12(VEFS).  In contrast, the 
bulk of the inhibitor occupies a unique pocket in which the 
carbonyl group of its 1-oxo-isoquinoline forms one hydrogen 
bond with Y111 and the chlorinated aromatic ring exhibits 
π-π stacking with Y111, Y661 and F665 of the activation loop.  
In addition, residues Y111, Y661, Y685, C663 and F665 form 
a hydrophobic channel for compound binding (Figure 6A).  
PRC2 with EZH2 mutations at Y661 or Y111 is resistant to 
pyridone inhibitors, consistent with the importance of these 

two residues for inhibitor binding.  
In our docking models, the pyridonyl group of EPZ6438 

also forms two hydrogen bonds with W624, while its amide 
group forms one hydrogen bond with Y111 and the phenyl 
group undergoes π-π stacking with Y111, Y661 and F665 (Fig-
ure 6B).  Similarly, docking suggests that the pyridonyl group 
of GSK126 forms two hydrogen bonds with W624, the amide 
group one hydrogen bond with Y111 and the indole moiety 
forms π–π stacking with Y111, Y661 and F665.  In addition, the 
nitrogen of the piperazine moiety may form a hydrogen bond 
with Y661 (Figure 6C).  For UNC1999, in addition to the two 
hydrogen bonds of the pyridonyl group with W624, the amide 
group is predicted to form one hydrogen bond with Y111 and 
the indole moiety to π-π stack with Y111, Y661 and F665 (Fig-
ure 6D).

Future studies
Although the structure of the EZH2-EED-SUZ12(VEFS) het-
erotrimer has been determined, a number of key features of 
PRC2 function, regulation and structure remain to be under-
stood, some of which we have discussed in this review.  The 
understanding of PRC2-specific recruitment to chromatin is 
far from complete.  Recruitment to different chromatin regions 
is likely mediated by an ensemble of factors, including bridg-
ing proteins, DNA elements and RNAs[6, 7, 59], eg, (1) the interac-

Figure 6.  Interaction of PRC2-inhibitor.  The program Autodock was used to dock the PRC2 inhibitors EPZ6438, GSK126, and UNC1999 into the crystal 
structure of the PRC2/Inhibitor 1 complex (PDB code 5ij7)[95].  (A) PRC2-inhibitor 1 interactions.  (B) PRC2-EPZ6438 interactions.  (C) PRC2-GSK126 
interactions.  (D) PRC2-UNC1999 interactions.
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tion of the histone chaperones RbAp46/48 with histones[25, 106], 
(2) the interaction of JARID2 and AEBP2 with DNA[27, 30, 37], (3) 
recognition of methylated H3K36 by the PCL family of pro-
teins[107], and (4) interactions of EZH2 and SUZ12 with tran-
scription factors or noncoding RNA[22, 57–65, 71, 108, 109], which may 
either act alone or in combination to allow PRC2 targeting to 
specific genomic loci[1, 6].

How do JARID2, AEBP2 and PLCs regulate PRC2 HMTase 
activity and gene targeting?  Are transcription factors essen-
tial for initial recruitment, with PRC2 itself being sufficient to 
maintain gene silencing? What role does the function of non-
coding RNAs play in this process?  What are the respective 
functions of H3K27me1, H3K27me2 and H3K27me3, and how 
are these modifications regulated?  The field is still far from 
having clear answers to these questions[6].  

High-resolution structures (Cryo-EM or X-ray) of PRC2 with 
different regulators or co-factors (JARID2, PCLs, RBFOX2, 
ncRNAs, etc) will provide critical details regarding these inter-
actions.  The structures of PRC2-nucleosome complexes har-
boring mono-, di-and tri-methylated H3K27 will likely provide 
clues into the functions of the different methylation states.  

Answers to these questions will improve understanding of 
the function of PRC2 in stem cells and developmental control 
and of the contribution of PRC2 dysregulation to diseases such 
as cancer.

Currently, PRC2 inhibitors in clinical trials such as GSK126 
and EPZ6438 are PRC2 co-factor SAM-competitive.  The struc-
ture of the PRC2-inhibitor 1 complex provides high-resolution 
details of this interaction, which will help design and develop 
novel chemical scaffolds and molecules with higher selectivity 
and potency.  The existing structures of PRC2 provide infor-
mation on PRC2-H3K27, PRC2-H3K27me3, EZH2-EED, EZH2-
SUZ12(VEFS) and EED-SUZ12(VEFS) interactions.  In the 
future, we may develop novel compounds/peptides to disrupt 
these interactions to suppress PRC2 HMTase activity.

PRC2 is involved in multiple pathways related to cancer, 
stem cells, and immune responses, modulated by factors 
such as SWI-SNF, NOTCH/JAK-STAT, pRB, NF-κB/Ras and 
others[12].  PRC2 inhibition may therefore synergize with the 
drugs targeting these pathways; several studies have already 
confirmed the effectiveness of combination strategies, some 
of which we have discussed in this review.  In the future, the 
pharmacological inhibition of PRC2 combined with other 
drugs or treatments may present novel anticancer therapies.
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