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The role of TRPM2 channels in neurons, glial cells 
and the blood-brain barrier in cerebral ischemia and 
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Abstract
Stroke is one of the major causes of mortality and morbidity worldwide, yet novel therapeutic treatments for this condition are 
lacking.  This review focuses on the roles of the transient receptor potential melastatin 2 (TRPM2) ion channels in cellular damage 
following hypoxia-ischemia and their potential as a future therapeutic target for stroke.  Here, we highlight the complex molecular 
signaling that takes place in neurons, glial cells and the blood-brain barrier following ischemic insult.  We also describe the evidence of 
TRPM2 involvement in these processes, as shown from numerous in vitro and in vivo studies that utilize genetic and pharmacological 
approaches.  This evidence implicates TRPM2 in a broad range of pathways that take place every stage of cerebral ischemic injury, 
thus making TRPM2 a promising target for drug development for stroke and other neurodegenerative conditions of the central nervous 
system.
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Introduction
Stroke is a complex neurological condition that causes irrepa-
rable destruction of brain tissue.  In 2013, stroke was the 5th 
leading cause of death in the United States, where it accounted 
for 1 out of every 20 deaths and killing as many as 130 000 
people each year[1].  While recent advances in research have 
identified several potential mechanisms underlying neu-
ronal death following stroke, the treatments for this condi-
tion remain limited.  It has been estimated that by 2050, the 
incidence of stroke will more than double, and by 2030, total 
stroke-related direct medical costs will rise from $71.6 billion 
to $184.1 billion[1].  Therefore, there is an urgent need for novel 
therapeutic opportunities beyond the current stroke treat-
ments.

The current understanding of stroke pathology revolves 
around the biochemical cascade that begins with ischemia 
and lasts long after blood flow is restored[2, 3].  Energy failure 
and ATP depletion due to low oxygen levels lead to a mas-

sive release of glutamate into the synaptic cleft and to exces-
sive Ca2+ influx through α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartic 
acid (NMDA) receptors.  As a result, pro-apoptotic signaling 
and reactive oxygen species production are activated[2, 3].  The 
severity of the ischemic insult dictates the extent of further 
neuronal cell death, activation of inflammatory cascades and 
prolonged apoptosis[3].  A previous and popular strategy 
was pharmacological targeting of the activation of NMDA 
receptors after the excessive glutamate release following 
ischemia.  Several compounds, including dizocilpine maleate 
(MK-801)[4, 5], aptiganel hydrochloride (Cerestat)[6], dextro-
methorphan (DMX)[7] and CGS 19755 (Selfotel)[8, 9] showed 
promising results in rodent models.  However, by 2001, all 
clinical trials using NMDA receptor antagonists as treatment 
for stroke were deemed unsuccessful[10-15].  Therefore, effort 
was re-focused on finding novel, non-glutamate therapeutic 
targets for hypoxic-ischemic cell death.

Non-glutamate targets for stroke therapy
Several non-glutamate ion channels have been identified as 
potential therapeutic targets for cerebral ischemia in rodent 
models, including the following examples.
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1) Acid-sensing ion channels.  The ASIC1a channel is 
widely expressed in the brain, and its activation has been 
shown to contribute to neuronal cell death in both in vitro and 
in vivo models[16, 17].  

2) Volume-regulated anion channels.  Cerebral edema and 
swelling are some of the factors contributing to delayed neu-
ronal death following cerebral ischemia.  Volume-regulated 
anion channels (VRACs) regulate cell volume via efflux of ions 
that are followed by water[18].  In astrocytes, VRACs have been 
shown to conduct excitatory amino acids (EAAs), aspartate 
and glutamate, after ischemia, thus contributing to excitotoxic-
ity[19-21].  

3) Hemichannels.  Hemichannels, proteins involved in the 
formation of gap junctions, have also been proposed as non-
glutamate contributors of neuronal death in ischemia[22].  They 
have been implicated in contributing to anoxic depolarization, 
leading to cell death in the penumbra region, as well as efflux 
of vital nutrients from neurons, thus worsening the effects of 
energy failure caused by low-oxygen conditions[23-25].

4) Transient Receptor Potential Melastatin (TRPM) sub-
family.  Transient Receptor Potential melastatin (TRPM) chan-
nels are calcium-permeable, ubiquitously expressed cation 
channels[26, 27].  TRPM7 has recently emerged as one of the 
major contributors to non-glutamate-induced cell death fol-
lowing ischemia[28-30].  In vitro pharmacological inhibition[31] 
and in vivo siRNA suppression of TRPM7 in rodents[32] were 
shown to significantly reduce neuronal death.  Moreover, 
conditions such as low pH and reactive oxygen species were 
found to enhance TRPM7 activity[33, 34].  The contribution of 
a closely related TRPM family member, TRPM2, to hypoxic-
ischemic brain injury has also been investigated.

In this review, we focus on the role of TRPM2 in neuronal 
and non-neuronal mechanisms that contribute to the devastat-
ing effects of cerebral ischemia.

TRPM2: structure and biophysical properties
TRPM2, the second member of the melastatin subfamily of 
the transient receptor potential (TRP) channel superfamily, 
is a calcium-permeable, non-selective cation channel[35].  It 
is broadly expressed within the CNS, heart, lung, liver and 
pancreas[36].  At the cellular level, TRPM2 has been identified 
in multiple cell types, including neurons[37-42], microglia[43-49], 
astrocytes[50], macrophages[51, 52], neutrophils[53-55], dendritic 
cells[56], megakaryocytes[57], endothelial vascular cells[58-62], car-
diomyocytes[63] and pancreatic β-cells[64, 65].  The ubiquitous dis-
tribution of TRPM2 indicates that it may play roles in a wide 
range of physiological processes.  In addition to its role as a 
plasma membrane channel, TRPM2 has been shown to also 
be localized to the lysosomal compartment, where it regulates 
calcium mobilization from intracellular compartments and 
contributes to H2O2-induced apoptosis of β cells[66].  

The human TRPM2 gene is located on chromosome 21q22.3, 
spanning approximately 90 kb and encoding 1503 amino acid 
residues[67].  TRPM2 has also been cloned from mouse and 
rat tissues, encoding 1507 amino acid residues, with a pre-
dicted molecular weight of 172 kDa and 83%–85% similarity 

to human TRPM2 at the nucleotide and protein levels, repec-
tively[68, 69].  Molecularly, the TRPM2 channel is composed of 
four identical subunits, each consisting of a 730-amino acid 
N terminus with an IQ-like calmodulin-binding motif (amino 
acids 406-416)[70], 6 transmembrane domains (S1-S6) with a 
pore-forming loop located between S5 and S6, and a C ter-
minus containing a highly conserved TRP box, a coiled-coil 
domain and a unique adenosine diphosphate ribose (ADPR) 
pyrophosphatase NUDT9-H domain (amino acids 1197-1503) 
(Figure 1)[71].  The NUDT9-H domain contains an 11-residue 
ADPR binding pocket[72]; TRPM2 has been shown to be gated 
by free ADPR[71].  A site-directed mutagenesis study identified 
that hydrogen bonding of Arg1433 and Tyr1349 is necessary 
for TRPM2 activation by ADPR[73].  The enzymatic activity of 
NUDT9-H is not required for channel gating[74], however it 
plays a role in TRPM2 surface expression[75].  When expressed 
on its own, the NUDT9-H domain also has measurable enzy-
matic activity, thus making TRPM2 a “chanzyme”.  However, 
the specific role of that activity remains to be defined[71].  In 
addition to the NUDT9-H domain, the C-terminus contains 
a coiled-coil domain that was shown to be critical in mediat-
ing the tetrameric assembly of the channel[76].  The N-terminal 
IQ-like motif is important in activating TRPM2 current by 
intracellular Ca2+ in an ADPR-free manner[70, 77-79].  In addition 
to full-length TRPM2 (TRPM2-L), several splice isoforms with 
varying degrees of activity have been identified: TRPM2-∆N[80], 
TRPM2-∆C[80], TRPM2-S[59], TRPM2-SSF[81] and TRPM2-TE[82].

Figure 1.  TRPM2 protein structure and modulators of TRPM2 activity.  
Extracellular agents such as H2O2, ROS, TNFα, Aβ and concanavalin A 
enhanced TRPM2 activity via production of intracellular ADP that gates 
TRPM2 via binding to the NUDT9-H domain.  AMP and 8-Br-cADPR 
reduce TRPM2 activity through interaction with the NUDT9-H domain.  
Protons and divalent heavy metal cations reduce TRPM2 activity through 
interaction with the pore region.  Ca2+ gates TRPM2 via CaM interaction 
with N-terminal IQ-like motif.  Structurally unrelated compounds, such as 
FFA, clotrimazole, 2-APB, ACA, scalaradial and AG490, 555 and 556, are 
also able to inhibit TRPM2, although their mechanisms of action remain 
to be elucidated.
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Upon activation, TRPM2 displays a linear current-voltage 
(I-V) relationship, with a single-channel conductance range of 
52-60 pS at negative potentials and ~72 pS at positive poten-
tials[69, 71, 79, 83, 84].  TRPM2 is permeable to Na+, K+, Ca2+ and 
Mg2+.  The relative permeabilities of TRPM2 to these ions are 
reported as PK/PNa – 1.1, PCa/PNa – 0.9 and PMg/PNa – 0.5[85].  
Several key residues identified within the pore-forming region 
dictate channel function as well as conductance of certain ions.  
The two conserved cysteine residues, C996 and C1008, were 
shown to be critical for TRPM2 gating by ADPR and volt-
age[86].  The point mutation P1018L[87], present in Guamanian 
amyotrophic lateral sclerosis and parkinsonism-dementia 
patients, produces a fast-desensitizing channel.  The perme-
ability of TRPM2 to Ca2+ and Mg2+ was shown to be controlled 
by four residues within the pore-forming loop: E960, Q981, 
D987 and E1022[85].

Several extracellular stimuli, including reactive oxygen 
species[88], H2O2

[80], amyloid β-peptide[89], concanavalin A[90], 
tumor necrosis factor-α[91] and zinc ions[45], have been shown to 
induce TRPM2 activation via metabolic production of intracel-
lular ADPR.  While ADPR is considered to be the most potent 
TRPM2 activator (EC50 of 10–80 μmol/L)[71, 92], there has been 
much controversy around other proposed TRPM2 activa-
tors.  Several studies suggested that other nucleotides, such 
as 2’-O-acetyl-ADPr (OAADPr), cyclic ADP (cAPDr), nicotin-
amide-adenine dinucleotide (NAD), nicotinic acid-adenine 
dinucleotide (NAAD), and NAAD-phosphate (NAADP), can 
also enhance TRPM2 activity[93, 94].  However, a recent study 
showed, using affinity-purified-specific ADPR hydrolase to 
purify commercially available pyridine dinucleotides, that 
NAD, NAAD and NAADP were incapable of stimulating 
TRPM2 activity, even at concentrations substantially higher 
than cytosolic.  Instead, they identified ADPR-2’-phosphate 
(ADPRP) as a direct TRPM2 agonist[95].  Full activation of 
TRPM2 is highly dependent on the presence of intracellular 
and/or extracellular Ca2+; ADPR-induced TRPM2 current was 
shown to be significantly reduced in the absence of Ca2+.  It 
has been proposed that intracellular calcium sensitizes TRPM2 
to ADPR via calcium-dependent interaction of calmodulin 
(CaM) with the N-terminal IQ-like motif.  Calcium can also 
gate the channel in the absence of ADPR, with an EC50 of 17 
μmol/L[70, 77-79].

In addition to agonists, several non-specific inhibitors of 
TRPM2 have been described.  Adenosine monophosphate 
(AMP) inhibits the channel activity, potentially via binding to 
the NUDT9-H domain with IC50 values of 10 μmol/L and 70 
μmol/L for endogenous and recombinant channels, respec-
tively[53, 92, 96].  8-Bromo-cyclic inosine diphosphoribose (8-Br-
cADPR, IC50 100 μmol/L) was shown to inhibit TRPM2 gating 
by cADPR and H2O2

[92].  Protons[97-99] and divalent heavy metal 
cations[100-102] also caused TRPM2 inhibition by targeting the 
extracellular pore region.  Several structurally unrelated phar-
macological agents have been identified as TRPM2 inhibitors.  
Those include flufenamic acid (FFA, IC50 50–1000 μmol/L)[103], 
the anti-fungal agents clotrimazole and econazole (IC50 3–30 
μmol/L)[104], 2-aminoethoxydiphenyl borate (2-APB, IC50 1.2 

μmol/L)[105], N-(p-amylcinnamoyl) anthranilic acid (ACA, IC50 
1.7 μmol/L)[106], tyrphostin AG-related compounds (AG490, 
AG555 and AG556)[107, 108] and the marine-derived compounds 
scalaradial and 12-deacetylscalaradial (IC50 210 nmol/L)[109].  It 
is important to note that these compounds affect a wide vari-
ety of ion channels and proteins, and none of them are selec-
tive for TRPM2.  Therefore, efforts should be made to develop 
TRPM2-specific inhibitors in order to further elucidate the 
physiological functions of this channel.  

In addition to nucleotides and pharmacological agents, 
TRPM2 activity was also shown to be modulated via interac-
tions with other proteins.  As mentioned above, CaM-TRPM2 
interaction at the N-terminal IQ-like motif facilitates TRPM2 
activation by Ca2+.  Mutation of the IQ-like motif or expres-
sion of a CaM mutant that is unable to bind Ca2+ significantly 
inhibits the rate of development of H2O2-induced TRPM2 Ca2+ 
conductance[70, 79].  The non-receptor protein tyrosine phospha-
tase PTPL1 directly interacts with TRPM2 and reduces TRPM2 
phosphorylation, Ca2+ influx and cell death induced by H2O2 
and TNF-α in the human monocytic cell line U937[110].

Neuronal TRPM2 in cerebral ischemia
Neuronal cell death is the hallmark of ischemic insult result-
ing in life-long, debilitating and irreversible consequences for 
survivors.  TRPM2 is broadly expressed in neurons.  Primary 
rat cortical cultures exposed to H2O2 undergo rapid apop-
totic cell death; treating these neurons with TRPM2 siRNA 
significantly inhibits H2O2-induced intracellular Ca2+ influx 
and neuronal cell death[41].  This indicates that neuron-specific 
TRPM2 may contribute to the pathology of cerebral ischemia.  
CA1 hippocampal neurons are highly vulnerable to oxidative 
stress, and ischemic injury often causes irreparable damage to 
the hippocampus.  CA1 neurons from rat hippocampal slices 
showed H2O2-induced inward current that was inhibited by 
the TRPM2 antagonist clotrimazole[111].  Moreover, activation 
of TRPM2-like currents in these neurons required concomitant 
activation and Ca2+ influx via voltage-gated Ca2+ channels and 
NMDARs, the two events that take place following hypoxia-
ischemia[111].  Another study demonstrated that TRPM2-
deficient CA1 pyramidal neurons were resistant to increases 
in cytosolic Zn2+ concentrations, thus implicating TRPM2 in 
delayed neuronal cell death post-ischemia[112].

The contribution of TRPM2 to ischemic cell death has also 
been addressed in several animal models of hypoxia-ischemia.  
Compared to wild-type mice, TRPM2-null mice subjected to 
transient middle cerebral artery occlusion (tMCAO) exhibited 
a reduction of approximately 40% in infarct volumes[39].  How-
ever, when TRPM2-null mice were subjected to permanent 
MCAO (pMCAO), the infarct severity was comparable to that 
of wild-type mice.  This was hypothesized to be due to the 
lack of reperfusion following the procedure, thus eliminating 
the production of H2O2, which is a major activator of TRPM2-
like currents.  Thus, it is possible that TRPM2-null mice are 
only resistant to ischemia-reperfusion injury due to reduced 
vulnerability to H2O2, while under pMCAO conditions, the 
insult becomes so severe that it outweighs the neuroprotective 
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effects of TRPM2 deletion[39].  Similarly, hippocampal neurons 
cultured from these mice showed reduced cell death follow-
ing one hour of oxygen-glucose deprivation (OGD)[39].  At 
the molecular level, the study observed the activation of the 
pro-survival Akt pathway and the inhibition of downstream 
glycogen synthase kinase 3β (GSK-3β), thus tipping the scale 
towards cell survival in TRPM2-null mice[39].

Genetic deletion of TRPM2 was also shown to be neuropro-
tective in a developmental model of hypoxic-ischemic brain 
damage[113].  Compared to wild-type littermates, TRPM2+/- and 
TRPM2-/- neonatal mice had reduced brain infarct volumes, 
improved sensorimotor outcomes, reduced expression of 
inflammatory markers and reduced loss of brain mass follow-
ing hypoxia-ischemia[113].  At the molecular level, TRPM2+/- 
and TRPM2-/- neonatal mice showed increased pro-survival 
signaling, suggesting that genetic knockout of TRPM2 exerts 
its neuroprotective effects via the Akt/GSK-3β pathway[113].  
These results confirmed the findings from the adult mouse 
model of tMCAO.  Another study used a novel inhibitor of 
GSK-3β, TDZD-8, to show that deactivation of GSK-3β via 
phosphorylation on Ser9 is neuroprotective in a neonatal 
mouse model of hypoxia-ischemia.  These findings confirmed 
the involvement of the Akt/GSK-3β signaling pathway in neu-
ronal survival following ischemic insult[114].

The role of neuronal TRPM2 in cerebral ischemia was 
shown to be sexually dimorphic.  Pharmacological inhibition 
of TRPM2 with ACA[106], 2-APB[105], clotrimazole (CTZ)[104], 
flufenamic acid[103], and TRPM2 shRNA treatment significantly 
reduced cell death following OGD in neurons from male but 
not female animals[115].  Additionally, intrastriatal lentiviral 
infection with TRPM2 shRNA following middle cerebral 
artery occlusion (MCAO) resulted in markedly reduced stria-
tal infarct volumes in male but not female mice[115].  Another 
study has shown that TRPM2 channels in male, but not 
female, hippocampal neurons were activated during reperfu-
sion following OGD[116].  Similarly, inhibition of TRPM2 activ-
ity with clotrimazole 30 min after transient global cerebral 
ischemia due to cardiac arrest reduced CA1 hippocampal neu-
ronal death only in male mice[117].  Pre-treatment of adult and 
aged male mice with the TRPM2 inhibitor tat-M2NX resulted 
in reduced infarct volumes, while no effect was observed in 
female mice[118].  These sex differences have been postulated 
to be due male-specific androgen signaling, and to preferen-
tially enhanced activity of the enzyme poly(ADP-ribose) poly-
merase-1 (PARP-1) in the male brain following ischemia[119].  In 
female mice, androgens were not sufficient to produce TRPM2 
activation[120].  Collectively, these studies indicate that TRPM2 
is expressed in neurons, becomes activated under ischemic 
brain conditions and contributes to cell death in a sexually 
dimorphic manner.

Non-neuronal TRPM2 in cerebral ischemia
Pathological post-ischemic changes also require the involve-
ment of non-neuronal cells, such as microglia, astrocytes and 
other immune cells.  Microglia, the macrophages of the central 
nervous system, were previously implicated in pathology 

following hypoxic-ischemic injury due to their role in gener-
ating a range of inflammatory mediators, such as ROS, cyto-
kines, free radicals, glutamate, proteases, nitric oxide (NO) 
and H2O2

[121].  Lipopolysaccharide (LPS)-activated primary 
rat microglia had detectable levels of TRPM2 mRNA and 
exhibited a robust TRPM2-like Ca2+ conductance following 
the application of H2O2

[47].  Similarly, activation of microglia 
has also been detected following tMCAO injury.  In tMCAO 
rodent model, cortical mRNA levels of TRPM2 increased in 
a time-dependent manner, peaking at 7 d post-injury, sug-
gesting a contribution to brain damage following ischemia[43].  
Patch-clamp experiments in human C13 microglia and pri-
mary rat microglia in a model of H2O2-induced oxidative 
stress revealed an upregulation of a TRPM2-like conductance, 
which was reversibly blocked by flufenamic acid[43].  A recent 
study using bone marrow chimeric mice demonstrated that 
Trpm2 deficiency is protective due to TRPM2-mediated regu-
lation of the migratory ability of peripheral immune cells 
(neutrophils and macrophages) that infiltrate the injury site 
and exacerbate post-ischemic inflammation[48].  At the molecu-
lar level, microglial activation was shown to be caused by an 
increase in TRPM2 activity due to generation of ROS and acti-
vation of PARP-1[49].  Moreover, this increase in TRPM2 activ-
ity was suppressed by inhibition of protein kinase C (PKC) 
and NADPH oxidase (NOX), as well as proline-rich tyrosine 
kinase 2β (PYK2) and downstream MEK/ERK signaling[49].  
Therefore, it has been suggested that PKC/NOX-mediated 
generation of ROS and subsequent activation of PARP-1 lead 
to activation of microglial TRPM2.  Additionally, activation of 
the PYK2/MEK/ERK pathway downstream of TRPM2 acts 
as a positive feedback mechanism for further activation of 
TRPM2[49].  Another study demonstrated that the release of the 
pro-inflammatory cytokine interleukin-1β from microglia and 
U937 monocytes occurs due to TRPM2-dependent activation 
of NLRP3 inflammasomes[122, 123].  These mechanistic findings 
provide insight into the role of TRPM2 in microglial activation 
and neuroinflammation.  

Astrocytes are another type of glia that undergo molecu-
lar and morphological changes in response to CNS insults, 
such as hypoxia-ischemia[124].  While the function of activated 
or reactive astrocytes in stroke remains controversial, it has 
been demonstrated that reactive astrocytes express the induc-
ible form of nitric oxide synthase (iNOS) following ischemic 
injury[125].  This implicates astrocytes in NO production, which 
contributes to delayed neuronal cell death[125].  It has also been 
shown that reactive astrocytes that form a glial scar following 
brain injury may inhibit the growth of regenerating axons, 
thus reducing the recovery following injury[126].  Human astro-
cytes treated with the TRPM2 inhibitor clotrimazole or trans-
fected with TRPM2 siRNA were reported to show reduced 
release of inflammatory and neurotoxic factors and down-
regulated neuroinflammatory signaling, such as the JNK, p38, 
ERK42/44 and NFĸB pathways, in response to glutathione 
depletion[50].  Therefore, it is possible that TRPM2 activity in 
these cells could contribute at least in part to their deleterious 
role in brain injury.  However, the role of astrocyte-expressed 
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TRPM2 in cerebral ischemic injury is still unclear.
Studies have also linked glial TRPM2 activation, oxidative 

stress and inflammatory mechanisms to neurodegenerative 
conditions such as Alzheimer’s disease (AD)[127].  TRPM2 chan-
nel activation and subsequent Ca2+ influx due to oxidative 
stress and depletion of glutathione levels resulted in inflam-
matory responses in microglia and astrocytes, which may pro-
mote and exacerbate neuronal degeneration[50].  Additionally, 
it has been shown that in aging cultured hippocampal neu-
rons, TRPM2 currents were enhanced with time, suggesting 
that TRPM2 may also contribute to neurodegeneration during 
neuronal senescence[40].  

Therefore, the current body of literature indicates that non-
neuronal TRPM2 may contribute to inflammatory responses 
in the CNS following ischemic insult and during other neuro-
degenerative conditions, potentially exacerbating the extent of 
brain damage.

Role of TRPM2 in the blood-brain barrier in cerebral 
ischemia
The blood-brain barrier (BBB) is an intricate network of cells 
that form a functional barrier that separates the CNS from 
systemic circulation.  It is composed of and maintained by a 
variety of cell types, including pericytes, astrocytes and endo-
thelial cells.  Ischemic conditions lead to dysregulation and 
breakdown of the molecular integrity of the BBB, leading to 
vasogenic edema and increased permeability to immune cells 
into the damaged area[128].  TRP channels have been previously 
implicated in BBB permeability, and TRPM2 RNA has been 
detected in primary rat cultures of brain microvessel endo-
thelial cells[129].  A recent study demonstrated that TRPM2-
mediated pericyte autophagy, secondary to stress-induced 
Y1485 tyrosine nitration of TRPM2, played a critical role in 
pericyte injury and apoptosis[130].  Another study confirmed 
expression of TRPM2 in human pulmonary artery endothelial 
cell monolayers and demonstrated that H2O2 exposure elicited 
calcium influx and increased endothelial cell permeability[59].  
This was attenuated by TRPM2 siRNA silencing and overex-
pression of the isoform TRPM2-S, which interacts with the 
isoform TRPM2-L and inhibits H2O2-induced calcium influx[59].  
At the molecular level, it has been demonstrated that PARP-1 
is strongly activated in endothelial cells, leading to apoptosis.  
PARP-1 activation has been linked to post-ischemic disruption 
of BBB, and administration of PARP-1 inhibitors, 3-aminoben-
zamide and 4-amino-1,8-naphthalamide, in rodents with tran-
sient focal ischemia resulted in decreased edema, immune cell 
infiltration and preservation of endothelial tight junctions[131].  
PARP-1 activation has been previously shown to be required 
for oxidative stress-induced activation of TRPM2 in DT40 B 
cells, and PARP-deficient lymphocytes showed no oxidant-
induced TRPM2 activation[132].  A recent study described the 
role of endothelial cell-expressed TRPM2 in transendothelial 
migration of polymorphonuclear neutrophils (PMNs)[62].  It 
was shown that siRNA-mediated depletion of TRPM2 in 
endothelial cells led to a reduction in phosphorylated VE-
cadherin[62], an adhesion molecule that regulates the opening 

of adherens junctions and facilitates the migration of PMNs 
across the blood-brain barrier[133].  Infiltration of PMNs into the 
ischemic penumbra is one of the hallmarks of post-ischemic 
inflammation[134]; therefore, endothelial TRPM2 activation 
facilitates the secondary brain injury following neutrophil 
invasion.  Moreover, ROS-induced activation of TRPM2 has 
been implicated in endothelial cell apoptosis[61].  Application 
of H2O2 or TNFα has been shown to induce TRPM2-S phos-
phorylation at Ser39 by PKCα, leading to supra-normal Ca2+ 
influx, activation of caspase-3 and endothelial cell death[61], 
which can exacerbate the breakdown of endothelial barrier.  
Therefore, it is possible that TRPM2 channels also contribute 
to the increased permeability and eventual breakdown of the 
BBB following ischemia, thus contributing to edema forma-
tion, inflammation and cell death, although their role needs to 
be confirmed by further studies.

Conclusions
While considerable progress has been made in recent years 
towards elucidating the cellular and molecular pathogenesis 
of ischemic brain injury, effective and potent treatments for 
stroke patients are still lacking.  There is increasing evidence 
that TRPM2 regulates a broad range of pathways in neurons, 
glia and the cells of the BBB, thus contributing to every stage 
of brain injury development after ischemia (summarized in 

Figure 2.  The effects of TRPM2 activation on neurons, glia and the blood-
brain barrier under hypoxic/ischemic conditions.  TRPM2 activation 
secondary to oxidative stress and hydrogen peroxide production under 
ischemic conditions leads to a variety of responses in neurons, glial cells 
and the cells composing the blood-brain barrier.  It has been shown that in 
neurons, TRPM2 is activated under ischemic conditions and contributes 
to neuronal cell death, potentially in a sexually dimorphic manner.  Current 
literature indicates that TRPM2 channels may contribute to increased 
permeability and breakdown of the blood-brain barrier under ischemic 
conditions.  In glial cells, TRPM2 has been shown to mediate the release 
of neuroinflammatory factors, thus exacerbating the brain damage 
under ischemic conditions.  Together, the evidence indicates that TRPM2 
regulates a wide range of pathological events occurring during ischemia, 
thus making this channel a major target for drug development.
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Figure 2).  This evidence makes TRPM2 a promising target for 
further research and therapeutic development for several rea-
sons.  First, broad expression of TRPM2 in CNS and vascula-
ture suggests that TRPM2 inhibition could be more effective at 
treating ischemic brain injury, compared to conventional ther-
apies.  Second, contributions of TRPM2 to different stages of 
brain injury suggest that therapeutic agents that target TRPM2 
activity may have a longer therapeutic window than conven-
tional therapies.  Finally, gaining in-depth insight into TRPM2 
downstream signaling may lead to development of therapies 
that specifically target TRPM2 signaling in specific cell types, 
leading to specialized treatments for different neurodegenera-
tive conditions.

Abbreviations
TRPM2 channel, Transient Receptor Potential Melastatin 2 
channel; OGD, oxygen-glucose deprivation; GSK-3β, glycogen 
synthase kinase 3 beta.
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