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There is a saying that one can only have two of the following 
three features when it comes to a service or product: cheap, 
fast or good. The increasing commoditization of laboratory 
services often emphasizes on the former two, at the expense 
of quality.

Clinical laboratories produce results that physicians rely 
upon to make diagnostic and management decisions. The 
results generated by the laboratories should meet certain 
quality specifications to be clinically fit for purpose. At 
present, this is monitored through a combination of internal 
quality control and external quality assurance systems. 
These complimentary quality systems rely upon periodic 
testing of a sample that has a known value, and looking for 
significant deviation from the known/target value, when 
compared to certain control limits.

The internal quality control system was developed at 
a time when laboratory testing was done manually and 
in small batches. The tests are often developed in the 
laboratory and the laboratory practitioner often has good 
analytical understanding of the methodology employed. 
This ensured that the laboratory practitioners always looked 
at the raw analytical data and interpreted them, which 
would help detect any significant deviation in analytical 
performance before any incorrect patient results were 
released. The relatively leisurely pace also gave laboratory 
practitioners ample time to troubleshoot any unusual 
analytical performance that was detected. Given the low 
numbers of patients being tested at that time, having an 
internal quality control sample tested at the beginning, the 
end or both ends of the batch was likely to be able to detect 
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significant performance deviations from the ‘in control’ 
situation. 

By contrast, modern day laboratory practice is driven by 
highly automated instruments that can perform multiple 
tests simultaneously at very high throughputs, which 
can run into the thousands of patient samples per hour. 
Turnaround time from sample receipt in the laboratory 
to reported result on a doctor’s desktop is often set to a 
short few hours. Furthermore, in an effort to simplify and 
automate laboratory testing, most of the analytical data 
generated by the instruments are analysed and reviewed 
in middleware using electronic rules and algorithms. 
In other words, the instruments represent convenient 
‘black box’ solutions where laboratory practitioners have 
little knowledge or control over the analytical process or 
data interpretation. These factors have greatly eroded 
the technical ability and independence of laboratory 
practitioners to detect and correct analytical deviations and 
can lead to erroneous patient results being released.

Despite the changes in laboratory practice, the modern 
day laboratory mainly still employs the historical internal 
quality control practices, where a quality control sample 
is tested at the beginning of a run or at fixed intervals 
throughout the day. The internal quality control practices 
cannot be the same for a laboratory practice where the 
number of samples tested is 300 per day and another where 
the number of samples tested is 10,000 per day (1). The 
continued practice of using traditional internal quality 
control carries significant clinical risk for missed error 
detection with the impact greatly amplified by the high 
test volumes in modern laboratories. It is unsurprising that 
large-scale laboratory errors are still being reported even in 
the laboratories that employ ‘state of the art’ internal quality 
control systems (2-4). It has been shown that the historical 
internal quality control practices lack sufficient power 
in detecting significant errors to meet the increasingly 
stringent quality requirements needed to meet medical 
requirements (4,5).

Another casualty of modern, electronically driven medical 
practice is the reduced interaction between the laboratory 
practitioner and the clinical practitioners, particularly with 
the advent of electronic test ordering systems. The previous 
professional courtesy of providing clinical details along with 
laboratory requests is fast becoming a thing of the past. It is 
now more common to receive laboratory requests without 
clinical details. This imposes significant challenges for 
laboratory practitioners to interpret laboratory results or 
detect a trend in the right clinical context, without which, a 

laboratory result is just a number without context or value. 
It is clear that laboratory practices need to change. 

In particular, there is a need to adopt quality systems 
that continuously monitor the analytical performance of 
instruments. Some of these techniques include the moving 
sum of outliers (4), moving average (5-7), CUSUM-logistic 
regression (8), and average of delta (9). These techniques use 
the continuous calculation of statistics based on individual 
patient results to monitor trends in the population mean 
or SD that may signify significant shifts in the all reported 
results and lead to potential misclassification of patients.

The main technical difficulty associated with these 
techniques is the underlying assumption that the patient 
population being tested is relatively stable, which may not 
always be true. This makes it challenging to identify if the 
shift in distribution is caused by a change in the patients 
that are being measured, for example more diabetic 
patients coming from a particular clinic on a certain day 
of the week, or a true change in analytical performance 
of the glucose method. As aptly put by some authors, the 
objective is to monitor the analytical performance of the 
method, not the patients being tested that day (10). While 
there are some methods that can increase the effectiveness 
of these techniques, including the selection of a ‘normal’ 
population or application of truncation limits to the data, 
which is removing the patients with abnormal results (5),  
use of simulated annealing algorithms (10), they do 
not completely exclude the possibility of an underlying 
patient population shift. Furthermore, certain tests are not 
performed in patients from a ‘normal’ population (e.g., 
tumour markers, therapeutic drug monitoring, cardiac 
markers, endocrine hormones), thereby challenging the 
above assumption.

The next generation electronic medical record promises 
to bring together different clinical databases that are 
traditionally organized into silos (11,12). This opens up 
the possibility for the laboratory to match their laboratory 
trends with clinical information. For example, a laboratory 
that is employing the moving sum of outlier technique 
may detect an increased number of patients with elevated 
insulin-like growth factor-1 (IGF-1) concentration. By 
extracting the contemporaneous clinical information, it 
can be determined that there had been no increase in the 
diagnosis of acromegaly, which is a relatively rare disorder 
(prevalence: 50–60 per million population; incidence: 
3–4 per million per year). Hence, the laboratory can be 
confident that the observed shift in the number of patients 
with elevated IGF-1 levels is unlikely to be genuine and 
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initiate a detailed investigation looking for analytical 
errors. It is not difficult to imagine the same scenario for 
therapeutic drug monitoring, where the trend in the drug 
concentration can be matched with prescription patterns. It 
is even more tantalizing to think about the potential power 
of such tools when laboratories and health systems share the 
same information technology platform.

It is possible that internal quality control systems 
may become less relevant when such practice becomes 
commonplace. The role of the external quality assurance 
program will then become the periodic quality spot check 
of the analytical systems, provided they have a matching 
matrix with the clinical samples, target values assigned by 
reference method, are administered frequent enough and 
the results are returned in a timely manner.

These new tools bring the exciting possibility of a new 
laboratory practice that is responsive (fast), leverage on 
existing data (cheap) to improve the quality system (good).
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