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Acute respiratory distress syndrome (ARDS) affects a large 
number of patients admitted to the intensive care unit, it’s 
usually associated with multiple organ dysfunctions and 
mortality rate is very high (≈40%) (1). 

Identifying the ARDS cause while providing organs 
support and protection represents the mainstay of ARDS 
treatment and mechanical ventilation is mandatory to 
maintain viable oxygenation and assure carbon dioxide 
removal during ARDS. Major research effort for the past 
50 years focused on understanding which ventilator strategy 
would allow lung repair while minimizing further harm. 
This clinical approach was paralleled by digging into ARDS 
pathophysiology to identify specific molecular targets and 
improve the care of ARDS patients (2-4).

Unbalanced lung inflammation in response to a noxious 
stimulus represents the initiating and perpetrating molecular 
mechanism at the basis of ARDS pathogenesis. It results 
in disruption of alveolar-capillary membrane integrity, 
increased lung permeability and non-cardiogenic alveolar 
flooding (5). Unfortunately, all pharmacological therapies 
aimed to reduce deregulated lung inflammatory response 
in ARDS showed promising results in pre-clinical tests but 
failed to improve patients outcome (6-8). 

On a bio-molecular level, the acute phase of ARDS is 
characterized by inflammation, damage and apoptosis of 
cells composing the alveolar-capillary barrier. These events 
are often followed (or even co-exist) by a fibro-proliferative 
phase, during which proliferation of pneumocytes, 
fibroblasts, and myofibroblasts as well as deregulated 

deposition of extracellular matrix occur. This phenomenon 
might ultimately lead to pulmonary fibrosis, which 
significantly contribute to impaired respiratory mechanics, 
prolonged weaning from mechanical ventilation and worse 
outcome of ARDS patients (9). The processes through 
which the lungs of ARDS patients either recover their 
structure and mechanical properties or progress to develop 
lung fibrosis have not been clarified yet.

In the light of the above mentioned molecular and 
clinical scenario, we read with interest the study from 
Esposito and colleagues, recently published on the journal 
Critical Care (10). The authors performed a retrospective 
analysis of prospectively collected data from patients 
previously enrolled in the Phase II Randomized Trial of Fish 
Oil in Patients with Acute Lung Injury (NCT00351533) 
at five North American medical centers (11). The original 
randomized trial did not show a reduction in lung 
inflammation, measured as interleukin (IL)-8 concentration 
in broncho-alveolar lavage fluid (BALF), among ARDS 
patients receiving enteral fish oil supplementation. 
However, in the present study, the researchers shifted 
their focus on profibrotic inflammation mechanisms and 
measured hyaluronan (HA) concentration in serum and 
BALF collected from 86 patients diagnosed with ARDS 
according to the 1994 American-European Consensus 
Conference. Samples were collected at enrollment (within 
48 hours from ARDS diagnosis) and on study day 4 and 8. 

The rationale for the study is based on the evidence 
that  HA is  an important  component  of  the lung 
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extracellular matrix and, besides structural function such 
as tissue hydration, lubrication and support for cells, this 
glycosaminoglycan plays an essential role in lung tissue 
homeostasis (12). It has been widely showed that, based on 
their chain length, HA molecules exert different biological 
activities: high-molecular-weight (HMW) HA helps 
maintaining lung tissue properties promoting homeostasis 
and repair; whereas low-molecular-weight (LMW) HA 
is a lung tissue damage sensor taking crucial part into 
activation of the acute phase inflammatory response (13). 
In the context of ARDS, LMW-HA fragments have been 
reported to promote inflammation by translating “danger 
signals” to infiltrating leukocytes through activation and 
maturation of dendritic cells and the increased release of 
pro-inflammatory cytokines such as IL-1ß, Tumor Necrosis 
Factor (TNF)-α, IL-6, and IL-12 by multiple cell types (14).  
Of note, accumulation of LMW-HA molecules in the 
small airways not only stimulates macrophages to release 
chemokines, cytokines, and growth factors, but also promotes 
fluid retention in the extracellular space, thereby contributing 
to interstitial and alveolar edema (15). HA oligos with 
molecular weight <10 kDa have also been associated with 
unbalanced tissue remodeling, which, depending on the 
severity of tissue damage, contributes to extracellular 
matrix deposition and increased risk of lung fibrosis (13). 
By contrast, HMW-HA mostly exerts anti-inflammatory 
properties by interaction with CD44, the most important 
cell-surface HA-binding transmembrane glycoprotein, 
widely expressed on the membrane of both immune and 
structural cells. HMW-HA to CD44 cross-linking modulates 
epithelial cells toll-like receptor (TLR) 2 and 4 signaling at 
multiple points, preventing type II cell apoptosis (15) and 
inhibiting inflammation, thereby contributing to maintain 
tissue integrity. In a pre-clinical model of sterile lung 
inflammation CD44 was shown to play a critical role in the 
resolution of tissue inflammation by promoting removal of 
HA fragments (16). In-vitro data, further confirmed in an 
in-vivo model of LPS-induced inflammatory lung injury 
with increased vascular permeability, suggest that HMW-
HA, via a CD44-mediated pathway, exerts a protective 
effect on restoring the integrity of the endothelial-epithelial 
barrier, potentially indicating that heavy-chain HA might 
represents a therapeutic target for syndromes characterized 
by increased vascular permeability (17). In summary, high 
and low molecular weight HA fragments and the HA 
receptors expressed by epithelial and immune cells constitute 
an integrated system that allow to sense/detect the presence 
of intact or fragmented extracellular matrix, starting a pro- 

and anti-inflammatory response aimed at eliminating the 
noxa while restoring lung tissue integrity. The fine-tuning 
of these mechanisms activated from the recognition of 
tissue fragments is crucial for determining the phenotype 
of inflammatory response either toward inflammation 
propagation and fibrosis or tissue repair. 

Furthermore, HA is a major component of the endothelial 
glycocalyx (18), a negatively charged mesh of membrane 
glycoproteins, proteoglycans and glycosaminoglycans located 
on the luminal side of the vessels endothelium. Endothelial 
glycocalyx is believed to have important biological functions, 
including regulation of vascular permeability, modulation of 
leukocyte rolling and adhesion, transduction of shear stress 
leading to nitric oxide release and inhibition of coagulation. 
Having the lungs the largest vascular surface in the body, 
they contains extremely large amount of HA. 

It has been demonstrated that the application of either 
sterile or infectious injurious stimuli to the lungs induces 
HA degradation and release of HA fragments in alveolar 
fluids and blood. Gao and colleagues described that 
increased levels of oxidants in the lung lead to an increase 
in LMW-HA (19). Lung ischemia induced an increase in 
LMW-HA in mice lungs subject to ischemic injury through 
fragmentation and de novo synthesis (20). Moriondo et al. 
described that by applying progressively increasing levels 
of mechanical stress on the lung parenchyma, as a model 
of ventilator induced lung injury, glycosaminoglycan 
fragmentation occurred even in the presence of previously 
healthy rats’ lungs (21). Further evidence of the role of 
LMW-HA in experimental ARDS comes from in vitro 
data where stretch-induced LMW-HA from fibroblasts 
increased production of IL-8 from lung epithelial cells (22). 
In the clinical setting, a previous exploratory study from  
Hällgren et al. (23) reported increased HA concentration 
in BALF from twelve ARDS patients, compared to control 
subjects. Since BALF HA levels could not be completely 
explained by passive leakage from the bloodstream, active 
release of HA has been hypothesized secondary to HA 
fragmentation or de novo synthesis. Furthermore, the 
concentration of HA in the alveolar and extracellular space 
has been suggested to contribute to water retention within 
the lung parenchyma, as shown by the correlation between 
HA BALF levels and worsening of gas exchange (23).

In the present study, the researchers correlated the HA 
serum and BALF concentration with scores of pulmonary 
injury [Lung Injury Score (LIS)] and systemic severity 
[Sequential Organ Failure Assessment score (SOFA score)]. 
The authors reported a positive correlation between day 
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0 serum and BALF levels of HA and the values of LIS, 
specifically through the association between HA levels and 
the degree of hypoxemia and set positive end-expiratory 
pressure level. By investigating the association between HA 
levels and SOFA score as index of systemic involvement, 
Esposito and colleagues described that, while HA levels in 
BALF showed only a positive correlation with the respiratory 
component of SOFA score, serum HA levels were increased 
in patients with worsen respiratory, coagulation, hepatic, 
cardiovascular and renal failures, based on evaluation by the 
SOFA. The study did not identify any correlation between 
serum and BALF HA levels and clinical relevant outcomes 
such as mortality and ventilator free days. The authors 
attributed this result to low numerosity, to an unexpected low 
mortality rate among the cohort of ARDS patients enrolled 
in the trial and to the confounders that might interfere with 
mortality and duration of mechanical ventilation in ICU 
patients with ARDS. Main finding of the study is that serum 
and BALF HA levels, coming from structural alterations 
affecting the lung, are related to the severity of lung disease 
and to the severity of multiple distal organs dysfunction. The 
study is a retrospective analysis of prospectively collected 
data and thus, for its nature, should be considered only 
as hypothesis generating. Moreover, the study is affected 
by some limitations. Firstly, even if matching a posteriori 
the Berlin Criteria for ARDS diagnosis (24), patients were 
enrolled based on the previous definition of ARDS (25), this 
leading to include mild to moderate ARDS patients. Second, 
the patients included in the analysis were selected from both 
arms of the Fish Oil in Patients with Acute Lung Injury 
Randomized Clinical Trial. The authors tried to correct this 
potential bias by including treatment group as covariate in 
the multiple regression analysis. Third, concerning the HA 
measurement, the authors did not differentiate between HA 
fragments of different molecular weight, while measuring the 
differential release of both low and high molecular weight 
HA might represent a crucial information to clarify the 
biological role of HA. Fourth, by study methodology, it is 
not possible to identify which source of HA was predominant 
between the lung extracellular matrix and the endothelial 
surface, which, instead, could have shed light on progressive 
steps involved in development of lung injury. 

Nonetheless, the strong bio-molecular rationale and the 
correlation between the severity of the disease and the HA 
levels in biological fluids disclosed by this study, pose the 
basis for further pre-clinical and clinical investigations on 
the role of HA molecules in lung injury and lung healing.

We might speculate that,  in the perspective of 

developing more precisely tailored medicine, a thorough 
study of the differential HA concentrations based on the 
molecules size, better description of the source of HA 
(either from fragmentation and/or de novo production) 
and, further investigation on the pathway activated by HA 
could provide useful information into ARDS pathogenesis. 
Given the relevance of minimizing long-term lung fibrosis 
development throughout the clinical course of the disease, 
we deem necessary to consider HA as potential marker of 
increased risk and target for therapeutic interventions in 
ARDS patients.

In conclusion, the study from Esposito and coworkers 
provides interesting new experimental evidence on the 
association between HA and loss of lung tissue integrity 
as well as with clinically relevant scores of systemic 
involvement during ARDS. Looking at the present report in 
the light of data from previous literature, the role of HA in 
ARDS pathogenesis, recovery and development of fibrosis 
deserves further scrutiny.
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