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Introduction

Autoimmune status is elicited by multi-etiologic factors 
(1,2) that may include genetic predisposition (3-5), 
epigenetic dysregulation (5-7), gender bias and hormone 
imbalance (8-11), environmental stimulation (12,13), host-
microbiota dysbiosis (14-18) and triggering from stochastic 
events (1,2,19). The intricate interactions among these 
etiologic factors lead to a state of “loss of self-tolerance” 
in susceptible individuals. Furthermore, a self-sustaining 
mechanism operates via autoimmune-mediated local 

inflammation, tissue destruction, and autoantigen epitope 
spreading elicited by sophisticated interactions among 
pathogenic autoantibodies, autoreactive T cells and pro-
inflammatory cytokines (1-21). A scheme demonstrating 
the involvement of these factors in the pathogenesis of 
autoimmunity is shown in Figure 1.

In the respect of epigenetic modulation of immunity 
and autoimmunity (22-24), there are many genetic on/off 
regulatory modes such as methylation/acetylation of CpG 
islets in cytokine genes (7,25-27), histone modification by 
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histone deacetylase/histone acetyltransferase (22,23,28-30)  
and post-transcriptional modification of messenger RNAs 
(mRNAs) by non-coding RNA (ncRNA) (31-36). On 
the other hand, high-throughput detection technology 
of transcriptomes and bioinformatic analysis have found 
the presence of thousands ncRNAs in the cytoplasm and 
body fluids in charge of regulating mRNA expression. 
In conjunction with proteomic (37-39) and metabolomic 
profiling technologies (40-42), many investigations have tried 
to find the useful biomarkers/bio-signatures for diagnosis, 
disease activity & therapeutic monitoring as well as outcome 
prediction of autoimmune and inflammatory rheumatic 
diseases. In fact, the “omics” studies have demonstrated 
many biomarkers or bio-signatures in the literature (43-46). 
In addition, these array profiles can concomitantly elucidate 
the potential molecular pathways in the development of 
autoimmune and inflammatory rheumatic diseases (44). 
However, either biomarkers or bio-signatures must fulfill 

the criteria (47,48) as shown in Table 1 to become useful 
monitoring parameters in the clinical practice. 

The ncRNAs are conventionally classified into two 
categories, long non-coding RNAs (lncRNAs) and small 
non-coding RNAs (sncRNAs), cutoff at the nucleotide 
(nt) or base pair (bp) number of 200. The RNAs with 
molecular size larger than 200 nt are classified as lncRNAs 
whereas those with molecular size shorter than 200 nt 
belong to the sncRNA category. lncRNAs can be further 
divided into 7 subtypes according to their lineage-specific 
effects on mRNA regulation for the innate and adaptive 
immune homeostasis (34,35) (Figure 2). In contrast, 
sncRNAs are divided into at least nine subtypes according 
to the size, argonaute (Ago) protein association and their 
major localization (Table 2) (36,49). Single nucleotide 
polymorphisms (SNP) in human genes disturb genome 
stabil ity (49) and induce inflammatory rheumatic 
disorders (35). In this review, we will discuss in detail 

Figure 1 Multiple etiologic factors implicated in the initiation and then induction of a self-sustaining mechanism for the chronicity of 
autoimmune diseases.
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Figure 2 Modulation of innate and adaptive immune homeostasis by seven types of long non-coding RNAs (lncRNAs) via lineage-specific 
manner. Single nucleotide polymorphisms (SNPs) in human genome induce inflammatory rheumatic diseases.

Table 1 Definition, classification and ideal criteria for a useful biomarker or bio-signature in clinical practice

Definition of biomarker by the Biomarker Definition Working Group

“A characteristic that is objectively measured and evaluated as an indicator or normal biological processes, pathological processes, or 
pharmacological responses to a therapeutic intervention”

Definition of bio-signature

The obtained data from high-throughput “omics” together define a biomarker

A major issue is the low reproducibility and limited biological interpretability of the candidate biomarker signature

The detected molecular species include genes and their transcripts, proteins, metabolites and non-coding regulatory RNAs

Types of biomarkers

Predictive (risk) biomarkers

Diagnostic biomarkers

Disease activity monitoring biomarker

Prognostic biomarkers

Ideal criteria for a biomarker

A disease-causing molecule with high sensitivity and specificity

General usability and high reproducibility

Low cost

Logistic interpretability

Intergenic lncRNA

Enhancer lncRNA

Intronic lncRNA

Epigenic modification

Promotor-associated lncRNA

Transcriptional regulation

Sense-overlapping lncRNA

Post-transcriptional regulation

Innate & adaptive 
immune system 

homeostasis

7 types of 
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Natural anti-sense lncRNA

Post-translational regulation
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Lineage specific

regulation on

SNP in human

genome

the biological functions of ncRNAs in the development 
of immune system and their aberrant expression profiles 
resulting in the pathogenetic and pathological processes of 
various autoimmune-related diseases. 

Biology of ncRNAs

RNAs are traditionally regarded as informational intermediate 

between a DNA (gene) and its encoding product protein. 
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In fact, around 70–85% of the human genome are actively 
transcribed into RNAs. However, only 2% are transcribed 
into protein-coding mRNAs. This fact implies that the 
number of ncRNAs is much higher than that of the protein 
coding genes (36,50). lncRNAs (>200 bp) are lineage-
specific regulators of mRNAs, which can modulate 
innate and adaptive immune homeostasis by epigenetic, 
transcriptional, post-transcriptional and post-translational 
regulations (Figure 2). In contrast, miRNA (20–24 bp in 
length) can target several transcripts rather than a single 
specific transcript of genes in the site of 3'-UTR (51). 
Up to the present, more than 9,000 miRNAs have been 
identified to carry out various enhancing or suppressing 
functions on mRNA (52,53). These modulatory functions 

of miRNAs are obviously crucial in physiological and 
pathological conditions (36). Figure 3 demonstrates the 
modulation of miRNAs on the cell cycle, cell differentiation 
and cell apoptosis by way of different inhibitory activities 
on mRNA. Aberrant expression of ncRNAs may induce 
a number of autoimmune, inflammatory rheumatic, and 
neoplastic diseases. Indeed, an autoimmune disease is 
mainly characterized by the presence of autoantibodies and 
autoreactive T lymphocytes. Examples include systemic 
lupus erythematosus (SLE) or type 1 diabetes mellitus 
(T1DM). On the other hand, an inflammatory rheumatic 
disease is characterized mainly by inflammation rather 
than a presence of obvious autoantibodies or autoreactive 
cells. These include seronegative spondylarthropathy or 

Table 2 Classification of non-coding RNAs (ncRNAs) implicated in regulating gene expression

Nomenclature of ncRNA Size (bp) Ago protein association Localization

Long non-coding RNAs (lncRNA) >200 N/A Nucleus

Small non-coding RNAs (sncRNA) <200 Ago Nucleus, cytoplasm

Small interference RNAs (siRNA) & endogenous siRNA 20–24 Ago Nucleus

Guide RNAs (gRNA) 50–70 N/A Nucleus

PIWI interacting RNAs (piRNA) 23–31 PIWI Nucleus, cytoplasm

Promotor association RNAs (pRNA) Nucleus

Small nucleolar RNAs (snoRNA) & sno-derived RNAs <200 Nucleolus

MicroRNAs (miRNA) 20–24 Ago Cytoplasm

Double-stranded break-induced small RNAs (diRNA) 20–24 Ago Nucleus

Circular RNAs (cirRNA) Nucleus

Exosomal miRNAs (exo-miR) 20–24 Ago Plasma, body fluids, 
extracellular space 

Ago, argonaute; PIWI, P-element-induced wimpy testis. 

Figure 3 Intracellular miRNAs target mRNAs in the site of 3'-UTR by different mechanisms to modulate cell physiology including cell 
cycle, cell differentiation and cell apoptosis. Aberrant miRNA expression induces autoimmune, inflammatory rheumatic, and neoplastic 
diseases.
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inflammatory bowel disease (IBDs).

miRNAs are crucial regulators in the 
development of hematopoietic stem cells and 
immune systems

It has been demonstrated that the differentiation and 
homeostasis of the hematopoietic system require complex 
interconnected regulatory networks to distinguish the different 
blood cell lineages. The major immune system includes innate 
(monocytes, macrophages, dendritic cells, natural killers 
and leukocytes) and adaptive (B cells, T cells and a variety 
of T cell subsets) immune cells, which are originated from 
hematopoietic stem cells. Among the regulatory molecules 
in hematopoiesis, miRNAs play a pivotal role in the fine-
tuning of differentiation in the system (31,33,54,55). Knockout 
or silencing of certain miRNA machinery results in severe 
compromise of the immune system. The involvement of 
miRNAs in immune system development is depicted in  
Figure 4. The aberrant expression of miRNAs in hematopoiesis 
can undoubtedly elicit autoimmune, inflammatory rheumatic 
and neoplastic diseases (56-58).

Aberrant miRNA expression profiles of T cells 
become bio-signature of the pathogenesis and 
disease activity in patients with SLE

Many investigators have tried to detect and confirm the 

miRNA expression profiles in the immune cells, plasma 
or other body fluids by using miRNA extraction kits, 
miRNA reverse transcription kits and miRNA microarray 
for early detection, and real-time quantitative polymerase 
chain reaction (PCR) for confirmation. However, the 
data of individual T cell miRNA expression profiles in the 
literature for SLE risk or pathogenesis are quite variable 
(44,59-67). Lu et al. (62,65) have found decreased miR-
145, increased miR-224, and aberrant Ca2+ influx-regulated 
ncRNAs play roles in lupus pathogenesis. Later, they have 
extensively reviewed the literature and concluded that a 
number of elevated miRNAs could potentially become bio-
signatures for immunopathogenesis of SLE (68). These bio-
signatures include elevation of miR-17–92 cluster, miR-
21, miR-296, miR-126, miR-148a, miR-224, miR-524-5p, 
and suppression of miR-31, miR-125a, miR-125b, miR-
142-3p, miR-142-5p and miR-146a. In addition, these bio-
signatures are found intriguingly correlated with T cell 
subset alteration, aberrant cytokine/chemokine release, 
altered gene transcription and immune cell signaling 
abnormalities in SLE (68). Besides, urinary exosomal 
miRNA profiling was also investigated as bio-signatures 
for lupus nephritis (69-71). These include increased miR-
125a, miR-146, miR-150 and miR-155, and decreased miR-
141, miR-192 and miR-200a. For exploring the miRNA 
expression profiles in the damaged target tissues, Cardenas-
Gonzalez et al. (72) directly identified, confirmed and 
explicated miR-30c-5p, miR-1273e and miR-3201 in the 

Figure 4 Intracellular miRNAs regulate differentiation of hematopoietic stem cells and multi-potential progenitor cells into different 
mature innate and adaptive immune cell subpopulations [adapted with permission from Montagner et al. (31), and Mehta et al. (33)]. 
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renal tissue of patients with lupus nephritis. This cause-
effect relationship investigation of the damaged tissue is 
direct and more reliable than the conventional correlation 
analysis (73,74). 

Abnormal miRNA expression profile reflects 
the pathogenesis, helps diagnosis and 
indicates therapeutic prognosis in patients with 
rheumatoid arthritis (RA)

Similar to the miRNA study in SLE, different investigators 
have demonstrated variable miRNA expression profiles in 
patients with RA, reflecting its pathogenesis and helping 
therapeutic monitoring (74-82). The abnormal miRNA 
expression in RA includes increase in miR-15a, miR-16, 
miR-21, miR-25, miR-124a, miR-146a, miR-155, miR-
203, miR-223 and miR-346, and decrease in miR-140-
3p and miR-140-5p. Some unique therapeutic strategy, 
using miRNA antagonist or agonist, can ameliorate the 
inflammation in RA (83-85). Shi et al (83) found miR-
27a could inhibit migration and invasion of fibroblast-
like synoviocytes by targeting follistatin-like protein 1 in  
RA (83). Sharma et al. (79) demonstrated key components 
of cytokine signaling and inflammation which is regulated 
by miRNA. Furthermore, Lai et al. (85) have found that 
anti-citrullinated protein antibodies can suppress let-
7a expression and facilitate inflammatory responses in 
patients with RA. Lai et al. (68) have tried to correlate the 
miRNA expression profile with rheumatoid pathogenesis 
by meta-analysis. They noted a decrease in miR-21 
expression, enhanced STAT3 but suppressed STAT5, 
which upsurge T-helper 17 (Th17)/regulatory T cell 
(Treg) ratio. Increased expression of miR-23 may diminish 
IL-10 production, leading to imbalance between pro-
inflammatory and anti-inflammatory cytokine production. 
Furthermore, increased LOC100506036 (a kind of 
lncRNAs) expression enhanced transcription factors such 
as nuclear factor of activated T cell (NFAT) and Smith 
deoxyribonuclease protein (SMDP), which eventually 
activates T cells. 

Aberrant miRNA transcription in other systemic 
and organ-specific autoimmune diseases

Primary Sjögren’s syndrome (pSS)

pSS is featured by systemic autoimmunity and chronic 
inflammation with dysfunction of exocrine glands. Twenty-

five miRNAs including miR-146a, miR-16 and miR-21 
were found over-expressed in both pSS and SLE patients. 
On the contrary, down-regulation of miR-150-5p, which 
is novel and unique, has been found in pSS (86,87). Wang-
Renault et al. (88) further demonstrated that hsa-miR-30b-
5p, hsa-miR-222-3p, hsa-miR-26a-5p, hsa-miR-30b-5p and 
hsa-miR-19b-3p were differentially expressed in B cells of 
pSS patients. Functional studies revealed that inhibition 
of hsa-miR-30b-5p by miRNA antagonist enhanced the 
expression of B cell activating factor of TNFR superfamily 
(BAFF) in B cells originated from pSS patients. These 
miRNA expression profiles can become the pathogenetic 
bio-signatures of pSS. 

Anti-phospholipid syndrome (APS)

APS is diagnosed in autoimmune patients with a persistent 
presence of  anti-phospholipid antibodies  against 
mainly β2-glycoprotein I and different phospholipids 
including phosphatidylserine, phosphatidylcholine, and 
phosphatidylethanolamine, which manifests as arterial or 
venous thrombosis as well as pregnancy morbidity. The 
miRNA expression profiles relevant to APS were miR-19b 
and miR-20a that were implicated in the signaling pathways 
of TGF-β and vascular endothelial cell growth factor 
(VEGF), hypoxia and angiogenesis (89,90). These miRNAs 
can potentially be used as pathogenetic bio-signatures for 
primary APS. However, no investigation has been reported 
for the specific miRNA expression profile relevant to 
obstetric APS patients. 

Systemic sclerosis (SSc)

SSc is characterized by Raynaud’s phenomenon in the early 
stage which eventually leads to generalized fibrosis of the 
skin and internal organs due to overproduction of TGF-β. 
Steen et al. (91) evaluated the cell-free miRNA expression 
profile in plasma from SSc patients. They found that miR-
16, miR-223, and miR-638 were elevated and relevant to 
the TGF-β signaling and tissue fibrosis. In addition, miR-
638 was found weakly correlated with the serum titer of 
anti-Scl-70 antibody. The authors also noted the differential 
expression of miR-142-3p, miR-150, miR-150, and miR-
638 among SSc and SLE patients. 

T1DM

T1DM is  an organ-speci f ic  autoimmune disease 
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characterized by selective destruction of pancreatic β-cells 
driven by the immune dysfunction. The role of miRNAs 
in T1DM has been explored by experiments using known 
pancreatic islets as cell-based disease models (92). Indeed, it 
was found that virus-induced miRNA dysregulation seemed 
implicated in the immune-mediated β-cell destruction. 
Zheng et al. (93) have reviewed recent data by focusing 
on the miRNAs involved in immune homeostasis and 
regulation of the β-cell function in T1DM. Assmann 
et al. (94) have also extensively reviewed the literature 
and found the results were inconclusive with only few 
miRNAs consistently dysregulated among these studies. It 
is concluded that 11 miRNAs including miR-21-5p, miR-
24-3p, miR-100-5p, miR-146-5p, miR-148a-3p, miR-
150-5p, miR-181a-5p, miR-210-5p, miR-342-3p, miR-
375 and miR-1275 may potentially become the circulating 
pathogenetic bio-signatures for T1DM.

Myasthenia gravis (MG)

MG is characterized by the progressive muscle weakness 
and the presence of serum autoantibodies specific for either 
acetylcholine receptor (AChR+) or muscle-specific tyrosine 
kinase (MuSK+). These two autoantibodies are antagonistic 
antibodies that can block the neuronal transmission or 
muscle contraction. However, they do not reflect exactly 
the disease progression. Punga et al. (95) demonstrated that 
plasma levels of miR-150-5p and miR-21-5p were elevated 
in AchR+ MG patients who were immunosuppressed and 
improved clinically after thymoma resection. On the 
other hand, up-regulation of let-7 family has been found 
in MuSK+ MG patients. These circulating miRNAs can 
be considered as useful biomarkers for diagnoses, disease 
activity evaluation, therapeutic monitoring and foreseeing 
prognosis in MG patients.

Graves’ disease (GD) 

GD is an archetype of organ-specific autoimmune disease 
characterized by aberrant Treg function and subsequent 
production of anti-thyroid stimulatory hormone receptor 
(TSHR) antibodies (96). The anti-TSHR antibodies are 
agonistic antibodies that can facilitate the synthesis and 
secretion of thyroxine. Hiratsuka et al. (97) demonstrated 
that increased let-78-3p and miR-339-5p as well as 
decreased miR-23b-5p and miR-92a-39 in intractable GD 
can lead to IL-1β and TNF-α production and suppression 
of the Treg function.

Multiple sclerosis (MS)

MS is a life-long organ-specific autoimmune inflammatory 
disorder of central nervous system featured by immune 
cell infiltration, degeneration of axons and neurons, local 
demyelination/remyelination and astrogliosis. Kacperska 
et al. (98) have reviewed the literature and concluded that 
circulating miR-146 and miR-153 are correlated with 
high sustenance, tissue specificity and TLR-4 activation 
(indicating inflammation) in MS patients.

Table 3 summarizes various ncRNA-mediated pathological 
processes in different autoimmune diseases.

Aberrant miRNA expression profiles in 
inflammatory rheumatic diseases

Ankylosing spondylitis (AS)

AS is a common and genetically based heterozygous 
inflammatory rheumatic disease featured by inflammation 
of the axial and peripheral joints, new bone formation, and 
spinal ankylosis. High levels of miR-146a-5p, miR-151a-
3p, miR-125a-5p and miR-22-3p expression as well as low 
levels of miR-150-5p, and miR-451a have been shown in AS. 
Furthermore, miR-146a-5p, miR-125a-5p, miR-151a-3p, 
miR-22-3p and miR-451a are more likely to be associated with 
AS than to be associated with psoriatic arthritis. On the other 
hand, miR-146a-5p, miR-125a-5p and miR-22-3p expression 
is increased in active versus inactive status of AS. miR-125a-5p, 
miR-151a-3p, miR-150-5p and miR-451a are relevant to the 
development of syndesmophytes in AS (99-101).

Psoriasis and psoriatic arthritis (PsA)

Psoriasis is a chronic inflammatory skin disease caused by a 
complex interplay among the immune system, keratinocytes, 
susceptibility genes, and environmental triggers. miRNAs 
may be a possible class of sncRNAs which regulate psoriasis 
gene expression. Mounting evidence has supported miRNAs 
as an important triggering etiology in the pathogenesis of 
psoriasis as well as PsA and other chronic inflammatory 
conditions. miRNAs including miR-203 and miR-125b have 
been identified from psoriatic skin, blood, and hair samples 
and were found associated with non-suppressive effect. 
On the other hand, miR-146a is associated with psoriasis 
susceptibility (102).

miR-203 and miR-125b are implicated in hyperproliferative 
status of psoriasis. A number of authors have suggested 
that circulating miRNAs from blood samples can become 
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potential biomarkers for diagnosis, monitoring disease 
activity and foreseeing treatment outcome in psoriasis and 
allied diseases (102-104). 

IBDs

IBD is characterized by a chronic inflammation in the lower 
gastrointestinal tract. Crohn’s disease and ulcerative colitis 
are the two main disease entities of IBD. Crohn’s disease 
may involve the whole digestive tract, beginning from the 
oral cavity. In contrast, ulcerative colitis is almost confined 
to the lower gastrointestinal tract. Cao et al. (105) reviewed 
the role of miRNAs in IBD for diagnosis and correlation 
with disease activity. Some promising miRNAs including 
miR-19a, miR-21, miR-31, miR-101, miR-146a and miR-
375 have been elaborated for general diagnosis and disease 
activity monitoring. In addition, a role of miRNAs in IBD-
related acne prediction as well as prognosis telling has also 
been suggested (106).

Coeliac disease (CD)

CD is an autoimmune enteropathy triggered by the interplay 
between genetic predisposition (HLA-DQ2 or HLA-DQ8) 
and dietary gluten to induce inflammatory process and to 
cause bowel mucosa destruction. Dysregulated intestinal 
miRNA expression such as miR-31-5p, miR-192, miR-194, 
miR-449a and miR-638 has been reported to correlate with 
Wnt signaling, cell proliferation and differentiation. Felli 
et al. (107) suggested that these dysfunctional miRNAs are 
potentially the disease biomarker of CD. 

Table 4 summarizes various ncRNA expression-mediated 
pathological processes in different inflammatory rheumatic 
diseases.

Conclusions and prospective

miRNAs are evolutionally conserved key players for 
cellular and developmental process in eukaryotic organism 

Table 3 Aberrant ncRNA expression-mediated pathological processes in different autoimmune diseases

Diseases Bio-signature Pathological process

Systemic lupus erythematosus miR-21↑, miR-29b↑, miR-126↑ & miR-148a↑ DNA hypomethylation (68)

miR-142-3p↓ & miR-142-5p↓ T & B cell activation (68)

miR-146a↓ Type I IFN↑ (68)

miR-224↑ Cell apoptosis↑ (68)

miR-21↑, miR-31↓, miR-142-3p↓ & miR-410↓ IL-10↑ (68)

miR-125a↓ & miR-125b↓ Th17/Treg ratio↑ (68)

miR1273e↓& miR-3201↓ Endocapillary glomerular inflammation (72)

Rheumatoid arthritis LOC100506036↑ T cell activation (68)

miR-223↑ Pro/anti-inflammatory ratio↑ & cytokine imbalance (68)

miR-21↓ Th17/Treg ratio↑ (68)

Sjögren’s syndrome hsa-miR-30b-5p↑, miR-150-5p↑,  
miR-155-5p↑, miR-223-5↑& miR-342-3p↑

BAFF & B cell proliferation↑ (87,88)

Anti-phospholipid syndrome miR-19b↑ & miR-20a VEGF & angiogenesis↑ (89)

Type 1 diabetes miR-202-3p↑, miR-326↑ & miR-342↑ Ongoing autoimmunity (92)

miR-34a↓ & miR-146a↓ Cytokine-mediated b-cell dysfunction (93)

Multiple sclerosis miR-146↑ & miR-155↑ TLR-4 activation↑ (99)

Myasthenia gravis miR-21-5p↑ & miR-150-5p↑ T cell dysfunction & hyperplastic thymus (95)

let-7↑ TLR-7 & T cell activation↑ (95)

Graves’ disease let-7g-3p↑ & miR-339-5p↑,  
miR-23b-5p↓ & miR-92a-39↓

IL-1β↑, TNF-α↑ & Treg↓ (96,97)
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at the post-transcriptional level. However, these miRNA 
molecules target mRNA in a non-specific manner so that a 
miRNA can target several mRNAs, or alternatively, several 
miRNAs may target the same mRNA molecule. By way of 
microarray detection and bioinformatic analysis, miRNA 
expression profile may potentially become bio-signatures 
for etiopathogenesis, general diagnosis, disease activity, 
therapeutic monitoring, and prognosis. The interpretation 
of these bio-signatures from high throughput “omics” 
resulted in somewhat difficult and inconsistency. A useful 
disease biomarker must primarily be the disease-causing 
molecule with high sensitivity and specificity in predicting 
disease risk or monitoring the disease activity. The miRNAs 
can be obtained from plasma, tissue fluid, specific tissues 
or immune-related cells. How to direct correlate, but 
not only associate, miRNAs with disease entity should 
be considered. It is suggested miRNAs be extracted 
from a particular tissue (e.g., the kidney) or a particular 
specimen (e.g., urine or body fluid) and be compared for 
the cause-effect relationship between them for diagnosis, 
determining disease activity, therapeutic monitoring and 
prognosis prediction (70-73). Furthermore, the functional 
studies of the involved ncRNAs in the targeted tissues are 
equally important for understanding the pathogenesis and 
pathological processes of the individual disease entities.

For searching a useful disease biomarker/bio-signature, 
lncRNAs (>250 bp) are considered more suitable candidates 
than miRNAs due to their cell lineage-specificity in contrast 

to the pleotropic properties of miRNAs. Up to the present, 
only a limit of studies have been reported in autoimmune 
diseases such as RA (78,79). Recently, a new type of RNA, 
named circular RNAs (cirRNAs) based on its covalently 
closed structure, was extensively studied in eukaryotic 
cells. These cirRNAs have been found lack of terminated 
5' caps and 3' tails. These molecules can compete with 
linear RNAs with regards to tissue specificity by regulating 
RNA splicing and working as endogenous sponge RNAs to 
bounce mRNAs (108). Li et al. (109) have demonstrated that 
plasma cirRNA profile could be used as novel bio-signature 
for SLE. It is expected that more and more lncRNAs 
and cirRNAs will be found and be used for comparison 
with miRNAs in different autoimmune and inflammatory 
rheumatic diseases in the near future. However, it is more 
practical at the present time to use miRNA as diagnostic 
biomarker by taking into account the criteria listed in Table 1.
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autophagy↑ & TLR-4 down regulation (102)

Psoriasis miR-21↓, miR-31↑, miR-125a↑ & miR-146a↑ T cell apoptosis↓

Keratinocyte-immune interaction↑

Chronic skin inflammation↑ &

Epidermal differentiation↑

Psoriatic arthritis miR-146a↑ IL-1R associated kinase↓ & TRAF-6↓ (104)

miR-21-5p↑ Inflammatory process↑ (105)

Inflammatory  
bowel disease

miR-126a↑, miR146b↑ & miR-155↑ NK-kB↑ & pro-inflammatory cytokines↑ (106)

miR-214↑ & miR-224↑ P21 expression↓ & late neoplastic progression↑ (107)

Coeliac disease miR-31-5p↑, miR-192↑, miR194↑,  
miR-449a↑ & miR-638↑

Wnt signal↑, cell proliferation/differentiation↑ &  
adherent junction pathway↑ (108)
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