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Introduction

Rheumatoid  ar thr i t i s  (RA)  i s  the  most  common 
inflammatory erosive polyarthritis affecting around 
0.5–1% of the worldwide population which leads to joint 
damage and disability. RA is also associated with systemic 
complication including cardiovascular, pulmonary, 
psychological, skeletal disorders, and early death (1,2). In 
addition, RA is associated with socioeconomic costs derived 
from medical costs as well as from functional and social 
disability (3). RA is characterised by breach of self-tolerance 
and production of autoantibodies. Many factors including 
susceptibility genes, environmental factors, epigenetic 

modifications and post-translational modification can lead 
to loss of tolerance. The main-known division in RA is 
between patients characterised by the presence of anti-
citrullinated peptide/protein antibodies (ACPA-positive) 
and patients without ACPA (ACPA-negative). In this review, 
we focus on recent research advances of RA covering novel 
therapies and pathogenesis. 

Therapy in RA: recent advances

RA is a chronic autoimmune disease characterized by 
inflammation and deterioration of the joints which can 
produce a loss of functionality, reduces quality of life 
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and enhances morbidity and mortality. The main goal of 
RA treatment is to stop inflammation early during the 
disease course, relieve symptoms, prevent joint and organ 
damage, improve physical function and reduce long-term 
complications (4) .

To meet these goals, current treatment models promote 
to start an early aggressive approach, to target remission and 
to maintain a tight control. The strategy of early treatment 
initiation is strongly supported by the concept of “window 
of opportunity” which presumes a starting phase of RA 
when the disease is less matured, resulting most susceptible 
to the disease modifying effect of the treatment (5,6). In 
order to facilitate the understanding of this therapeutic 
“window of opportunity” the European League Against 
Rheumatism (EULAR) study group has outlined several 
risk factors for RA defining several stages: genetic and 
environmental risk factors for RA, systemic autoimmunity 
associated with RA, symptoms (arthralgia) without clinical 
arthritis and clinical arthritis either unclassified arthritis 
(UA) and RA (7).

Over the last 20 years, the effectiveness of disease-
modifying anti-rheumatic drugs (DMARDs) in RA has 
gained much attention as these can efficiently attenuate 
disease activity and substantially decrease and/or delay joint 
deformity. The therapy classification includes the traditional 
synthetic drugs, biological DMARDs, and novel potential 
small molecules. At present, all evidence supporting early 
treatment initiation come from studies of patients with 
clinically manifest arthritis. Very few trials on treatment 
initiated in the pre-arthritis phases have been published  
to date.

A systematic literature review on murine studies 
suggested that DMARD initiation in the induction phase of 
experimental arthritis, prior to clinical arthritis, was effective 
in controlling disease severity. Moreover, the authors of 
this study found that the treatment was also effective in 
the setting in which autoimmunity has developed without 
clinically evident arthritis (8). 

The first placebo controlled trial assessing the effect of 
treatment during the first pre-clinical stages of the disease 
was published in 2009 and showed that dexamethasone 
reduced autoantibodies level in RA patients with ACPA-
positive and/or rheumatoid factor (RF)-positive arthralgia, 
without preventing the development of arthritis (9).

Recently, the PRAIRI (prevention of clinically manifest 
RA by B cell directed therapy in the earliest phase of the 
disease) trial showed that a single infusion of rituximab in 
patients with ACPA-positive and RF-positive arthralgia with 

C reactive protein (CRP) levels ≥3 mg/L and/or subclinical 
synovitis on ultrasound (US) or MRI of the hands, delayed 
the onset but did not prevent the development of clinical 
arthritis (10). In a different study, treatment of RA patients 
with rituximab was shown to decrease the levels of IgA-RF, 
IgG-RF, and IgG ACPAs significantly more than the total 
serum Ig of the same isotypes (11). Results of a randomized, 
double-blind, placebo-controlled study of the potential of a 
single rituximab infusion in the prevention of RA in high-
risk arthralgia patients were described in a 2016 EULAR 
conference abstract. All 81 treated patients were RF and 
ACPA positive and received 100 mg methylprednisolone 
with 1,000 mg rituximab or placebo. The rituximab did not 
prevent but delayed the development of arthritis by nearly 
1 year (12). The cornerstone of this “pathobiology driven 
approach” is to identify with accuracy and confidence 
the predictors of RA development during its preclinical 
stages to reach better clinical and therapeutic outcomes. 
The importance of including patients with a high risk of 
progression to RA was emphasized in the Probable RA: 
Methotrexate versus Placebo Treatment (PROMPT) 
trial, in which patients with UA were treated with 
methotrexate with the aim of evaluating RA development. 
The risk of progression to RA was ~30%, and without 
further stratification, methotrexate did not modify this 
risk. However, when only patients with a high (>80%) 
1-year predicted risk of progression to RA were evaluated, 
methotrexate was highly effective in preventing progression 
to RA. In addition, methotrexate was also associated with 
DMARD-free remission in this high-risk group (36% vs. 0% 
in the placebo group) (13).

Investigation to identify predictive tools for RA 
development is a highly active and prolific area of 
research. Furthermore, RA has heterogeneous etiology 
and pathophysiology, thus progression to RA is not easily 
recognized. In the absence of pathognomonic markers, 
multiple biomarkers should be combined to predict patients 
which will progress to RA.

Autoantibodies play an important role during the 
developing phase of autoimmunity. Although, no definitive 
causal link with the development of arthritis has been 
proved, they are part of American College of Rheumatology 
(ACR)/EULAR RA classification and are recognized as 
important risk factors for future RA (14). The presence of 
autoantibodies does not always lead to development of RA; 
this may be explained by the heterogeneous character of 
the various autoantibody responses that can be present in 
individuals at risk for RA, with different intrinsic properties 
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such as affinity, specificity, isotype composition, and 
glycosylation as discussed later in this review. Moreover, 
autoantibody responses can change and evolve into more 
pathogenetic properties during the first phase of the disease 
leading up to the clinical manifestations of autoimmunity.

Genetic and epigenetic: the new insights

The genetic component plays an important role in the 
pathogenesis of RA. The combination of large clinical 
cohorts and progresses in genetic technologies have 
enhanced our knowledge on the genetic aspect of RA. Up to 
date, more than 100 loci have been associated with RA. The 
human leucocyte antigen (HLA)-DRB1 locus, one of the 
oldest to have been identified, is strongly associated with RA 
risk, and in particular HLA-DRB1*01, *04 and *10 alleles 
are correlated with a high risk of developing the disease 
in ACPA-positive patients (15,16). These HLA-DRB1 
alleles share in the peptide-binding groove an identical 
amino acid sequence, also known as shared epitope (SE). 
Since the correlation with ACPA-positive patients is high, 
it has been suggested that the peptides presented by the 
SE alleles may be citrullinated (16). Recent studies in the 
Southern Indian population have added new insights into 
the HLA-DRB1 locus showing that HLA-DRB1*03, *07, 
*11 and *13 alleles are associated instead with a protective 
role in the disease (15,17). In addition to HLA-DRB1, 
HLA-DRB4 locus has been associated with RA, mostly in 
correlation with prediction to response to methotrexate in 
early RA (15,18). Furthermore, other non-HLA loci has 
been recently characterised. Among the non-HLA genes, 
single nucleotide polymorphisms (SNPs) in the signalling 
transducers and activators of transcription (STAT)-4 and 
interleukin (IL)-10 genes seem to be correlated with the 
disease (15). In particular, in a cohort of Italian RA patients 
Ciccacci et al. showed that the rs7574865 in the STAT-4 gene 
was associated with a higher risk of developing RA, whereas 
the rs1800872 in IL-10 gene was related to a protective 
outcome (19). Moreover, rs7574865 in STAT-4 and 
rs1800872 in IL-10 were associated with presence of ACPA 
and RF, respectively. Additionally, they showed that SNPs in 
psoriasis susceptibility 1 candidate 1 (PSORS1C1), protein 
tyrosine phosphatase, non-receptor type 2 (PTPN2), and 
microRNA (MIR)146A were associated with a strong disease 
phenotype in term of autoantibody production and joint 
damage (19). Besides these non-HLA loci, mutations in the 
protein tyrosine phosphatase, non-receptor type (PTPN)-22 
gene are strongly associated with the risk of developing RA. 

This gene encodes a protein tyrosine phosphatase involved 
in the signalling pathway in lymphoid cells. Recently, it has 
been shown that mutations in this gene are associated with 
hypercitrullination of peripheral blood mononuclear cells 
through the activity of peptidyl arginine deaminase (20) 
enzymes (21,22). 

Besides genetics,  epigenetic mechanisms which 
include DNA methylation, histone modification and 
microRNAs also contribute to the RA pathogenesis. Using 
a comprehensive genome-wide methylation analysis, Liu  
et al. (20) recently showed the presence of ten differentially 
methylated sites that could be associated with the risk of 
developing RA. Moreover, current studies have started 
to combine high risk genetic loci analysis with epigenetic 
regulation (15). For instance, a recent study on RA 
fibroblast-like synoviocytes (FLS) function has showed a 
link between a characteristic DNA methylation signature 
and dysregulation of genes like PTPN11 (23). In particular, 
in this work the authors studied the presence of regulatory 
regions in PTPN11 and RA-specific epigenetic changes 
showing that an intronic glucocorticoid receptor-responsive 
enhancer in this gene, which is very activated in RA-
FLS, is hyper-methylated and this is necessary for full 
enhancer activity. Finally, Gaur et al. recently showed that 
microRNAs might selectively target DNA methylation 
mechanisms in RA-FLS (24).

The growing importance of microbiota

The pathways leading to RA is associated not only with 
susceptibility genes and epigenetic modifications. An 
additional component is represented by environmental 
effects including smoking, exposure to infectious agents 
such as Escherichia coli and Epstein-Barr virus, and 
microbiome (25). In particular, the effect of the microbiome 
(both gut and oral) on RA disease risk and progression has 
become the subject of several studies. The composition 
of the gut microbiota has been shown to be altered in 
patients with RA and this has been found to aggravate or 
alleviate arthritis rather than induce the disease (15,26,27). 
A recent study has demonstrated that RA patients have 
a decreased gut microbial diversity compared to healthy 
individuals and this was correlated with autoantibody levels 
and disease duration (26). In this work, the authors showed 
that RA is characterised by the expansion of certain rare 
bacteria, particularly Eggerthella, Faecalibacterium, and 
Collinsella, and that the latter was strongly correlated with 
the production of pro-inflammatory cytokines such IL-17A. 
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Porphyromonas gingivalis, a bacterium found in periodontitis, 
has been also associated with RA since through the 
expression of its own peptidylarginine deiminases (PAD) 
it can support aberrant citrullination leading to breach of 
tolerance towards citrullinated peptides (28). Besides P. 
gingivalis, recent studies have identified another bacterium 
(Aggregatibacter actinomycetemcomitans) which can potentially 
dysregulate citrullination by human PAD enzyme bringing 
to endocitrullination in gingival crevicular fluid (GCF) of 
patients with periodontal disease (29). This bacterium can 
produce pore-forming toxin leukotoxin A (LtxA) inducing 
an increase of calcium influx into neutrophils leading 
to hypercitrullination via the cells’ own PAD enzymes. 
Patients with RA are characterised by anti-LtxA antibodies 
which has been shown to be significantly associated with 
the presence of ACPA and RF (16,29). Thus, a better 
understanding on how environmental factors can influence 
the immune response in RA is important in order to clarify 
their contribution to the disease development. 

ACPA in RA

The presence of ACPA is associated with more severe 
RA and articular destruction (30,31). Several studies have 
outlined the involvement of ACPA in the pathogenesis 
of RA. Results from animal studies demonstrated 
arthritogenicity of some types of ACPA; in fact, anti-
citrullinated fibrinogen antibodies and anti-citrullinated 
collagen antibodies bound targets within the inflamed 
synovium and enhance tissue injury in murine experimental 
arthritis (32,33). Sokolove et al. demonstrated that 
complexes consisted of citrullinated fibrinogen and ACPA 
(CitFibr-ACPA) present in RA synovium can stimulate 
macrophages leading to induction of TNF-α production 
by human macrophages (34). Induction of TNF-α could be 
further amplified by IgM-RF and extended to the secretion 
of other pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) 
that activate RA synoviocytes (35). 

Recently, another ACPA-mediated mechanism of 
TNF-α induction that may operate in RA has been 
described. Through binding to surface, over-expressed 
citrullinated glucose-regulated protein 78 on RA peripheral 
blood mononuclear cells, ACPAs selectively activate 
ERK1/2 and JNK signalling pathways to enhance IKK-α 
phosphorylation, which leads to the activation of NF-κB 
and the production of TNF-α (36).

Pathogenic activity of ACPA in RA is also associated with 
induction of NETosis, a specific type of cellular death that 

consists in the extrusion of the intracellular material (DNA, 
histones, granular proteins and cytoplasmic proteins) 
resulting in creation of neutrophil cellular trap—neutrophil 
extracellular trap (NET) by neutrophils. Anti-citrullinated 
vimentin antibodies were shown to potently induce NET 
formation. Presence of NET augments further the activities 
of synovial fibroblasts, which secrete pro-inflammatory 
cytokines, chemokines and upregulate adhesion molecules. 
Pro-inflammatory cytokines are in turn the stimulus for 
NET formation. Furthermore, accelerated NETosis in RA 
is a source of citrullinated autoantigens (including vimentin 
and histones), and PAD enzymes that when released from 
intracellular compartment can citrullinate extracellular 
proteins (37,38), further fuelling ACPA production. Hence, 
stimulation of NET formation by ACPA may perpetuate 
the inflammation and autoimmunization processes in RA.

In vitro and in vivo studies showed also that ACPA 
contribute to bone destruction. ACPA bound to the surface 
of osteoclasts and osteoclast precursor cells and induced 
their differentiation as well as activated bone-resorption 
activity. Transfer of ACPA derived from RA patients into 
mice, caused arthralgia and systemic bone loss before signs 
of joint inflammation appeared (39,40). Stimulation of 
osteoclastogenesis by ACPA relied on inducible autocrine 
secretion of pro-inflammatory cytokines (TNF-α, IL-8) by 
osteoclast precursor cells.

The growing importance of ACPA Fab 
glycosylation in RA

ACPA are glycoproteins where carbohydrate chains (or 
glycans) are attached to both the Fc and Fab domain of 
the antibody. N-Glycosylation sites are conserved region 
formed by asparagine (N), followed by any amino acid but 
not proline (X), and either serine/threonine (N-X-S/T). For 
many years, most studies have been focused on N-linked 
glycans in the Fc domain. In particular, it has been shown 
that ACPA have a lower level of galactosylation and 
sialylation in the Fc domain compared to IgG from healthy 
donors (41). Interestingly, it has been shown that less Fc-
sialylation can drive in vitro and in vivo osteoclastogenesis 
due to a different Fc R signalling pathway activation and 
that patients with a reduced ACPA Fc-sialylation have 
lower bone volume and trabecula numbers (42). In the 
last few years, Fab N-linked glycosylation of ACPA has 
gained interest. In 2015, Rombouts and colleagues (43) 
demonstrated that ACPA have a higher molecular weight 
compared to IgG from healthy donors due to an increase 
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of Fab glycans. ACPA Fab glycans have more galactose, 
sialic acid and fucose residues compared to controls (44). 
It is still unclear why ACPA Fab glycans differ from ACPA 
Fc glycans but it has been proposed that environmental 
factors as cytokines might have a role in determining the 
glycans composition (16). Recently, it has been proposed 
that Fab glycosylation might influence antigen binding or 
the half-life of ACPA (44). However, more studies need 
to be performed in order to dissect deeply the role of Fab 
glycosylation on ACPA. 

Autoantibodies in RA: beyond ACPA

RF and ACPA are the two main diagnostic markers for 
RA included in the ACR/EULAR 2010 classification  
criteria (45). In particular, ACPA which were first described 
in 1964 (46) have been extensively studied with the 
identification of a wide array of citrullinated proteins as 
target of ACPA (e.g., vimentin, alpha-enolase, fibrinogen, 
histones). Citrullination is a post-translational modification 
mediated by PAD enzymes. As mentioned before, the 
presence or absence of ACPA allow the identification of 
subgroups of RA patients. Recently, other post-translational 
modifications have started to gain interest in RA giving rise 
to a group of AMPAs. Here, we review the different AMPAs 
associated with RA but not ACPAs which have been widely 
described in the literature.

Anti-carbamylated protein antibodies (anti-CarP)

Alongside ACPA, autoantibodies directed toward 
carbamylated antigens are the most studied AMPAs. 
Carbamylation is a chemical post-translational modification 
catalysed by cyanide where a lysine is transformed into 
a homocitrulline (47,48). Under physiological condition 
cyanide is expressed at low level but it rises during certain 
conditions such as smoking and inflammation, consequently 
also carbamylation increases (49). The final product of 
carbamylation is homocitrulline which is structurally 
similar to citrulline which has only one CH2 group less 
compared to homocitrulline. Anti-CarP autoantibodies 
have been observed in around 45% of early RA patients, 
mostly ACPA-positive, but they can be also found in 
ACPA-negative patients (10–20%) (50). This observation 
suggests that ACPA and anti-CarP are two different classes 
of autoantibodies despite sharing a similar structure. 
Although some degree of cross-reactivity between ACPA 
and anti-CarP autoantibodies exist, recent finding have 

shown that these are two distinct group of autoantibodies 
(51,52). Anti-CarP antibodies can be found in the sera of 
RA patients many years before the onset of the disease, 
similarly to ACPAs and RF (53,54). Their presence in 
baseline samples have been shown to be associated with 
future development of the disease in arthralgia patients 
(ACPA- and RF-negative) and with radiological progression 
in ACPA-negative patients (50,53,55-57). Current studies 
on genetic risk factors have revealed that these antibodies 
are not associated with HLA SEs alleles but blandly only 
with HLA-DRB1*03 which is linked to ACPA-negative  
pat ients  (58) .  Final ly,  the precise  autoantigen(s) 
recognised by anti-CarP autoantibodies is unknown. At 
the moment, immune-assays to detect the presence of 
these autoantibodies use fetal calf serum which contains a 
mix of carbamylated antigens. Therefore, the nature and 
localization of carbamylated antigens in the RA synovium 
still need to be explored in order to allow a better and 
more precise identification of anti-CarP antibodies in RA 
patients. 

Anti-hinge antibodies

RA patient synovial fluid and tissue (59) are characterised 
by an increase level of endogenous proteases such as matrix 
metalloproteases (MMPs) responsible for degrading matrix 
proteins, thus causing tissue damage. MMPs can also cleave 
IgG molecules generating F(ab’)2 fragments. The result 
is the generation of new epitopes composed of C-terminal 
amino acid residues (48,60). Autoantibodies towards these 
new epitopes, known as anti-hinge antibodies, are increased 
in RA sera compared to healthy donors (61). However, their 
biological function is still unclear. It has been proposed that 
these autoantibodies could restore the effector function of 
F(ab’)2 fragments which can still bind their own antigen 
and form immune complexes but not bind complement 
and Fc receptor (48). Interestingly, a subset of RA 
patients has shown the presence of anti-hinge antibodies 
specifically directed towards the IgG4 hinge and this was 
correlated with the presence of RF and ACPA. Anti-IgG4-
hinge antibodies were shown to be able to restore C4b 
complement deposition by IgG4 F(ab’)2 fragments (62). 
Therefore, anti-IgG4-hinge antibodies could have a role in 
the RA inflammatory process in a subset of RA patients.

Anti-acetylated protein antibodies

A new group of AMPAs recently discovered in RA are anti-
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acetylated protein antibodies. In particular, Juarez and 
colleagues have shown that around 40% of RA patients 
ACPA-positive are characterised by the presence of anti-
acetylated vimentin antibodies (63). Acetylation is an 
enzymatic post-translational modification of lysine which 
happens in humans and bacteria. In this reaction acetyl 
groups are added to free amines of lysine residues (64). 
It has been suggested that this new class of AMPAs could 
provide a new understanding of the pathophysiology of 
RA linking microbiome dysbiosis and development of 
autoimmunity (63,65).

Anti-malondialdehyde-acetaldehyde adducts 
(MAA) antibody

A less characterised class of AMPAs associated with RA is 
represented by MAA antibodies. Lipid peroxidation and 
cell damage can lead to the formation of different protein 
adducts which promote pro-inflammatory responses. 
One of this product is malondialdehyde (MDA) which 
spontaneously breaks down to form acetaldehyde (AA) (66). 
Both MDA and AA can react to produce MAA adducts 
involving lysine; MAA are stable ring structure and highly 
immunogenic (66-69). Thiele and colleagues recently 
showed the presence of MAA adducts in RA but not 
osteoarthritis synovial tissue and found in increased titer of 
anti-MAA antibodies in the circulation of RA patients (70). 
The presence of these antibodies was associated mainly with 
ACPA and RF. Although, anti-MAA antibodies were also 
observed in ACPA-negative patients. The disease specificity 
of these antibodies is still unclear, thus more studied are 
needed in order to characterise better this group of AMPAs.

Conclusions

In the last few years, several studies have shed more light 
into the pathophysiology of RA offering new views on 
how the disease develops. This has been achieved by 
increasing studies on the genetic and environmental risk 
factors in RA and recently on the effect of microbiome. 
Moreover, a better understanding of the role of AMPAs, 
which include not only ACPAs, has given a better overview 
of this heterogeneous disease. However, it is still unclear 
whether these autoantibodies could contribute to disease 
pathogenesis. Although several progresses have been 
done, more studies are needed in order to enhance the 
understanding of the pathophysiology of RA, thus achieving 
better therapy and ultimately preventing the disease.
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