
Page 1 of 22

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2018;3:69jlpm.amegroups.com

Introduction

Acute kidney injury (AKI) is a clinical syndrome that 
is characterised by a rapid deterioration of kidney 
function that disorganises metabolic, electrolyte and fluid 
homeostasis over a period of hours to days. AKI complicates 
the course and worsens the outcome in a significant number 
of hospitalised patients (1,2). AKI is well recognised as 
a major health problem that affects millions of patients 
worldwide. It is often diagnosed in the context of other 
acute illnesses and is particularly common in critically ill 
patients (3). The incidence of AKI is 3–20% in hospitalised 
patients and 30–60% in the intensive care unit (ICU) (4-6).  
The clinical spectrum of AKI is wide ranging from small 
subclinical changes in the levels of biochemical markers of 
kidney function to overt renal failure that requires renal 
replacement therapy (RRT). The impact and prognosis 
of AKI can vary considerably depending on the age of the 
patient, the severity of AKI, the clinical setting, presence of 

co-morbidities, and also geographical location (4,5,7,8). 
Increasing evidence from several studies has been shown 

the clinical importance of AKI demonstrating that AKI is 
associated with serious short- and long-term complications 
(increased mortality and morbidity). Moreover, there is a 
consistent association with increased long-term risk of poor 
outcomes such as, progression to chronic kidney disease 
(CKD) and mortality, longer hospitalisation time and 
utilisation of health resources (9-15). 

The clinical consequences of AKI mainly include the 
accumulation of waste products, electrolytes, and fluid, but 
also has less obvious effects, such as reduced immunity and 
dysfunction of non-renal organs (distant organ cross-talk) 
(16-18). 

AKI is also associated with augmented healthcare costs. 
The prolonged hospitalisations, in association with the 
worse outcomes and the diminished quality of life, after 
discharge, have recognised AKI as a major public health 
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problem (19-21). The reality is even worse if we consider 
the lack of effective interventions to prevent AKI in patients 
at-risk and the lack of therapeutic interventions in those 
affected with AKI. 

These observations strengthen the importance: 
(I)	 To early diagnose AKI in hospitalised patients, 

in order to implement any available therapeutic 
intervention to mitigate its impact and 

(II) To identify those hospitalised patients that are at 
increased risk to develop AKI, in order to prevent 
its development.

In order to accomplish this task, we need three things:
(I) A diagnostic system that will be based in both 

clinical evaluation and laboratory workup in order 
to help clinicians to identify patients at risk;

(II) A clear clinical definition of this syndrome that will 
help clinicians to determine the cause and stage of 
AKI and

(III) Laboratory support that will confirm the diagnosis, 
help clinicians to stage and monitor the patients 
during their interventions, and predict the outcome.

How the clinical laboratories can support these three 
demands? In this article, we will review the developments 
in AKI definition and investigate laboratory contribution to 
diagnosis and monitoring of patients. 

Lost in definitions

The traditional definition

Before 2004 when we used the term acute renal failure (ARF) 
we tried to define a clinical syndrome that was characterised 
by a “rapid fall in the rate of glomerular filtration (GFR), 
which clinically was manifested as an abrupt and sustained 
increase in the serum levels of urea and creatinine with an 
associated disruption of salt and water homeostasis” (22). 
However, this definition had several important limitations 
that had serious implications for clinical practice. 

The terms “rapid”, “abrupt” and “sustained” were not 
specifically defined. Depending on the cause, ARF can 
evolve within hours or days. The rapidity of onset may 
correlate with the severity of the episode, but this is not 
clear or implied within this definition (23).

There was no precise “biochemical definition” for 
ARF, which had as a result, mainly in research studies, 
investigators to use different definitions: some used absolute 
or percentage increases in creatinine levels, whereas 
others have used the patient’s need for dialysis. The lack 

of a precise definition of ARF resulted in more than  
30 definitions in the medical literature, which caused wide 
variation in the reported incidence and clinical significance 
of ARF. This situation resulted in wide differences on the 
incidence and outcome, and comparisons between studies 
was difficult if not impossible (24,25). Although these 
definitions were developed by researchers in different 
clinical studies, in clinical practice the situation was much 
worse. Because of the lack of a uniform definition, each 
institution has developed its own criteria according to their 
individual practices. More than 200 different definitions 
were used in clinical practice as a survey revealed (26). It 
was clear that a consensus definition was urgently needed to 
bring order in research and clinical practice. On the other 
hand, it was realised that the syndrome was much broader 
and the clinical manifestations, depending on the cause, 
were ranging from sub-clinical to overt disease. However, 
these definitions were focusing on the subset of patients 
with more severe acute kidney disease (AKD) and those 
with renal failure requiring dialysis treatment. It became 
clear that a much broader definition was necessary to cover 
all clinical phenotypes. 

Risk, Injury, Failure, Loss, and End-Stage Renal Disease 
Classification 

The term AKI became the preferred term in 2004 when 
ARF was redefined with the consensus criteria known 
as RIFLE (an acronym of the Risk-Injury-Failure-Loss-
End stage kidney disease) (27). The birth of the RIFLE 
classification opened a new era for the definition of AKI 
(Table 1). This was the first consensus definition based 
on serum creatinine (sCr) levels, estimated GFR and 
urine output (UO), which provided a platform through 
which comparative epidemiology could be judged. This 
classification greatly improved the early detection of AKI. 

However, the term AKI has been proposed to encompass 
the entire spectrum of acute changes in renal function, 
from minor changes in markers of renal function until 
the need for RRT. AKI is not synonym to acute tubular 
necrosis (ATN), nor to ARF. Instead, it encompasses 
both and also includes other less severe conditions. As a 
syndrome, it includes patients without actual structural 
damage to the kidney but with functional impairment 
relative to physiologic demand. Including such patients 
in the classification of AKI is clinically attractive because 
these are precisely the patients who may benefit from early 
intervention. However, it means that AKI includes both 



Journal of Laboratory and Precision Medicine, 2018 Page 3 of 22

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2018;3:69jlpm.amegroups.com

injury and/or impairment.
Rather than focusing exclusively on patients with renal 

failure or on those who receive dialysis or who have a 
clinical syndrome defined by tubular necrosis or pathology 
(which is usually absent anyway), the strong association of 
AKI with hospital mortality demands to change the way we 
think about this disorder.

The RIFLE definition was designed to establish the 
presence or absence of clinical AKI and to describe the 
severity of this syndrome in a given patient. It did not aim 
to predict mortality or any adverse outcome (28). However, 
several studies have shown that there was an association 
between AKI severity (as described by RIFLE class) with 
higher mortality and longer hospital and ICU stay (29). The 
RIFLE criteria have been used in therapeutic trials for AKI, 
as well as in studies aiming to clarify the pathophysiology 
of AKI (30,31). Finally, a paediatric version (pRIFLE) 
proposed in 2007 (32). However, this definition was not 
perfect. Very soon, Pickering et al. showed that there was 
a mismatch between increases in sCr concentration and 
decreases in GFR [estimated with Modification of Diet in 
Renal Disease (MDRD) or Cockroft-Gault formulae] in 
the descriptions of risk and failure severity stages (33). A  
1.5-fold increase in sCr corresponds to a one-third decrease 
(not 25%) in GFR and a three-fold increase corresponds 
to a two-third decrease in GFR (not 75%). If the GFR is 
not directly measured but estimated by a formula, then 
results might be also different depending on the formula 
used. With the MDRD formula a 1.5-fold increase in sCr 
corresponds to a 37% decrease in GFR, and a three-fold 
increase in sCr to a 72% decrease in GFR (34).

Acute Kidney Injury Network (AKIN)

In 2007, the AKIN group proposed a modified version of 

the RIFLE criteria, which aimed to improve the sensitivity 
of AKI diagnostic criteria for adults (35). There were 
several changes: the risk, injury, and failure stages became 
Stages 1, 2, and 3. An absolute increase in sCr of at least  
0.3 mg/dL (26.5 μmol/L) within 48 hours was added to 
Stage 1 which was supposed to make the definition more 
sensitive; the GFR criterion was removed as a marker 
of AKI; patients starting RRT were classified as Stage 3, 
irrespectively of sCr values; and outcome classes were 
removed. The characteristics of this system are outlined in 
Table 2. 

Only one criterion (sCr or UO) has to be fulfilled in 
order to qualify for a stage. Time becomes more important 
for AKI diagnosis in the AKIN definition: changes between 
two sCr values within a 48-hour period are required, 
while 1 week was proposed by the Acute Dialysis Quality 
Initiative (ADQI) group in the original RIFLE criteria. 
Severity of AKI in AKIN is staged over the course of 7 days 
by the fold-change in sCr from baseline 

The AKIN criteria have partially addressed the 
limitations of the RIFLE system. Although they were not 
designed to define the cause of AKI, an attempt is made to 
exclude cases of reversible (or transient) azotaemia or urinary 
tract obstructions to be characterised as AKI, something 
that was not possible with the RIFLE criteria (35).  
However transient azotaemia must be acknowledged as a 
form of “mild” AKI, since studies have shown it can lead to 
adverse outcomes (36).

Kidney Disease: Improving Global Outcomes 

In 2012, the Acute Kidney Injury Working Group of 
KDIGO (Kidney Disease: Improving Global Outcomes) 
revised the AKI definition again (Table 3). This was based 
on the previous two classifications, and had the aim of 

Table 1 RIFLE criteria for classification/staging of AKI. The severity of injury or outcome is determined by either sCr levels or GFR, whichever 
indicates the more severe renal failure [modified from reference (27)]

Stage Change in serum creatinine Change in GFR Urine output

Risk 1.5-fold increase Decrease >25% UO <0.5 mL/kg/h for >6 h 

Injury 2.0-fold increase Decrease >50% UO <0.5 mL/kg/h for >12 h 

Failure 3.0-fold increase or sCr >4.0 mg/dL (350 μmol/L) with an 
acute increase of 0.5 mg/dL (44 μmol/L)

Decrease >75% UO <0.5 mL/kg/h for >24 h or anuria for 
12 h 

Loss Loss of kidney function requiring dialysis lasting for >4weeks

ESRD Loss of kidney function requiring dialysis lasting for >3 months

ESRD, end-stage renal disease; AKI, acute kidney injury; GFR, glomerular filtration rate; sCr, serum creatinine; UO, urine output.
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unifying the definition of AKI (37). By KDIGO definition, 
AKI is diagnosed by an absolute increase in sCr, at least  
0.3 mg/dL (26.5 μmol/L) within 48 hours or by a 50% 
increase in sCr from baseline within 7 days, or a urine 
volume of less than 0.5 mL/kg/h for at least 6 hours. 
A patient’s progress can be staged over the entire time 
frame encompassed by an episode of AKI. An increase in 
sCr up to 3 times from baseline, or a sCr of more than  
4.0 mg/dL (354 μmol/L) or initiation of RRT, are all 
classified as Stage 3.

KDIGO made one additional change to the criteria: A 
patient can be classified as Stage 3 due to sCr >4.0 mg/dL  
(353.6 μmol/L), and in this case it is not required an acute 
increase of ≥0.5 mg/dL (44.2 μmol/L) to make the diagnosis. 

Moreover, it is stated that a rolling baseline can be used 
over 48-hour and 7-day periods for diagnosis of AKI, while 
in RIFLE or AKIN it is not clear how this is handled. 
Finally, changes were also made to severity Stage 3 to enable 
incorporation of paediatric patients into both definition and 
staging. 

Challenges of applying diagnostic criteria in 
clinical practice

The issue of time

Time is important in order to define and diagnose AKI. 
AKI is defined as occurring within 7 days period whereas 
CKD starts when kidney disease is persisting for more than 
3 months. Several studies have shown that some patients 
may have a slow (but constant) increase of sCr over the 
course of several days or even weeks and therefore they 
do not fulfil the consensus criteria for AKI (38,39). The 
conditions that affect the kidneys can be divided to acute 
or chronic depending on their duration and whereas CKD 
is well defined AKI definitions are still evolving. KDIGO 
in its latest guidelines addressed this issue, introducing the 
concept of AKD and proposed an operational definition to 
cover for these cases (37). The AKD definition requires: 
GFR <60 mL/min/1.73 m2 for <3 months, a decrease 
in GFR by ≥35 %, and an increase in sCr by >50 %  
for <3 months or evidence of structural kidney damage for <3 

Table 2 Acute kidney injury network criteria for classification/staging AKI. the stage of injury is determined by either serum creatinine level or 
urinary output whichever indicates the more severe stage of renal injury. The GFR criterion has been removed [modified from reference (35)]

Stage Change in serum creatinine Urine output

Stage 1 Absolute increase in sCr >0.3 mg/dL (>26.5 μmol/L) or > 1.5- to  
2.0-fold from baseline 

UO <0.5 mL/kg/h for >6 h 

Stage 2 Increase in sCr >2.0- to 3.0-fold from baseline UO <0.5 mL/kg/h for >12 h 

Stage 3 Increase in sCr >3-fold from baseline or increase of sCr  
to >4.0 mg/dL (>354 μmol/L) with an acute increase of at least  
0.5 mg/dL (44 μmol/L)

UO <0.5 mL/kg/h for >24 h or anuria for 12 h 

sCr, serum creatinine; UO, urine output.

Table 3 AKI definition and staging according to KDIGO criteria [modified from reference (37)]

Definition: AKI is defined as any of the following

Increase in sCr >0.3 mg/dL (>26.5 μmol/L) within 48 hours; or

Increase in sCr >1.5 times baseline, which is known or presumed to have occurred within the prior 7 days; or

Urine volume <0.5 mL/kg/h for 6 hours

Staging: AKI is staged for severity according to the following criteria

Stage 1: 1.5–1.9 times baseline or >0.3 mg/dL (>26.5 μmol/L) absolute increase in sCr; urine volume <0.5 mL/kg/h for 6–12 h

Stage 2: sCr >2.0–2.9 times baseline; urine volume <0.5 mL/kg/h for >12 h

Stage 3: sCr >3.0 times from baseline, or increase in sCr to >4.0 mg/dL (>353.6 μmol/L), or initiation of renal replacement therapy or, in 
patients <18 years, decrease in eGFR to <35 mL/min per 1.73 m2; urine volume <0.3 mL/kg/h for >24 h or anuria for >12 h 

sCr, serum creatinine; eGFR, estimated glomerular filtration rate; AKI, acute kidney injury.
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months. These criteria are currently under revision (2,37).

The issue of baseline renal function

The concept of all AKI definitions is one that requires “a 
rapid decline in renal function from baseline levels”. This 
concept is not only needs a definition of a timeframe within 
which this decline occurs, it also assumes that the patient’s 
baseline sCr level (which reflects patient’s premorbid 
kidney function) is also known. This baseline sCr value 
is necessary to compare with the current value in order 
to define and stage AKI. Moreover, the baseline renal 
function is necessary in order to evaluate the extent of renal 
function recovery after the AKI event, which is a clinically 
important end point (28). Unfortunately, the baseline sCr 
level might not be known in a lot of patients, depending 
on the population studied. Several studies proposed ways 
to estimate this baseline sCr value in various ways. These 
included the admission sCr level, the minimum sCr level 
during hospitalisation, a back-calculation using the MDRD 
equation, or the lowest value among these. It is a very 
important decision to be made by the clinician because 
this is the decision that seriously affects the prevalence, the 
severity (or staging of patient), and the mortality risk which 
associated with various stages of AKI. 

The admission sCr levels is unlikely to be representative 
of the true baseline state since it is possible to have been 
modified by the acute illness that caused the hospitalisation. 
The lowest sCr level measured during hospitalisation also 
has a number of disadvantages. First, this measurement 
is determined too late since the patient’s hospitalisation 
must have ended in order to identify the nadir value and, 
therefore, this measurement cannot be used in daily clinical 
practice and by definition, is a retrospective baseline. 
Second, the nadir sCr value is likely to be lower or higher 
than the true baseline level, thereby we may overestimate or 
underestimate the true incidence of AKI. 

When no information on pre-admission renal function 
is available, for adults, the ADQI has recommended 
the back-calculation of the baseline sCr value using 
the MDRD formula, assuming an estimated GFR of  
75 mL/min/1.73 m2. Although convenient, the validity 
of this approximation, as well as that of other surrogate 
measures of baseline renal function, is questionable and 
has been the subject of several recent studies and reviews 
(28,40-44). Some degree of misclassification of AKI exists 
when someone uses a method to back-calculate the baseline 
sCr value in both adults and children and this highlights 

the need to increase efforts to find a true pre-admission sCr 
measurement that will represent the baseline renal function 
of the patient (45,46). Looking back into patients’ medical 
records (when these are available) to obtain a true baseline 
sCr when the patient was to a stable condition, have been 
also proposed. There are two ways: 

(I)	 To use a short time-frame—that is trying to 
find a measured sCr value within 7 days prior to 
admission;

(II)	 To use a longer time frame—that is trying to find a 
measured sCr value between 7 and 365 days prior 
to admission. 

KDIGO allows to use the second option since in the 
general population and in patients with no progressive CKD 
we can assume that a sCr measurement within the last year 
and not so close to the event that caused the hospitalisation 
will reflect their true baseline renal function (28,37,44,47). 
However, the issue of how to approach a patient when 
a true baseline sCr value is missing, has not been solved 
yet, especially when we have to deal with patients at the 
emergency department. If a patient is admitted with an 
elevated sCr value, and the true baseline cannot retrieve 
immediately, a safe diagnosis of AKI can be done only 
retrospectively. This underlines the serious limitation of sCr 
as a reliable AKI definition criterion in the acute setting and 
the need of a more reliable marker that can be used in the 
acute care setting. 

The issue of sCr as a measure of kidney function

Although GFR is considered the best indicator of 
renal function and its assessment can aid the clinician 
in estimating the degree of renal dysfunction or the 
progression of established kidney disease or the estimation 
of drug dosing, it does not provide information on the cause 
of kidney disease. It is usually assessed by the renal clearance 
of a marker that achieves stable plasma concentration, 
is inert and is freely filtered by the glomerulus but not 
reabsorbed, secreted or metabolised (48-51). Such an ideal 
endogenous marker does not exist and for many years sCr 
has been used as a marker of renal function in both AKI and 
CKD. Creatinine is a metabolite of creatine. Creatine is a 
molecule that is synthesised from the amino acids glycine 
and arginine in liver, pancreas and kidneys and serves as 
a reserve of high-energy phosphates in skeletal muscle 
(Figure 1). Creatinine is produced from creatine in the 
muscles and its production is determined by the amount of 
creatine generated in liver, pancreas and kidneys, creatine 
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ingested (i.e., intake of red meat) and muscle function. It 
has a molecular weight of 113 Da, and fulfils most of the 
requirements for a filtration marker. It is freely filtered by 
the glomeruli, is not metabolised by the kidney, it is not 
bound to any protein and it is not toxic (2,52).

Creatinine is completely cleared by renal excretion when 
renal function is normal. The proximal tubules also secrete 
creatinine, which accounts for 10–20% of the excreted load, 
and this results in overestimation of GFR when measured 
by creatinine clearance (CrCl) (52-56). When GFR is 
reduced, the contribution of tubular creatinine secretion 
increases and may reach 50% of total CrCl, but it is highly 
variable among individuals. Tubular reabsorption is less 

important than secretion and appears later in the evolution 
of the CKD, in patients with already significant alteration in 
urinary flow in some clinical settings such as decompensated 
heart failure and uncontrolled diabetes (34,52). Since 
there is little to no tubular reabsorption of creatinine, its 
renal clearance is often used to estimate GFR, although its 
usefulness has been questioned even when the patient is 
stable (55). 

Under stable kidney function, sCr concentration can 
also reflect skeletal muscle mass if its non-muscle-mass-
dependent variations (such as due to renal function or meat 
intake) can be accurately accounted for. In people with 
stable kidney function and UO, a 24-h urine creatinine 

Creatinine 

generation

Creatinine 

clearance

Creatine muscles

Kidneys

Excretion with urine

Creatine from food 

(red meat)

Systemic 

circulation

Liver and 

pancreas

Arginine + glycine + 

methionine

Creatine→Creatine-P→Creatinine

Figure 1 Creatinine production and clearance. Creatine is produced in the liver, pancreas and kidneys, and ingested from food. It is then 
transported through blood to the other organs, (i.e., muscle) where, through phosphorylation, it becomes the high-energy compound 
phosphocreatine. muscle contains approximately 98% of the total body pool of creatine of which 60–70% exits as phosphocreatine and the 
remainder as free creatine. Creatine conversion to phosphocreatine is catalyzed by creatine kinase. Formation of creatinine occurs the non-
enzymatic dehydration of creatine (and phosphocreatine) in the muscle. Creatinine is removed from the blood primarily by the kidneys, 
mainly by glomerular filtration, but also by proximal tubular secretion. Little or no tubular reabsorption of creatinine occurs. Production of 
creatinine is highly dependent on muscle mass, diet, age, sex and race. 
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(uCr) is usually a constant number based on skeletal muscle 
mass and any variation observed is due to changes in meat 
consumption (57,58). Given the fact that sCr co-varies 
closely with skeletal muscle mass, its utility in estimating 
GFR using equations such as MDRD or CKD-EPI may 
not be appropriate when subjects exhibit weight variations 
during follow up as in the case of critically ill patients. 
Muscle loss might be misinterpreted as improvement of 
renal function (58).

The fact that creatinine is a product of muscle catabolism 
makes the interpretation of its results problematic in 
patients with extremely low or high muscular mass (59). 
This may explain why the same sCr value correspond 
to different GFR in subjects of different age, sex and  
ethnicity (59).

In health, it is produced at a constant rate and the rate 
of production is matched by the rate of renal excretion. 
However, large and sustained falls in production have been 
demonstrated during critical illness. A true fall in GFR may 
not be adequately reflected by sCr in patients with sepsis, 
liver disease, and/or muscle wasting (60,61).

Creatinine-based criteria for AKI often do not take 
into account underlying renal reserve. Up to 50% of the 
kidney function maybe lost before we see any detectable 
rise in sCr. The role of creatinine as a marker of renal 
function is limited by the fact that its half-life increases 
from approximately 4 h to 24–72 h if the GFR decreases, 
depending on the degree of decrease (62). As such, the 
serum concentration may take 24–36 h to rise after a 
definite renal insult (2). 

SCr concentrations are also affected by drugs, which 
compete with tubular secretion. In this case, sCr levels may 
fluctuate without a change in renal function (2,59,63). 

The measurement of sCr in the clinical lab is performed 
either by enzymatic or the Jaffe methods. Both are 
colorimetric and although the enzymatic methods are 
exhibiting better specificity and sensitivity both methods 
are not fully specific for the measurement of creatinine (59).  
No method is free from interferences and substances like 
bilirubin or drugs may interfere with certain analytical 
techniques, more commonly with Jaffe-based assays. 
Harmonisation of sCr measurement between laboratories 
is important, especially when a physician is seeking past 
measurements from patients’ medical records that may 
have been performed in a different laboratory and with 
a different commercial assay and wants to compare with 
the current value. Theoretically standardisation of sCr 
measurements has been achieved since the Creatinine 

Standardisation Program developed a reference method 
based on isotope dilution mass spectrometry (IDMS) and it 
has been requested that all manufacturers standardise their 
commercial kits to this IDMS reference procedure and their 
calibrators to be traceable to a higher-order method by 
2007 (59,64,65). However, several studies since then have 
shown that several commercial methods still provide results 
that are deviate significantly from the true value as this is 
determined by the IDMS reference method. The enzymatic 
assays seem to perform better in aspect and exhibit less 
inter-assay variability compared to Jaffe assays (66-68). 
Enzymatic assays seem also to perform better than Jaffe 
assays in terms of precision (64,69). 

sCr is measured as a concentration and is therefore 
affected by variations in volume status. Aggressive fluid 
administration may dilute creatinine in blood. Studies 
have shown the effect of fluid accumulation on sCr 
concentration. Increase of total body water dilutes sCr 
altering the volume distribution resulting in overestimation 
of kidney function, and underestimation of AKI severity. 
Moreover, the diagnosis of AKI may be delayed or missed 
in patients with significant fluid shifts or fluid overload 
(70-72). A recent study revealed that AKI was diagnosed 
or classified differently in up to 18 % of patients after sCr 
levels were adjusted for net fluid balance and estimated total 
body water. Affected patients had mortality rates similar to 
those with AKI that was present before adjustment. The 
researchers suggested the use of an adjusted creatinine on 
the basis of fluid balance (71). More recently Pickering  
et al. proposed a model that combined volume and 
creatinine kinetics to assess changes in renal function. This 
model also takes into account fluid type, the rate of fluid 
infusion and urine output (73). 

The issue of small changes in sCr 

Current consensus definitions require small changes in 
sCr (26.5 μmol/L or 0.3 mg/dL or 50% from baseline to 
peak) for diagnosis of AKI. These definitions do not take 
into account the magnitude of baseline creatinine value, 
the intra-individual biological variation (CVi) of sCr and 
the numerous factors that interfere with its laboratory 
measurement (44,59). 

In a patient with normal kidney function (i.e., sCr levels 
0.70 mg/dL), a rise by 0.3 mg/dL may indeed be due to an 
important reduction in GFR. In contrast, in patients with 
underlying CKD, (i.e., baseline sCr levels 3.0 mg/dL) a rise 
by 0.3 mg/dL may be within the acceptable daily variation 
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and simply reflect an inconsequential change in GFR. This 
is particularly relevant when diagnosing AKI Stage 3 using 
KDIGO guidelines, defined by a rise in sCr to >4.0 mg/dL  
(≥353.6 μmol/L) .  A patient with a baseline sCr of  
3.9 mg/dL (345 μmol/L) whose sCr rises by 0.3 mg/dL in 
48 h would be classified as having KDIGO AKI Stage 3, 
whereas the same absolute rise would be defined as AKI 
Stage 1 in a patient with normal baseline renal function 
(44,74-76). 

In the literature, there are studies that demonstrate that 
even smaller changes (i.e., 8.8 or 0.1 mg/dL or 1–24%, 
baseline to peak) in patients, are independently associated 
with a 45% increase of end-stage renal disease (ESRD) or a 
two-fold risk for CKD (77-81). These associations of such 
small changes with adverse outcome, in published studies, 
are questionable and may reveal the ability of confounders 
and not AKI to influence the development of CKD. 

Moreover, there are questions beyond the association of 
small changes and outcome. The first question is how these 
minimal changes are defined. In most cases the definition 
is arbitrary and not uniform across all studies. Another 
important question is whether these changes represent true 
changes in a patient’s health status or just random variation. 
The answer is not so straightforward. These studies do not 
take into account the variability in sCr measurement and its 
relevance to AKI. These small changes in sCr do not always 
reflect true changes in renal function as may be within the 
limits of the combined analytical and biological variation 
(BV). It depends also on the baseline sCr of a specific 
patient. In order to estimate if a change in sCr represents 
a true change in patients’ health status and it is not just a 
random variation we must take into account not only the 
base line value but also the analytical and BV, the major 
sources of variation in laboratory results (43,44,59). For 
every analyte we measure in the lab there is a physiological 
random variation around a homeostatic set point that can be 
measured and is expressed as a coefficient of variation (CV). 
This homeostatic set point and CV is different for each 
individual and is termed within subject or CVi. Briefly, CVi 
can be calculated from serial measurements in a number of 
stable patients, under the same conditions, on a relatively 
short period of time. This variation is independent from 
analytical variation, cannot reduced and should be taken 
into account together with analytical variation once we 
try to determine when two consecutive measurements, of 
the same analyte in a patient, differ and this difference is 
of clinical significance. A part of BV of creatinine could be 
explained from to day-to-day variations in true GFR. 

We can calculate objectively the true change is sCr 
that represents a true change in patients’ health status by 
calculating the reference change value (RCV) using the 
following formula: RCV = 21/2 * Z * (CVA

2 + CVI
2)1/2 where, 

CVA = analytical CV, CVI = within subject BV and when 
Z =1.96, then a change in any direction (two-tailed) to the 
RCV is “significant” with 95% probability (82). 

BV can also show the way to the clinical laboratory 
for optimal analytical performance based on objective  
criteria (83). An optimal CVA is considered the half of the 
CVI. The CVI for sCr (can be found in the literature) is 5.9% 
for healthy people and it is the median from 28 published 
studies. Therefore, an optimal performance for sCr requires 
CVA ≤3.0. Enzymatic methods for sCr measurement 
are exhibiting lower CVA compared to Jaffe methods  
(5.5% vs. 2.0%) and fulfil better the quality criteria 
(59,64,69). This means that depending on the method used 
by the lab significant changes in sCr can be either 19% (Jaffe 
methods) or 13% (enzymatic methods) . 

This approach has several implications for research and 
clinical practice:

(I)	 The clinician must know the lab’s method that sCr 
was measured;

(II)	 In a clinical practice, as in research practice, we 
cannot combine results from different labs even 
when they perform the same method since CVA 
may differ;

(III)	 The fixed value (0.3 mg/dL), that the current criteria 
use to define AKI, may need a reconsideration. 
Relative increases from baseline for each patient 
that take into account the analytical and BV maybe 
should be incorporated into AKI definition (84,85). 

Several examples in the literature have shown that if 
we apply the fixed KDIGO’s criteria in the definition of 
AKI, may be underestimated if the patient (adult or child) 
has a baseline value at the low end of normal range (i.e.,  
0.7 mg/dL) and on the other hand may be overestimated if 
the patient is a CKD with a baseline 3.0 mg/dL (43,44,59).

Some restrictions on the RCV calculation must be noted 
here. It is well known that BV is not the same in health and 
disease. Patients with chronic conditions (such as CKD, 
liver disease or diabetes) might exhibit higher BV than 
healthy subjects (86-91). Therefore, the baseline renal 
function as well as chronic conditions should be taken into 
account (when these are known) and the appropriate BVI 
incorporated into calculations (90). The estimates of BV 
were derived from healthy subjects or stable CKD patients 
under highly standardised conditions, in the absence of 
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factors that interfere with assay specificity. In acutely ill 
people BV is higher and therefore higher RCV values 
might be needed in order to determine that a change is 
clinically significant. Therefore, the use of BV derived 
from healthy people may underestimate the true RCV 
in patients with acute conditions (as those with AKI). 
However, in such conditions it is difficult to estimate how 
much of the observed variation is random. In consequence 
the use of healthy population RCVs might lead to labelling 
many hospitalised patients’ test results as having changed 
significantly. Such changes could be called “false positives” 
since real RCV would be higher than in the healthy 
population. On the other hand, the RCV published in the 
literature, uses the assumption that the values found in the 
studied subjects are forming a Gaussian distribution. This 
assumes truly random variation and also means that there 
is no correlation between successive results (82,92). This 
seems to be reasonable when we perform tests at medium 
to long-term intervals between samples. However, when 
we perform tests more frequently (on a daily basis), this 
serial correlation might exist. Estimates of within subject 
BV over short periods of time might be smaller than long-
term estimates. This auto-correlation could make the CVi 
and therefore RCV smaller. Therefore, the RCV that 
uses CVi from healthy people will lead to “false negative” 
changes. However, these two effects tend to balance each 
other out and thus calculating RCV from healthy subjects 
is valid and widely applicable (82). The estimation of 
RCV has generated debate and discussion regarding the 
statistical approach that should be applied, especially when 
the analyte under investigation does not exhibit a normal 
distribution. When the analytes exhibit normal distribution, 
the standard approach proposed by Fraser can be applied 
for the determination of RCV. On the other hand, a non-
parametric approach might be more appropriate for the 
determination of RCV in analytes that do not follow the 
normal distribution and are highly skewed. However, the 
different approaches that have been proposed need careful 
validation (93-98). 

And finally, despite the significant amount of work 
relating to BV over the last 50 years, the published 
papers are of varying quality in terms of study designs 
and presentation as well as the use of non-standardised 
terminology to describe the data. This delivers a high 
degree of uncertainty around published estimates of BV 
(99-101). It is well recognised that there is a need to further 
develop criteria to better characterise BV data and this work 
has been undertaken by the Biological Variation Working 

Group (BVWG) established by the European Federation 
of Clinical Chemistry and Laboratory Medicine (EFLM) 
(90,102-104). 

The issue of UO 

UO is a rapid bedside test for renal function and oliguria 
has been one of the oldest biomarkers for renal injury (105). 
It can be measured in real time, it is easy to measure and 
inexpensive. It is an important clinical marker since urine 
flow variations trigger first attempts to therapy but, like 
creatinine, it is not renal specific (106,107). 

Although the relation of oliguria with ARF has been 
made more than 200 years ago, its systematic inclusion 
in the definition of AKI occurs with the adoption of the 
RIFLE criteria as an alternative to sCr criteria. It remained 
unchanged in the AKIN and KDIGO criteria. UO 
criteria and sCr elevations have been considered of equal 
importance in all AKI consensus definitions (105). 

The theoretical advantages of UO over sCr include: 
(I)	 The speed of the response. A rapid reduction of 

UO may be the earliest indication of decreased 
kidney function. For example, if GFR were to 
suddenly fall to zero, a rise in sCr would not be 
detectable for several hours. On the other hand, 
UO would be affected immediately; 

(II)	 Low UO is defined by a predefined cut-off value. 
There is no need to look for a baseline UO. In 
contrast, sCr based definitions depend on a baseline 
sCr value which is often unknown and has to be 
estimated by processes that introduce significant 
errors;

(III)	 Certain conditions (infections, sepsis, malnutrition) 
seriously affect creatinine production and make sCr 
use an unreliable surrogate marker of GFR.

Oliguria is a complex process. There are multiple 
mechanisms that can potentially cause oliguria in AKI, 
therefore it is not highly specific or sensitive marker of 
parenchymal ischaemic injury (108). These mechanisms 
include overall reduction or regional intra-renal differences 
in blood flow and redistribution, glomerular injury, 
altered intra-glomerular haemodynamics, impaired tissue 
oxygenation causing preferential ischaemia to the S3 
segment of the proximal convoluted tubule and the oxygen-
avid thick ascending loop of Henle, loss of osmolar gradient, 
interstitial oedema or inflammation and finally tubular or 
lower urinary tract obstruction (108). The decline of GFR 
and UO in response to a decrease of renal blood flow (RBF) 
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is classically referred to as pre-renal azotaemia, which 
can evolve into structural damage if renal hypoperfusion 
persists. Into this context UO is used not only as a marker 
of AKI, but also to guide fluid resuscitation in critically 
ill patients. The mechanisms of diuresis regulation are 
discussed in two excellent reviews (108,109). Oliguria 
does not occur at the same time with sCr changes, so this 
criterion might be used to identify AKI earlier or may also 
contribute to select different patients from those selected by 
sCr criteria (110,111). 

However, the major difficulty to measure UO over a 
period of time of 6 to 12 hours is that can be measured 
accurately only in patients with a urine catheter. Another 
problem of UO, as a biomarker, is that may change in 
conditions not related to AKI: 

(I)	 As a physiological response (reflects conditions 
associated with antidiuresis related to hypovolaemia); 

(II)	 As an indicator of stress (oliguria may occur due to 
pain, surgery trauma) and finally 

(III)	 As an indicator of failing glomerular flirtation. 
It is well recognised that hydration status, use of diuretics 

and haemodynamic status influence UO in the absence of 
AKI. On the other hand, it is also known that severe AKI 
can occur with normal UO. However, the ADQI group 
has decided in the RIFLE consensus definition to use UO 
criteria to define and stage AKI which remained and in 
the subsequent definitions (AKIN, KDIGO) (27,35,37). 
The accuracy and the usefulness of this criterion in clinical 
practice are not well verified. The measurement of UO 
has to be done manually and inputted into the hospital’s 
information system, which renders it to clerical errors. 
There are difficulties in measuring, monitoring and 
recording accurately UO. Therefore, it is often omitted as 
criterion from clinical studies (29). 

The UO criterion has been assessed in several studies, 
where mostly critically ill patients are involved. However, 
the number of studies is relatively small compared to those 
that use sCr criteria (106,107,110,112-116). 

The issue of GFR measurement in AKI

GFR, which measures the amount of plasma filtered 
through glomeruli within a given period of time, is a 
physiologic process and as such a direct indicator of kidney 
function. It is well known that the reduction of the GFR, 
secondary to either AKI or CKD, are accompanied by 
increases in sCr. However, sCr is an insensitive surrogate 
biomarker in the measurement of GFR, since its increase 

does not parallel the fall of GFR, in a timeframe that is 
clinically useful. The insensitivity of this surrogate marker 
as a measure of GFR is not uniformly appreciated. Neither 
sCr nor one of several derived equations to estimate GFR 
(eGFR), based primarily on the sCr, can be used in AKI, 
nor can they be used reliably over the entire range of GFR 
to estimate it safely (59,76).

In higher GFRs very large changes in GFR are needed 
to result in small changes in sCr and the opposite is true 
for lower GFRs. In addition, the formulas that use a single 
measurement of sCr to estimate GFR, were derived in 
patients with CKD and rely on the assumption that the 
patient is in steady state and creatinine production and 
excretion remains constant, which is not the case in AKI 
patients where changes in sCr are usually delayed and follow 
GFR changes. On the other hand, during the recovery 
phase the improvement of GFR usually precedes the sCr 
decline by several days. These problems were highlighted in 
a recent, excellent article that documents the need for a true 
GFR measurement in patients with AKI (76). Moreover, 
mathematical models have been proposed to predict GFR 
on the basis of sCr changes during AKI but do not seem 
to be practical for routine applications (70). Jelliffe et al. 
developed an equation, that has been validated recently, to 
estimate GFR in the setting of non-steady kidney function 
(117,118). Other methods that have been proposed include 
continuous monitoring of the GFR for ICU patients and 
short time urine collections (2–8 h) with a blood sample for 
CrCl determination (119,120). 

On the other hand, we can measure GFR with a direct 
method. The gold standard for GFR determination, 
is the renal clearance of inulin. However, it is rarely 
performed due to inconvenience and high cost. Today a 
number of filtration markers and several protocols have 
been proposed to replace it (121). Of note here is that the 
proposed protocols do not include only urinary clearance 
but plasmatic clearance has also proposed. Iohexol, a non-
ionic contrast agent, is most suited to replace inulin as the 
marker of choice for GFR determination. Iohexol fulfils 
all requirements for an ideal GFR marker (low extra-renal 
excretion, low protein binding, it is secreted nor reabsorbed 
by the kidney). In addition, iohexol is virtually non-toxic 
and carries a reasonable cost. Moreover, as iohexol is 
stable in plasma, administration and sample analysis can 
be separated in both space and time, allowing access to 
GFR determination across different settings. Iohexol can 
be measured by high performance liquid chromatography 
with ultraviolet detection (HPLC-UV), X-ray fluorescence 
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(XRF)  and l iquid  chromatography-tandem mass 
spectrometry (LC-MS/MS), with HPLC-UV to be the 
most commonly used method in Europe. This method is 
sensitive, specific and reproducible, enabling the use of very 
low doses of iohexol, since it presents with very low limits of 
detection. Additionally, an international external proficiency 
program (operated by Equalis AB in Sweden), allows the 
inter-laboratory comparison of results. This method can be 
easily adopted in most modern clinical laboratories today. 
Plasma clearance measurement is the protocol of choice as 
it combines a reliable GFR determination with convenience 
for the patient. Single-sample protocols dominate, but 
multiple-sample protocols may be more accurate in specific 
situations (122,123). However, the methods of iohexol 
administration (single bolus or continuous infusion) is a 
matter of debate especially for patients with AKI (124,125). 

Complementary tools to aid AKI diagnosis and 
management 

In certain clinical circumstances, it is necessary to use 
additional tools to diagnose AKI, especially in clinical 
cases where sCr and UO, don not change significantly, 
are misleading, or cannot be interpreted accurately. This 
is particularly relevant for ICU patients in whom critical 
illness is usually accompanied by the presence of fluid 
overload, muscle wasting, sepsis, and reduced effective 
circulating volume all of which may completely mask the 
diagnosis of AKI. Several research groups have proposed 
that novel biomarkers could be used to define and stage 
AKI in conjunction with RIFLE or AKIN criteria. A 
meta-analysis of data from 19 studies conducted in eight 
countries, involving 2,538 patients, of whom 487 (19.2%) 
developed AKI, reported that neutrophil gelatinase-
associated lipocalin (NGAL) levels in plasma, serum or 
urine seem to be of diagnostic and prognostic value for 
AKI, RRT and mortality, especially in patients who have 
undergone cardiac surgery, as well as in children population. 
NGAL can allows the early diagnosis of AKI in a few hours, 
after the onset of kidney damage with increased specificity 
and sensitivity (126).

Urinary electrolytes 

For many years the measurement of urine electrolytes was 
a useful tool in AKI management. Its main utility was to 
distinguish a functional renal impairment (“pre-renal AKI” 
or “pre-renal azotaemia”), generally associated with low 

renal perfusion, and a structural renal impairment (“renal 
AKI” or “intrinsic AKI”), in which there is tubular damage 
leading to an inability to properly reabsorb electrolytes, 
including sodium. 

In situations associated with transient hypovolaemia 
or hypoperfusion, healthy kidneys respond by increasing 
urine osmolarity and reducing sodium and/or urea or 
uric acid excretion. However, this physiological response 
may be variable and confounded by CKD and various 
medical interventions, such as diuretic therapy, use of 
antibiotics (aminoglycosides), and cardiopulmonary 
bypass (127-129). Whereas the presence of low fractional 
excretion of sodium (<1%), uric acid (<12%), and urea 
(<35%) together with a normal urinary sediment may 
support the diagnosis of functional AKI, the absence of 
these typical urinary electrolyte abnormalities would 
not exclude it (Table 4) (130,131). Finally, low fractional 
excretion of sodium (FENa) values have also been observed 
in experimental sepsis with increased RBF as well as 
in the first hours of sepsis in humans (115,132,133). 
Moreover, urinary electrolytes and FENa, fractional 
excretion of urea (FEUrea), or uric acid (FEUA) has not 
been consistently shown to have clear correlations with 
clinical and histopathological findings (134-136). As such, 
the interpretation of urinary electrolytes is challenging 
especially in the critical care setting (137). A single 
measurement of urinary electrolytes has a limited role in 
determining the differential diagnosis of AKI in critically ill 
patients. Instead, serial monitoring of urinary electrolytes 
may be more useful as sequential alterations in urine 
composition have been shown to parallel the development 
and severity of AKI (138-140). However, whether serial 
measurement of urine electrolytes can also help diagnosing 
the aetiology of AKI remains unclear. 

Measurement of urinary Sodium in 24-hour collections

Twenty-four-hour urine collections are regarded as the 
“gold standard” to measure sodium urinary excretion and 
are useful to estimate daily dietary salt intake particularly in 
the management of patients with hypertension. However, 
this method have problems mainly due to the difficulties 
associated with the accurate collection of a complete 
24-h collection (141-143). In hospitalised patients and 
especially in critically care setting disturbances in fluid 
and electrolytes are the most common problems and 
are associated with increased morbidity and mortality 
(144,145). Severe burns, trauma, brain trauma and heart 
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failure can lead to disturbances in fluid and electrolyte 
homeostasis. Reduced perfusion to the kidney (due to 
hypovolaemia or hypotension), activation of hormonal 
systems (renin-angiotensin-aldosterone and vasopressin), 
tubular damage (caused by ischaemia or nephrotoxic drugs) 
and inappropriate use of fluids and electrolyte solutions are 
the most common causes. Hypernatraemia is very common 
and important electrolyte disorder in critically ill patients 
and is related to increased administration of solutions 
containing sodium, renal water loss (i.e., use of diuretics), 
and decreased capacity to excrete sodium especially in the 
setting of AKI (137,144,146). It seems that 24-hour urine 
collections have a role in calculation of total electrolyte 
excretion and may be helpful to prevent the effect of 
electrolyte overload in multiple organs (147). Moreover, 
hypernatraemia is often thought to be hypovolaemic 
since it is associated with increased water loss. However, 
hypervolaemic hypernatraemia has been described in ICU 
patients that are recovering from AKI, a condition that is 
characterised by massive retention of total body sodium 
and total body water. Recent studies have shown that this 
condition might not be so rare as it was initially thought 
and measurement of electrolytes in urine may be helpful in 
diagnosis and management (148-150). 

FENa

The calculation of the fraction of a urine solute that is 
excreted compared to the amount that is filtered is a 
concept that was developed in the early 1970s. During this 
decade, FENa was developed for use as diagnostic tool 
to distinguish pre-renal azotaemia from ATN. However, 
the studies that proposed urinary Sodium and FENa as a 
useful tool for this distinction are not only several decades 

old but he cut-off they proposed were derived from a small 
number of patients with very increased serum urea and 
creatinine suggesting that only patients with severe AKI 
were included. Moreover, patients receiving diuretics or 
were non-oliguric were excluded (151,152). FENa is a 
measure of the extraction of sodium and water from the 
glomerular filtrate. It is the ratio of the sodium filtration 
rate to the overall GFR rate (estimated by the renal 
filtration of creatinine). A euvolaemic person with normal 
renal function and moderate salt intake in a steady state will 
have FENa approximately 1%. When interpreting FENa it 
is necessary to consider whether the patient has pre-existing 
CKD as these patients might exhibit FENa >1% in the 
absence of AKI depending on their GFR and daily dietary 
sodium intake (153,154). In a case of pre-renal azotaemia 
the epithelial cells of proximal tubules reabsorb filtered 
sodium resulting in a very low concentration of sodium in 
urine (<20 mmol/L) and FENa <1%, whereas in established 
AKI concentration of sodium in urine is higher than 40 
mmol/L and the resulting FENa is >1%. A low FENa or 
low urine sodium reflects poor renal perfusion of any cause, 
not exclusively volume depletion. However, there are many 
causes for a low FENa despite AKI and for a high FENa 
despite pre-renal AKI. The use of diuretic agents, the 
presence of sepsis, myoglobinuria, acute glomerulonephritis, 
cirrhosis, congestive heart failure, and contrast induced 
nephropathy may seriously affect the performance of this 
test (127,155-160). A detailed list of the limitations of this 
test is presented in the articles Perazella et al. and Diskin  
et al. (128,161). 

Fractional excretion of urea (FEUrea) 

The calculation of FEUrea is based on the same principle as 

Table 4 Use of urinary indices to differentiate pre-renal, renal, and post-renal kidney injury (modified from reference 44)

Test Pre-renal azotemia Intrinsic AKI Post-renal obstruction

Urine Na (mmol/L) <20 >40 >40 

FENa <1% >2% Variable

FEUrea <35% >35% –

Urine/serum creatinine >40 <20 <20

Specific gravity >1.020 1.008–1.012 ~1.010

Osmolality (mOsm/KgrH2O) >500 <300 (near serum) <500

Urine/serum osmolality >1.5 <1.3 <1.5

AKI, acute kidney injury.
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FENa. Urea conservation accompanies water conservation 
and it has been shown that its reabsorption occurs mainly 
(57%) at the proximal segment of the nephron, it is 
practically not affected by diuretic agents, which act distally 
to the proximal tubule (162,163). Therefore, it should be 
more reliable than FENa. However, studies that evaluated 
the performance of FEUrea in various clinical settings 
(including ICU patients) have produced discordant results 
(127,164-167). A low FEUrea is usually indicative of pre-
renal AKI, however recent studies indicate that ageing, sex 
certain drugs and sepsis may alter FEUrea (128,159,168). 
This is understandable since urea movement across 
membranes is modulated by specific urea transporters, 
drugs or disease entities may interfere with urea’s active 
transport and therefore alter FEUrea (128).

How can the clinical lab be of help?

It is easy to implement these calculated tests in a clinical 
lab’s routine. A fresh random urine collection (not 
catheterised) is required, together with a blood sample, and 
calculations can be made within the laboratory information 
system (LIS). However, the utility of standardised 
interpretive comments for these tests are a matter of debate. 
Personalised interpretive comments can be made by the 
Clinical Chemist only if he/she has access to patients’ 
history and putative diagnosis, and may be limited by 
regulatory restrictions. 

In conclusion the interpretation of urinary electrolytes 
is challenging, with many limitations affecting urine 
concentrations and fractional excretion indices. Serial 
monitoring of urinary electrolytes may be more useful than 
individual measurements, as sequential alterations in urine 
composition have been shown to parallel the development 
and severity of AKI. However, whether serial measurement 
of urine electrolytes can also help diagnosing the aetiology 
of AKI remains unclear

Urine microscopy (UM)

UM is an important tool for the diagnosis and management 
of several pathological conditions that affect the kidneys. 
Examination of urinary sediment is one of the oldest tests 
used to evaluate AKI in clinical nephrology (152,169,170). 
Evaluation of urine sediment is often considered as a 
complementary measure for the diagnosis and the severity 
of AKI since it can provide additional information (136,171). 
UM has many advantages: it is cheap, non-invasive and 

readily available. Traditionally urinalysis is a manual method 
that includes visual inspection of urine, chemical analysis 
and microscopic analysis of the sediment. There is no 
reference method for urine sediment microscopy. Manual 
urine sediment analysis is still the gold standard in the 
laboratory. In most laboratories a bright field microscopy of 
unstained native urine is the mainstream urine examination 
(172,173). 

Recent technological advances have led to the production 
of automated instruments based on flow cytometry or 
digitised microscopy and are currently available for routine 
use in large clinical laboratories. These tools allow the 
examination of large numbers of samples in a short period 
of time. One major advantage of these instruments is that 
the actual images of selected urine samples can be stored 
in a computer and transmitted easily to nephrologist for 
clinical evaluation (174). 

However, preanalytical protocols still vary between 
laboratories. The preanalytical phase is the most important 
and the most vulnerable part of urinalysis. It accounts for 
no less than 75% of all laboratory errors. In an effort to 
standardise urinalysis EFLM (European Federation for 
Laboratory Medicine) has produced a European guideline 
which provide specific instructions for urinary sediment 
analysis. UM can provide very valuable information when 
performed by a skilled operator, using a freshly collected 
non-catheterised urine sample (175).

When performed properly, the presence and the 
type of casts in urine sediment can differentiate the 
aetiology of AKI. Visualisation of red cell casts is due to 
glomerulonephritis, whereas the presence of renal tubular 
epithelial cells and coarse granular or muddy brown casts as 
well as casts containing tubular epithelial cells is indicative 
of ATN (Table 5) (176). On the other hand, absent sediment 
or the presence of occasional hyaline casts is indicative of 
pre-renal azotaemia (152,169,170,177). An ischaemic or 
nephrotoxic insult causes tubular injury, which results in 
apoptosis or necrosis of the renal tubular epithelial cells. 
These are shed into the tubular lumen where they are 
excreted free or form casts which can be examined in fresh 
urine sediments. Since pre-renal azotaemia and AKI are 
not separate clinical entities but rather are a continuum, the 
presence of cells and casts would be expected to increase 
with the severity of the disease. It is logical to try to assess 
these findings quantitatively (178,179). However, evidence 
that establishes the diagnostic value of UM has largely been 
lacking. Two systematic reviews evaluated the usefulness 
of urinary microscopy and suggested that it may have a 
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limited role for the diagnosis, classification and prognosis 
of septic AKI (134,135). However recent data show that 
UM may have a complementary role for the discrimination 
of septic from non-septic AKI (180). Another systematic 
review evaluated the usefulness of urinary microscopy for 
the differentiation between pre-renal AKI and ATN and 
suggested that its clinical utility may be increased by the use 
of a simple urinary scoring system, based on the number of 
renal tubular epithelial cells and casts (181). 

In conclusion examination of urinary sediment can be 
helpful in differentiation of prerenal AKI from ATN, may 
have a role in determining the severity of AKI and can be 
more specific than some novel biomarkers in early detection 
of AKI, although lacks sensitivity (131,179,182). 

However, we must point out that the clinical utility 
of UM may be limited for several reasons. First apart of 
renal biopsy, there is no gold standard that would be able 
to diagnose AKI in a given patient, therefore we cannot 
judge the performance of any biomarker objectively 
and its usefulness is likely to remain controversial. 
Second interpretation of UM is highly dependent on the 
training and experience of the user, and the clinical lab 
should guarantee its competency in the preparation and 
interpretation of UM (183,184). Third manual microscopy, 

if performed by an experienced clinical chemist or 
nephrologist, outperforms automated urinalysis systems 
mainly because the latter uses non-centrifuged urine, and 
should be preferred (185-187). Centrifugation increases 
the probability of locating casts. Finally, the development 
of a standardised and validated scoring system based on 
the number of tubular epithelial cells and renal casts is 
necessary (181).

Generating e-alerts for AKI. The contribution of 
the clinical laboratory

The term “e-alert” has been used widely the last few years 
in the research setting of AKI. It is an area that the clinical 
laboratory can contribute not only by the laboratory 
results but also has the infrastructure (LIS) that is required 
to implement these e-alerts. We believe that it worth 
discuss in brief first what these e-alerts are and second 
to look at the recent research developments in this fast-
evolving area. 

“e-alerts” or “early warning systems” are intended 
to enable earlier detection of AKI and comprise of two 
essential components. The first component is the detection 
of AKI, which is a rule-based or mathematical process that 

Table 5 Urine microscopy findings

Urine sediment Finding Suggestive of

Cells Squamous epithelial cells Normal

 Renal tubular epithelial cells Acute tubular injury

 Red cells (non-dysmorphic) Bleeding that can be anywhere in the urinary tract (not glomerular bleeding)

 Dysmorphic red cells Glomerular disease (if the urine sample is not fresh)

 White blood cells Normal if <3 per high power field 

>3 urinary tract infection, pyelonephritis, interstitial nephritis

Casts Red cell casts Diagnostic of glomerular disease (glomerulonephritis, lupus nephritis, vasculitis)

 White blood cell casts Renal Infection (pyelonephritis, interstitial nephritis)

 Hyaline casts Normal or pre-renal disease

 Granular casts and/or muddy 
brown casts

Tubular necrosis (muddy brown casts contain necrotic tubular epithelia cells) 

Crystals Urate/phosphate Not specific finding of acute kidney injury

Healthy individual may have some crystals in urine

Abnormal crystal presentation in patients’ urine may be indicative of metabolic disorders, 
due to medications, or indicative of postrenal obstruction

Microorganisms Bacteria Indicative of urinary tract infection but can be present due to sample contamination
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requires the creation of an algorithm to compare a patient’s 
current sCr levels with a previous one using the current 
internationally accepted diagnostic criteria and can be 
incorporated into laboratory’s LIS. Wherever possible, sCr 
measurements are considered before inpatient admission 
and patients needing chronic dialysis are excluded. The 
same principle can be applied to UO data. Theoretically and 
depending on the AKI definition that will be used and the 
algorithm we can achieve diagnosis and staging of a patient. 
The second component is the “alerting process” and this 
has to do with how these changes are communicated to the 
patient’s physician. During the alerting process, treating 
physicians can be informed about the reduction in renal 
function in various ways. One way can be just a simple 
list of affected patients with or without mention of their 
AKI’s severity grade. Another way is by using technically 
sophisticated early warning systems that will alert doctors 
with a message. This can be linked to recommendations to 
treating physicians (188-190).

The drivers behind this concept were the recognition that 
routine clinical practice often was not fast enough to diagnose 
AKI timely, especially on weekends and most often patients 
were managed by non-specialist nephrologists (191-194). 

Conclusions

A universally accepted definition of AKI is necessary for 
its diagnosis and management. Current developments 
to standardise the definition of AKI are significant and 
despite the uncertainties that still exist in several areas, 
have helped in both clinical management and research. 
However, these definitions which are based on sCr 
changes and UO do not allow a biochemical definition of 
this syndrome and clinical judgement is necessary. These 
definitions are designed not to replace clinical diagnosis 
but rather to complement or assist it. The contribution 
of the clinical lab is hugely important not only to help 
clinicians interpret correctly these changes but also to 
highlight their limitations. Evolution of AKI definitions 
should take these concerns into account. The contribution 
of the lab emerges also in new areas as in the creation 
of electronic alerts as it has the infrastructure (LIS) to 
implement them. 
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