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Introduction

Bone is a dynamic tissue that balances the activities of bone 
formation and bone resorption. The dysbalance in favour 
of osteoclasts leads to pathological bone resorption as seen 
in osteopenic diseases including autoimmune arthritis, 
postmenopausal osteoporosis, or periodontitis. In addition, 
bone homeostasis is controlled by several regulatory 
systems, such as the immune system, as they share a variety 
of common regulatory molecules, such as cytokines. 

Furthermore, immune cells formed in the bone marrow 
interact with bone cells. An abnormal activation of the 
immune system often leads to bone destruction. As several 
tight connections have been recognized between the skeletal 
and immune systems, osteoimmunology has been created 
as an interdisciplinary research field that investigate the 
crosstalk between immune and skeletal systems (1-4). In this 
review, we will present novel advances in the understanding 
of bone loss due to periodontitis, which is a common and 
prototypic disease of osteoimmunology. 
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Periodontitis is a highly prevalent chronic infect-
inflammatory disease that affects the tooth-supporting 
structures (periodontal ligament and alveolar bone), and 
if not treated, leads to tooth loss (5). The pathogenesis of 
periodontitis is multifactorial being initiated by a microbial 
challenge that promotes an exacerbated inflammatory 
response, which, in turn, is the main cause of tissue 
destruction (6).

In the recent years, there has been an increasing 
interest in the host response as a relevant factor that 
drives periodontal disease (PD) (7). The inflammatory 
immune responses, which result in the release of an array 
of cytokines, including interleukin (IL)-1β and tumor 
necrosis factor (TNF)-α, promotes leukocyte recruitment 
into the gingival tissue (8). Later, T and B lymphocytes 
are activated by either bacteria or antigen presenting cells. 
Not only in the case of PD but also in other diseases, T 
cells have been considered important regulators of bone 
turnover (9). In fact, T cells can activate macrophages, or 
indirectly activate osteoclasts and their precursors and also 
they can directly express receptor activator of nuclear factor 
κB ligand (RANKL) (9) by the so called “pro-resorptive” 
cytokines (IL-1, IL-6, IL-11). These cytokines act in a 
network with the cells, however, their relationship with 
clinical manifestations of PDs is not clear yet (10,11). In 
addition, during the last years, the research in the field 
of periodontics have focused on Th-17, a subpopulation 
of T-lymphocytes characterized by the production of 
IL-17, which seems to be strongly correlated to tissue  
destruction (12).

Inflammation has been reported to inhibit osteoblast 
differentiation by modulating the Wnt signaling pathway (13)  
or impacting the expression of Wnt agonists and 
antagonists (14).

The Wnt signaling pathway is a critical bone-anabolic 
cascade which has recently been implicated in periodontitis 
(15-18). Wnt signaling stimulates osteoblast differentiation 
and/or function and consequently embryonic and postnatal 
bone formation. Increased Wnt signaling might also reduce 
osteoclastogenesis and bone resorption by stimulating 
the expression of osteoprotegerin (OPG) by osteoblasts  
(19-22). Inflammation has been reported to inhibit 
osteoblast differentiation by modulating the Wnt signaling 
pathway (14) or impacting the expression of Wnt agonists 
and antagonists (13) however, the pivotal uncoupling signal 
is still unknown. 

In this context, this review aims to highlight the 
role of host response on inflammatory bone loss during 

periodontitis, emphasizing not only the importance of the 
RANKL-RANK-OPG axis but also discussing the role of 
Wnt signaling in periodontal bone loss.

Pathogenesis of periodontitis

PD is very prevalent and affects almost 90% of the adult 
population, even though it may also occur in children and 
adolescents. This disease is considered the second major 
cause of tooth loss in the world population (23). 

The term “periodontal diseases” refer to the common 
inflammatory conditions of gingiva and/or periodontium. 
PD is caused by the accumulation of a biofilm that forms 
adjacent to the teeth and promotes localized inflammation 
called gingivitis, the mildest form of PD, which is readily 
reversible by simple oral hygiene. On the other hand, when 
inflammation extends deep into the tissues and causes 
loss of supporting connective tissue and alveolar bone, it 
is known as periodontitis, which is mostly an irreversible  
condition (5,24).

Various mechanisms contribute to the aetiopathology 
of PD. The oral microbial biofilm has been extensively 
studied and a single person can comprise several  
species (25). For a long time, PD was believed to be only 
initiated and sustained by the microorganisms of the dental 
biofilm, especially gram-negative anaerobic bacteria, such 
as Aggregatibacter actinomycetemcomitans and Porphyromonas 
gingivalis (26). However, nowadays, it is well established 
that periodontitis is not a matter of a single pathogen, but 
rather an imbalance of the microbial biofilm, known as 
dysbiosis (27). Moreover, the presence of the microbial 
biofilm itself might not be sufficient for the pathogenesis 
of PD (28). In order for PD take place, a susceptible host is 
also needed. It has been also suggested that gut microbiota 
might have a role on periodontitis due to dysregulation 
of immunomodulation (29,30). Similarly, also disturbance 
of the composition of gut microbiota induced by oral 
periodontopathic bacteria could be a causal mechanism 
connecting periodontitis and systemic disease (31). 

Thus, it is now understood that the destruction of 
structural components of the periodontium, leading 
to clinical signs of periodontitis, is mainly due to an 
exacerbated immune-inflammatory response to the chronic 
presence of biofilm in the periodontal tissues (5). Therefore, 
PD is an interesting model to understand the role of 
immune system on bone loss.

In this context, both host and bacteria can elicit 
immune responses (32). In the beginning, chemotactic 
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factors are released and recruit leucocytes into the tissues. 
Neutrophil, granulocyte, and lymphocyte infiltration 
into the periodontal lesion ensues: neutrophils attempt 
to engulf and kill bacteria, but are overwhelmed by the 
magnitude and chronic persistence of the microbial biofilm 
and various proteolytic enzymes are released promoting 
tissue breakdown. Meanwhile, dendritic Langerhans cells 
within the epithelium take up microbial antigenic material 
and bring it to the lymphoid tissue for presentation to 
lymphocytes in order to evoke both humoral antibody-
mediated and cell-mediated immune responses. Although, 
this is usually a protective response, the sustained microbial 
challenge promotes the breakdown of both soft and hard 
tissues. Without any treatment, active periodontitis leads to 
tooth loss (5).

T cell-mediated responses in periodontitis

After the initial response, the infection activates the 
adaptive immune response where dendritic cells other than 
participating to the innate inflammatory response have 
the ability to capture and present antigens to lymphocytes 
of the acquired immune system. In this context, special 
attention has been given to the CD4+ T-helper cells (33,34). 

CD4+ T-cells were initially subdivided into two subsets, 
designated T-helper 1 (Th1) and T-helper 2 (Th2), on 
the basis of their pattern of cytokine production (35). As a 
general rule, Th1 cytokines are associated with infectious 
inflammatory bone destruction (36-38), while its classic 
antagonists Th2 cytokines are described to minimize bone 
loss (10,39). Indeed, it has been demonstrated that the 
development of periodontitis is mainly mediated by the 
imbalance between the Th1 and Th2 subsets (38,40-44). 

In humans, studies have supported the hypothesis that 
Th1 cells are associated with stable lesions and Th2 cells 
are associated with progressive lesions (45,46). In contrast, 
other studies have demonstrated that upregulation of Th1 
responses or downregulation of Th2 responses are involved 
in periodontal tissue destruction (47-49). Moreover, 
others have shown a comparable presence of Th1 and 
Th2 cytokines in human periodontitis lesions (50-52). 
Therefore, it has become apparent that the pathogenesis of 
periodontitis cannot be fully explained through the prism of 
the Th1/Th2 paradigm. More detailed research into novel 
Th subtypes have led to the discovery of novel cytokines 
that could not be attributed to the classical T helper subsets, 
and thus resulted in the emergence of new T-cell subsets, 
described as Th17 and T regulatory (Treg) cells, which have 

overall antagonistic roles (53).
Th17 cells express the transcription factors RORγt and 

RORα and produce IL-17A, IL-17F, IL-21, IL-22, and 
IL-26. It has been reported that cytokines such as IL-1β, 
IL-6, IL-21, IL-23, and TGF-β are important for Th17 
differentiation and development (44). Th17 cells play a 
protective role against extracellular bacteria and fungi.  
IL-17 receptor (IL-17R) deficient mice display a significant 
delay in neutrophil recruitment into infected sites, thus 
resulting in susceptibility to infection (54). When these 
mice were exposed to organisms such as P. gingivalis, they 
developed increased periodontal bone destruction (54) 
(Figure 1). 

Th17 cells are also related to several autoimmune and 
inflammatory disorders (55). Th17 lymphocytes are defined 
as an osteoclastogenic T helper subset because they induce 
the expression of RANKL on osteoclastogenesis-supporting 
cells such as osteoblasts and synovial fibroblasts. Additionally, 
IL-17, the key cytokine of Th17 cells, enhances local 
inflammation and increases the production of inflammatory 
cytokines such as TNF, IL-1, and IL-6, which further 
promote RANKL expression. Finally, Th17 cells themselves 
express RANKL and promote osteoclastogenesis (56). 
Patients with periodontitis have elevated mRNA expression 
of Th17 inducing cytokines IL-1β, IL-6, and IL-21 when 
compared with the healthy control tissue (57). Therefore, 
Th17 cells are key mediators of periodontitis-induced  
bone loss.

Regulatory T cells (Tregs), on the other hand, suppress 
the activation, proliferation, and effector functions of a wide 
range of immune cells, and play a crucial role in maintaining 
immune homeostasis in health and under inflammatory 
conditions (58). To date, several types of Tregs have 
been identified, the two main ones being naturally 
occurring Foxp3+ Tregs, which develop in the thymus, and 
inducible Tregs (e.g., IL-10-producing Tr1 cells, TGF-β-
producing cells, inducible Foxp3+ Tregs), which develop 
in the periphery after exposure to various signals (59). 
During periodontitis, the immune response needs to be 
controlled in order to avoid the pathogenic microorganism 
dissemination and, at the same time, prevent collateral 
tissue damage. Therefore, Tregs preferentially accumulate 
at infected tissues, limiting the immune responses (60). 
Intriguingly, Tregs also regulate bone metabolism by 
directly inhibiting osteoclastogenesis, which is most likely 
mediated by Treg-derived cytokines such as TGF-β, IL-
10, and IL-4, or CTLA-4 (61). Therefore, Foxp3+ Tregs 
are suggested to play an essential role in the regulation of 
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inflammation in periodontal lesions. Several reports have 
demonstrated increased infiltration of Tregs within the 
infected periodontal tissue (60,62,63) (Figure 1). Despite the 
increase in the number of Tregs during periodontitis, it is 
possible that a fraction of these cells loses their suppressive 
functions due to the inflammatory periodontal environment 
enriched in IL-6 (64). However, Ernst et al. reported 
that Foxp3+CD25+ cells were reduced in periodontitis 
lesions, but the reason for the discrepancy has not been  
clarified (65). In summary, the lack of function or the 
decreased amount of Treg cells in periodontium can 

contribute to the exacerbated immune response that leads 
to disease progression or reactivation.

Inflammation-induced bone loss in periodontitis

Osteoclasts: role of RANKL/OPG

The RANKL/OPG network plays an important role in 
osteoclast formation and activity, and thereby regulates bone 
resorption (66,67). When RANKL binds to its receptor 
RANK on the surface of pre-osteoclasts, a signaling cascade 
is initiated, which leads to activation of transcription factors 
such as NF-κB, nuclear factor of activated T cells (NFAT) 
or activator-protein 1 (AP-1) promoting the development 
of mature osteoclasts (68,69). RANKL-knockout mice 
have a severe osteopetrotic phenotype due to lack of 
osteoclasts (69,70). The phenotype of RANK-knockout 
mice is similar to that of RANKL-knockout mice (69,71). 
OPG, on the other hand, is a soluble decoy receptor for 
RANKL and inhibits its interaction with RANK, thereby 
blocking osteoclast differentiation. Mice overexpressing 
OPG develop an osteopetrotic phenotype due to inhibition 
of osteoclast development by inhibiting RANKL (72). 
Therefore, the RANKL/RANK/OPG system is critical for 
osteoclastogenesis, bone resorption, and bone homeostasis. 

Under inflammatory conditions, the RANKL/OPG 
ratio is often increased leading to progressive bone loss. 
Also in PD, this cytokine system was subject of intense 
investigations. RANKL and OPG are expressed in gingival 
tissue and biological fluids such as saliva and serum. During 
gingivitis or periodontitis, RANKL expression is increased 
while OPG is decreased leading to an increased RANKL/
OPG ratio. However, periodontal treatment does not 
influence the ratio as its level is constantly high even after 
treatment suggesting that the process of bone resorption 
is still ongoing and might represent a potential risk of 
relapsing the disease. Furthermore this implicates the 
potential use of the RANKL/OPG ratio just as biomarker 
for the untreated PD but not as a predictor of the treatment 
outcome (73-76). A challenging question that was answered 
during the last years is: where does the RANKL come 
from? As such, B and T lymphocytes were identified as 
the major sources of RANKL in the bone lesions in PD 
via double-color confocal microscopic analyses of healthy 
and periodontal gingival tissues (77,78). Interestingly, the 
increase of the RANKL/OPG ratio in PD appears to be 
related to a specific immune response. The increase of 
RANK- and RANKL-positive cells and the decrease of 

Figure 1 Pathomechanism of periodontitis-induced bone loss. 
The biofilm stimulates a host response increasing the amount of 
pro-inflammatory cytokines such as TNF, IL-1, and IL-6. The 
continuous bacterial challenge stimulates the adaptive immune 
response, mediated by lymphocytes, mainly Th17 and Th1. B 
and T cells, in turn, increase the expression of RANKL which 
stimulates the differentiation of monocyte-macrophage precursor 
cells into osteoclasts, and the maturation and survival of the 
osteoclast, leading to alveolar bone loss. During inflammatory 
response there is also an increase of antagonists of the Wnt 
pathway, such as DKK-1 and sclerostin, which decrease the 
differentiation of osteoblasts and therefore bone formation. 
Finally, the number of Tregs, which usually limit inflammation, 
is reduced during periodontitis thereby leading to uncontrolled 
inflammation and favouring bone loss. TNF, tumor necrosis factor; 
IL, interleukin; RANKL, receptor activator of nuclear factor κB 
ligand.
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cells positive for OPG was associated with an induction 
of lymphocyte infiltration and high levels of MCP-1 and 
CCL5 suggesting that excessive infiltration of lymphocytes 
and a high RANKL/OPG ratio both may contribute to 
periodontitis-induced bone loss (76,77,79). The role of 
RANKL in periodontitis-induced bone loss was finally 
addressed in mice using OPG or specific antibodies to 
block RANKL. Inhibiting RANKL prevented alveolar bone 
loss in experimental periodontitis (76,80). Similarly, mice 
with an overexpression of RANK develop a periodontitis-
like phenotype with profound loss of alveolar bone at the 
age of 5 months (81). In line with this study, also OPG-
deficient (OPG−/−) mice develop distinct loss of alveolar 
bone and increased bone resorption. Importantly, treatment 
with WP9QY, a RANKL-binding peptide, suppressed 
osteoclastogenesis while osteoblastogenesis was induced 
leading to restoration of bone mass in OPG−/− animals. 
Compared to the conventional bisphosphonate risedronate, 
WP9QY additionally stimulated Wnt/β-catenin signaling 
and bone formation in OPG-deficient mice, whereas 
risedronate only decreased the number of osteoclasts in 
alveolar bone. Furthermore, sclerostin, an inhibitor of Wnt/
β-catenin signaling, was decreased in bone tissue of OPG-
deficient mice compared to wild-type mice and treatment 
with WP9QY further suppressed its expression. This 
suggests that by influencing the RANK/RANKL/OPG 
system for instance by inhibiting RANKL and mitigating 
sclerostin expression using WP9QY, periodontitis-induced 
bone loss can be prevented (82). 

More recent studies show that not only B and T cells 
contribute to RANKL production in periodontal tissue, but 
also osteocytes. Mice with a specific deletion of RANKL 
in late osteoblasts and osteocytes were protected from 
periodontitis-induced bone loss as they failed to increase 
RANKL expression during periodontitis. This study further 
showed that in a diabetic state, which worsens periodontitis, 
mice with an osteocyte-specific deletion of RANKL were 
protected from alveolar bone loss (83). 

In humans, a similar increase in RANKL and RANK 
immunohistochemical expression in gingival tissue of 
patients with periodontitis was reported, while OPG levels 
were decreased. Furthermore, the increased RANKL/
OPG ratio was connected with the tissue destruction in 
periodontitis (84). Another study investigated the levels of 
these proteins in the gingival crevicular fluid of patients with 
post-menopausal osteoporosis and PD which were under 
bisphosphonate therapy. They focused on periodontal active 
sites and found no influence of bisphosphonate treatment 

on the levels of RANK, RANKL, and OPG, which is 
maybe because these cytokines are not the main targets 
of bisphosphonates (85). A newer study focused on the 
expression levels of RANKL, OPG, and TNF in chronic 
periodontitis as well as rheumatoid arthritis patients before 
and after initial periodontal treatment. They collected 
serum as well as gingival crevicular fluid of 17 patients with 
RA, 18 patients with chronic periodontitis, and 18 healthy 
controls. While OPG levels were reduced, RANKL was 
significantly increased in the gingival crevicular fluid of 
patients suffering from periodontitis compared to healthy 
control patients (77,86,87). Furthermore, local levels of 
OPG were higher compared to periodontitis patients 
and treatment of periodontitis significantly improved 
clinical parameters (86). In conclusion RANKL/RANK/
OPG signaling is involved in the pathogenesis of PD  
(Figure 1) and offers potential for the treatment of bone loss 
as a consequence of PD.

Osteoblasts: role of Wnt signaling

One meaningful pathway that is important for the 
development of osteoblasts is the highly conserved Wnt 
pathway (88). Wnts are secreted glycoproteins that are 
involved in morphogenesis, embryogenesis, and cellular 
differentiation, and furthermore, are important regulators 
of bone biology (89). Wnts act via several signaling cascades 
that are normally divided into the canonical or the non-
canonical pathway. The canonical pathway is β-catenin-
dependent and is important for the maintenance of bone 
mass. Binding of canonical Wnt ligands such as Wnt1, 
Wnt3, Wnt3a, Wnt8, or Wnt10b to the receptor Frizzled 
(FZD)-5 and the co-receptor low-density lipoprotein 
receptor (LRP)-5/6 leads to stabilization of β-catenin, 
which in absence of Wnts would be ubiquitinylated and 
degraded. The stabilization leads to translocation into 
the nucleus and the activation of gene expression alone 
or in combination with T cell factor/lymphoid enhancer 
factor 1. Non-canonical Wnts such as Wnt4, Wnt5a, or 
Wnt11 activate alternative pathways such as the Wnt/Ca2+ 
pathway or the Wnt/planar polarity pathway, modulating 
cytoskeletal organization and gene expression (69,89,90). 
Wnt signal is regulated via secreted inhibitor proteins for 
instance members of the dickkopf (DKK) and secreted 
frizzled-related protein family, Wnt inhibitory factor 1, 
and sclerostin (Sost). They act via binding directly to the 
Wnt ligands and FZDs or by interfering with the LRP-5/6 
co-receptors (89,91). Thus, members of the DKK family 
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as well as Sost only inhibit canonical Wnt signaling while 
members of the sFRP family can block both, canonical and 
non-canonical Wnt signaling. 

In periodontitis, the expression of Wnt5a and sFRP5 
is regulated reciprocally compared to healthy conditions 
as Wnt5a is up-regulated during the disease while high 
concentrations of sFRP5 are found in healthy tissue  
(Figure  1 ) .  Thi s  was  a l so  conf i rmed  i n  v i t r o  as 
lipopolysaccharide (LPS) increased Wnt5a and decreased 
sFRP5 expression in human gingival epithelial cells, and 
furthermore, Wnt5a treatment induced LPS-induced 
inflammation which in contrast, was diminished after 
treatment with sFRP5. Moreover, treatment with sFRP5 
led to inhibition of experimental periodontitis (92). 

A study published in 2014 focused on the involvement 
of the two Wnt antagonists in the pathogenesis of human 
chronic periodontitis. Even though the number of subjects 
was rather low (15 healthy and 15 chronic periodontitis 
subjects), the mRNA expression in the periodontal 
tissues as well as the serum levels of sclerostin and DKK-
1 were significantly higher in the periodontitis group  
(Figure 1). This suggests that these molecules participate 
in the pathogenesis of periodontitis (15). In line with 
this, a recent publication showed that blocking DKK-1, 
which is induced under inflammatory conditions, could 
provide a potential therapeutic opportunity to prevent 
bone destruction in PDs (18). MC3T3 cells treated with 
Escherichia coli (E. coli) LPS showed increased DKK-
1 protein levels during osteogenic differentiation. After 
blocking DKK-1 using siRNA the E. coli LPS-inhibited 
osteogenic differentiation was rescued. Furthermore, 
DKK-1 siRNA treatment of rats with a periapical lesion 
decreased bone loss resulting from inflammation (18). 
Similar to DKK-1, also sclerostin plays a pathogenic role 
in periodontitis-induced bone loss. Deletion of sclerostin 
prevents bone loss in periostin knockout mice (93). These 
results are in accordance with Taut et al. showing that 
sclerostin antibody treatment led to a stimulation of bone 
regeneration in an experimental model of periodontitis 
in rats (94). Moreover, there are more studies focussing 
on the involvement on the Wnt/β-catenin signaling 
inhibitor sclerostin and its blockade. For instance, in 
an ovariectomized rat model of induced experimental 
periodontitis, treatment with sclerostin antibody led to 
increased alveolar crest height and bone mass accrual (95). 
Finally, sclerostin inhibition using an antibody alone or in 
combination with DKK-1 co-inhibition led to an increase 
of alveolar bone volume and architecture in rats suffering 

from alveolar bone loss suggesting that DKK-1 as well 
as sclerostin play a role in alveolar bone accrual during 
estrogen-deficient and edentulous states (96). As sclerostin 
inhibition has been associated with a compensatory increase 
in DKK-1 and vice versa (97-99), the dual inhibition of 
sclerostin and DKK-1 using bispecific antibodies are 
particularly promising to treat diseases with excessive 
suppression of bone formation.

Taken together, these data indicate that Wnt signaling 
and especially its inhibition by sclerostin or DKK-1 plays 
an important role in the pathogenesis of periodontitis and 
that reactivation of Wnt signal may be an effective therapy 
to ameliorate alveolar bone loss in periodontitis. 

Conclusions

Periodontitis is a disease that affects the tooth-supporting 
structures and the host response has been considered one 
of the main etiological factors of this disease. Besides a 
dysbalance in the classical Th1 and Th2 subsets, Th17 
and Tregs have emerged as new players in periodontitis. 
These cells do not only contribute to the exacerbation of 
the inflammatory process, but also directly affect bone cell 
activity to promote bone loss. As such, the RANKL-RANK-
OPG axis and more recently Wnt signaling have been 
identified as key pathways that mediate the pathogenesis of 
periodontitis-induced bone loss. In this sense, due to the 
close relationship between bone tissue and immune system, 
periodontitis is a valuable disease model to expand the 
knowledge on osteoimmunology.
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