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Introduction

Sclerostin

Sclerostin is a secreted glycoprotein, encoded by the SOST 
gene (1,2). SOST was identified by linkage analysis in 
patients with Van Buchen disease (MIM 269500) in 2001, 
a condition where sclerosis of the skeleton occurs with 
progressive bone mass increase (3-5). It has been shown, that 
a homozygous mutation in the SOST or in the enhancer 
element (Chr 17p21)—which drives SOST expression—is 
responsible for the skeletal sclerosis (6). Sclerostin has been 
hence described as a negative regulator of bone growth 
and mineralization, and the human genetic phenotype was 
confirmed in animal models. Over-expression of SOST in 

mice causes strong osteopenia (7,8), while SOST knock-
out mice develop sclerosis of the skeleton mirroring the 
human disease (9). As indicated by the strong phenotype 
induced by the lack or over-expression of SOST, sclerostin 
is extremely abundant in osteocytes, where it activates bone  
resorption (10). 

Sclerostin: mechanism of action in the bone

Bone morphogenetic protein (BMP) pathway
Sclerostin belongs to the differential screening-selected 
gene aberrant in the neuroblastoma (DAN) protein 
family (2,3). As the other DAN proteins such as gremlin 
or noggin, sclerostin presents a cysteine knot structure 
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which gives the possibility to antagonize BMP activity by 
competing with the BMP receptor (2). BMP signalling is 
constituted of BMP ligands (BMP2, 4 and 9) binding to 
BMP receptor type 1 (BMPR1) and BMP receptor type 2 
(BMPR2) which in turn activate the transcription factor 
SMAD1 and 5 and hence downstream target genes (11). 
It was first reported that sclerostin exerts its negative 
effect on the bone by inhibiting BMP effect on osteoblasts 
(12). Later, it was discovered that sclerostin is actually 
not expressed by osteoblasts, but by osteocytes and once 
secreted it induces osteoblast apoptosis by inhibiting 
BMP6 induced signalling (8). It was also observed that the 
inhibitory effect of sclerostin on BMP was not direct but 
rather an indirect mechanism, suggesting that sclerostin 
may inhibit BMP signalling by interacting with an 
intermediate factor or pathway which in turn affects BMP 
signalling (10). 

Wnt pathway
Wnt signalling consists of β-catenin-dependent (canonical) 
and -independent (non-canonical) pathways. In the 
β-catenin-dependent pathway, when there is no Wnt 
ligand, the cytoplasmic β-catenin is phosphorylated and 
therefore targeted for ubiquitination via proteasome-
mediated proteolysis. When a Wnt ligand is present, it 
binds to LRP5/6 receptor and frizzled (FZD) co-receptor 
which leads to a stabilization of the cytoplasmic β-catenin. 
β-catenin then translocates into the nucleus and activates 
downstream target genes involved in cell proliferation 
and survival. The β-catenin-independent pathway is 
LRP5/6-independent and causes increased intracellular 
Ca2+, activation of calcium-dependent proteins and the 
rearrangement of cytoskeleton, leading to cell proliferation 
and migration (13). More recently, sclerostin has been 
reported to bind to the receptor LRP5/6, sequestering it 
from the frizzled (FZD) co-receptor and thereby leading 
to inhibition of the wingless (Wnt) canonical pathway (14). 
In light of this study, van Bezooijen et al. have proposed 
and expanded the concept that sclerostin is an indirect 
antagonist of BMP signalling by showing that the BMP-
inhibitory property of sclerostin lies in the modulation of 
Wnt pathway (15). The authors showed that sclerostin—
by binding to LRP5/6—antagonizes Wnt ligand and 
inhibit BMP-induced activation of Wnt signalling, which is 
necessary for alkaline phosphatase activation during bone 
formation (15) (Figure 1).

Beyond the bone: focus on the lung

Pulmonary hypertension (PH): BMP and Wnt signalling

BMP and Wnt pathways are extremely important for bone 
remodelling, however, their expression and signalling 
are present in other organs and tissues as well, therefore 
their actions are not exclusively relevant for the bone. 
Interestingly, it has been shown that alterations on BMP 
and Wnt signalling can lead to pathological manifestations, 
such as PH (16). PH is a rare disease characterized by 
increased pulmonary vascular resistance which leads to 
remodelling of the smooth muscle and endothelial layer of 
the pulmonary arteries leading to narrowing or occlusion 
of the vessel lumen. As a consequence, the right ventricle of 
the heart is subjected to an excessive strain which ultimately 
causes right heart failure (17). The cause of PH is unknown, 
however the pathogenesis of PH have been often linked to 
abnormalities of the BMP and Wnt signalling (16). The 
BMP pathway is extremely important for maintaining the 
pulmonary vasculature homeostasis, and an attenuation 
of BMP signalling is a frequent observation in the PH 
pathogenesis (18,19). Loss of function mutations in BMPR2 
are associated with both hereditary and non-hereditary 
PH as well as in the animal models of the disease (19-21).  
It has been shown that BMP signalling is important on 
one hand for the survival of endothelial cell (EC) and on 
the other hand for counteracting the pro-proliferative 
effect of TGF-β on smooth muscle cell (SMC) of the lung 
vasculature (22,23). Attenuation of the BMP signalling 
would then leads to decreased survival of EC and hyper-
proliferation of smooth muscle cells; both being hallmarks 
of PH pathogenesis (24).

The importance of BMP signalling in this aspect has also 
been proven by the findings that the DAN protein gremlin, 
acting as a BMP antagonist, is elevated in pulmonary 
arteries of PH patients and in animal models of PH (25,26). 
The inhibition of gremlin, by a blocking antibody, reversed 
the remodelling and the increased pulmonary pressure 
in the animal models of PH (27). These findings indicate 
that the action of BMP antagonists could explain the 
development of PH in the absence of BMPR2 mutation.

The Wnt pathway has also been recently associated to 
PH development (28-30). Several studies reported activation 
of both Wnt canonical and non-canonical pathways in 
PH patients and in the corresponding monocrotaline and 
hypoxic animal models (31,32). The β-catenin protein levels 
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are elevated in the smooth muscle cells of PH patients, 
suggesting a pro-proliferative status of these cells (28). 
Additionally, similarly to the bone metabolism, recent studies 
have suggested that BMP and Wnt signalling are tightly 
interconnected during the pathomechanism of PH as well. 
It has been shown that the protective effect of BMP on EC 
survival is mediated via β-catenin activation (30). Additionally, 
a BMP-dependent activation of Wnt signalling has been 
shown to affect the proliferation and migration of pulmonary 
arterial SMC (33). These studies suggest that a molecule 
having potential to modulate both BMP and Wnt pathways, 
might influence the molecular mechanism governing altered 
homeostasis of the vascular cells in PH.

Expression of sclerostin: regulation and implications for 
the lung

Sclerostin has been discovered as an essential bone-related 
molecule, involved in bone remodelling and homeostasis (34).

However, recently it has been shown that sclerostin 
is not only confined to the skeletal compartment, but it 
is present in other organs as well. Expressional analysis 
revealed that sclerostin is expressed in the cartilage, liver, 

kidney, heart and in the lung (3,35,36). Additionally, in 
the cardiovascular system, sclerostin has been detected 
in the aorta (36), specifically in the vascular SMC where 
it is often associated with vascular calcification (37). 
As sclerostin is a negative regulator of mineralization, 
sclerostin expression could be up-regulated to counteract 
the ongoing calcifying mechanisms. Importantly, expression 
studies have revealed that several factors important in 
the pathogenesis of PH affect sclerostin levels. In the 
bone, it has been shown that sclerostin expression is 
down-regulated by nitric oxide (NO) production. This 
evidence is particularly important in relation to the lung, 
where NO is one of the major messenger molecules for 
pulmonary vasodilation (38). However, in PH patients 
the endothelial production of NO is often impaired in the 
pulmonary vasculature, due to endothelial dysfunction (39).  
Therefore, the decreased vascular NO could be the cause 
of increased sclerostin levels in the PH pulmonary arteries. 
Additionally, expression of sclerostin is modulated by 
hypoxia and cytokines, such as IL-6 (40,41). Contrary to the 
systemic circulation, hypoxia induces vasoconstriction in 
the pulmonary vasculature (42). Hypoxic vasoconstriction 
is a necessary response in order to limit the circulation in 

Figure 1 Summary of sclerostin action in the bone. Sclerostin has an effect on bone metabolism by inhibiting BMP and Wnt canonical 
pathways. The physiological level of sclerostin allows a balance between inhibition and activation of BMP and Wnt canonical pathway 
resulting in the normal homeostasis of the bone (middle) pathological decreased (left) or increased level (right) of sclerostin will perturbate 
the normal bone homeostasis resulting in sclerosis or osteopenia respectively. BMP, bone morphogenetic protein.
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the hypoxic lung regions and divert the blood flow towards 
better oxygenated regions, thereby increasing the efficiency 
of gas exchange (42). Due to the vasoconstrictive status 
and substantial remodelling of their pulmonary arteries, 
PH patients are often hypoxic, and this decrease in oxygen 
concentration could lead to sclerostin upregulation. 
Similarly, IL-6 is a cytokine shown to be elevated in PH 
(43,44) and over-expression of IL-6 in mice results in 
spontaneous PH development (45). The increased level of 
IL-6 could contribute to increased sclerostin production. 
These abovementioned factors are only few known stimuli 
inducing sclerostin levels, however, we do not know whether 
other molecules with an established role in PH development 
(such as PDGF-BB) could also affect sclerostin expression. 
Nitric oxide, hypoxia and IL-6 could enhance sclerostin 
production triggering then sclerostin-action on BMP and 
Wnt pathways leading to perpetuation of the disease.

Sclerostin: potential involvement in PH

Several studies have delineated disturbances of BMP and 
Wnt pathways in PH, however, the underlying molecular 

mechanisms responsible for these alterations are not yet 
known. One could speculate that excess sclerostin levels 
due to upregulation by NO, hypoxia, IL-6 or other factors, 
could disturb the BMP and Wnt pathways helping the 
perpetuation of the disease in a vicious circle. To date, 
the role of sclerostin on vascular cells has not yet been 
investigated. Sclerostin could affect the physiological 
homeostasis  of  EC and SMC driving endothel ial 
dysfunction and vascular remodelling and thereby 
contributing to the pathophysiology of PH. 

Here, we suggest a possible mechanism of action of 
sclerostin on SMC and EC which might take part to the 
pathomechanism underlying PH. 

In SMC sclerostin elevation could lead to inhibition 
of the canonical Wnt pathway by binding to LRP5/6. 
This would activate the non-canonical pathway leading to 
migration and intracellular calcium increase. Increase of 
intracellular calcium is a very important signalling event 
which induces contraction of SMC (46). It has been shown 
that SMC isolated from the pulmonary artery of PH patients 
present higher intracellular calcium than SMC isolated 
from healthy lungs. This leads to increased susceptibility 

Figure 2 Potential involvement of sclerostin on SMC in PH. Sclerostin blocks the canonical Wnt pathway by binding to LRP5/6. FZD 
(frizzled) receptor is then free to interact with another co-receptor (Kny or Ror2) and activate non-canonical pathway. Rac, Cdc42 and RhoA 
are small GTPases protein involved in cell polarity and cytoskeleton rearrangement. Plc (phospholipase C) is responsible for activating the 
downstream signalling which leads to increase intracellular calcium. SMC, smooth muscle cells; PH, pulmonary hypertension.
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for SMC contraction which consequently translates for 
higher pulmonary vascular tone (46). Additionally, elevated 
intracellular calcium in SMC, is often associated to increased 
proliferative potential (Figure 2).

Sclerostin could also act on the EC of the pulmonary 
vessels. In this vascular cell type it could induce apoptosis 
by binding to LRP5/6 and inhibiting the canonical Wnt 
pathway. At the same time, as BMP has been shown to 
induce β-catenin activation, sclerostin would also block 
BMP-induced survival of EC. Additionally, similarly to 
SMCs, the blockage of the canonical pathway would lead 
to activation of the non-canonical pathway, affecting the 
cytoskeleton and intracellular calcium of EC leading to 
alterations of cell to cell contact and impairment of the 
barrier integrity of the endothelial layer (Figure 3).

Concluding remarks

The current research is mostly focused on the role of 
sclerostin in bone remodelling and hence it is commonly 
known as an osteocyte-specific protein. However, a growing 
body of evidence shows that sclerostin is expressed and 

plays an important role in other tissues and organs as well. 
Although sclerostin has been reported to be present in 
the lung and in the cardiovascular system, its role in their 
physiological and pathological conditions has not been 
studied yet. In light of the simultaneous effect of sclerostin 
on both BMP and Wnt pathways and the involvement 
of these two pathways in the pathogenesis of PH, one 
can speculate that sclerostin could be a very interesting 
candidate for the pathogenesis of PH. In vitro functional 
studies should elucidate the influence of sclerostin on 
vasoreactivity and barrier integrity—the main physiological 
function of smooth muscle and ECs. Additionally, ex vivo 
vascular force measurements by wire myography and lung 
dynamic assessments by isolated-perfused lung system 
would facilitate to understand the role of sclerostin in 
vascular tone, resistance, as well as vascular permeability 
and oedema formation in a more physiological context. 
Eventually, in vivo studies (e.g., Sugen/Hypoxia rat model) 
would be essential to prove the relevance of sclerostin in 
PH. These studies would open up new avenues, where 
sclerostin could be investigated on a much broader horizon 
beyond bone remodelling.

Figure 3 Potential involvement of sclerostin on EC in PH. Sclerostin blocks the canonical Wnt pathway by binding to LRP5/6. FZD 
(frizzled) receptor and simultaneously could block BMPRII activation by sequestering BMP ligand. These events might result in apoptosis of 
EC. Additionally similarly to the SMC the activated non-canonical pathway would lead to cytoskeleton rearrangement and decreased barrier 
integrity. PH, pulmonary hypertension; EC, endothelial cell; BMP, bone morphogenetic protein; SMC, smooth muscle cells.
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